Available online at www.sciencedirect.com

SciVerse ScienceDirect PI’OCGdiCI

Computer Science

-~
ELSEVIER Procedia Computer Science 00 (2016) 000—000

www.elsevier.com/locate/procedia

The 9th International Conference on Ambient Systems, Networks and Technologies
(ANT 2018)

Cloud vs Fog: assessment of alternative deployments
for a latency-sensitive IoT application

Marcus Gomes, Miguel L. Pardal*

INESC-ID, Instituto Superior Técnico,
Universidade de Lisboa, Portugal

Abstract

Internet of Things (IoT) smart places are systems composed of sensors, actuators and computing infrastructure that acquires data
about the surrounding environment and uses that data to improve the user experience of the smart place. For instance, RFID
readers can detect a tag approaching and, after the event is processed in a dedicated server, open a door automatically. Many IoT
applications are latency-sensitive because actions need to be done in a timely manner. To meet this requirement these applications
are usually provisioned close to the physical place, which represents an infrastructure burden because it is not always practical to
deploy a physical server at a location. Utility computing in the Cloud can solve this issue but the latency requirements must be
carefully assessed. Fog computing is a concept that brings the cloud close to devices at the edge of the network, aiming to provide
low latency communication for applications and services. The present work implemented a provisioning mechanism to deploy
a “smart warehouse” IoT application according in utility computing platforms: Cloud and Fog. We compared the event latency
performance of both approaches and the results show that a fog deployment is more adequate for the considered IoT application.
© 2016 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the Conference Program Chairs.

Keywords: Utility computing, Cloud computing, Fog computing, Provisioning, Internet of Things, RFID

1. Introduction

Internet of Things (IoT) applications are composed of physical objects that are continuously connected to the
virtual world and can act as physical access points to Internet services'. Many times these systems require low-
latency interactions with users and environments, which traditionally implies that at least part of an IoT application
needs to be tightly bound to the local infrastructure of the interacting environment.

The objective of this work is to determine if the dedicated, local infrastructure traditionally required for supporting
the application, can be replaced by a form of utility computing®, but still fulfill the low-latency requirements of IoT
smart places. Our efforts will use a “smart warehouse” that relies on the RFID technology® where products are tagged

* Corresponding author. Tel.: +351.213100300; fax: +351.213145843.
E-mail address: miguel.pardal @tecnico.ulisboa.pt

1877-0509 © 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

2 Marcus Gomes and Miguel L. Pardal / Procedia Computer Science 00 (2016) 000-000

with Radio-Frequency IDentification (RFID) tags that can be identified by RFID readers. Through the data collected
by these readers is possible to gather information for the business operation of the smart place.

2. Related Work

Until recently, utility computing and cloud computing were synonymous. The traditional delivery models allow
use of shared computing resources at different abstraction levels*: Infrastructure-as-a-Service (IaaS), Platform-as-a-
Service (PaaS) and Software-as-a-Service (SaaS). An example of PaaS offering for RFID-based IoT applications is
Fosstrak (Free and Open Source Software for Track and Trace — http://fosstrak.github.io/), an EPCglobal
Network compliant RFID software platform that was developed by Floerkemeier et. al®. Fosstrak is composed by
several modules: Filtering & Collection Server (FCServer) — called Application Level Events (ALE) in the EPCglobal
standards — that collects raw data, Capturing Application that performs application-specific event interpretation, and
EPCIS Repository that stores persistent events.

The Fog Computing® is a recent paradigm that aims to bring the cloud close to the “edge of the network”, bringing
the cloud close to the ground - hence the fog meteorological analogy. The Fog should be able to meet the requirements
of several applications that the traditional clouds are not able to accomplish.

Data Center, Cloud
Hosting 10T and Analytics Network Management & Applications

Networking Core

and Services e/_\e

.

Multi-Service

Edge - /~

t Distributed
Dozen of
e

Intelligence : FOG
Embedded Systems
and Sensors

Fig. 1. The Internet of Things and Fog Computing (adapted from Bonomi et. al (2012)).

Bonomi et. al® presents the architecture of a Fog Computing platform, illustrated in Figure [I| The distributed
infrastructure of the Fog comprises data centers, core of the network, edge of the network and end devices. Multi-
Service Edge is the lowest tier of the Fog and it is responsible for performing machine-to-machine (M2M) interactions.
It collects and process the data from the Embedded Systems and Sensors tier, issues commands to the actuators and also
filters the data that is locally consumed and sent to the higher tiers. Core Networking and Services tier is responsible
for providing network services that are used to exchange data between sub-networks. This tier also provides security
services as well Quality-of-Service and multicast services for the applications. Since the interaction time between the
different tiers can range from seconds - e.g. “real-time” analytics - to days - “data warehouse” analytics - the Fog
must support several types of storage, from ephemeral storage at the lowest tiers to semi-permanent at the highest tier.
At the high tiers, the geographical coverage and the latency both increase”. The global coverage is given by central
repositories for persistent data that can be used to perform business analytics.

Configuration Management (CM) tools are software management tools that allows to automate and specify the
deployment of applications in utility computing platforms. The system resources and their desired state are described
and the CM tool is responsible for enforcing the desired state. For instance, CM tools allows the automation of

http://fosstrak.github.io/

Marcus Gomes and Miguel L. Pardal / Procedia Computer Science 00 (2016) 000-000 3

the provisioning of physical and virtual machines, perform dependency management of software components and
automate management tasks. Currently, there are several solutions to perform configuration management of soft-
ware, where the most relevant are Chef (https://www.chef.io/), Puppet (bhttps://puppetlabs.com/), Ansible
(http://www.ansible.com/) and Salt (http://saltstack.com/).

3. Solution

A provisioning solution, shown in Figure[2] was developed for the “smart warehouse” application using Configu-
ration Management (CM) tools. After the provisioning policies are defined and configured, the Orchestrator uploads

VM Image
I—> Repository]
M Client
” C(CIgL:g;‘
L’ CcM
Server

Fig. 2. Provisioning mechanism conceptual architecture.

them to its respective remote repositories (CM Server and VM Image Repository). When the provisioning request is
performed - through a configuration management interface provided by the Orchestrator - the configuration manage-
ment client (CM Client) pulls the polices from the configuration management server (CM Server) that is responsible
for maintaining a consistent state of the provisioned nodes. In order to enforce the polices, the CM Client pulls the
VM images or Docker containers from a central repository containing the required software components to deploy
the application, and then performs its configuration. After provisioning the infrastructure, the CM client periodically
polls the CM server in order to determine if its current state is consistent with the most recent policy.

The implementation of the provisioning mechanism relies on the Chef tool. Chef has recipes that describe infras-
tructure as code. The knife command-line tool executes the necessary actions and provides an interface between the
local Chef repository and the Chef server. We chose Chef instead of its competitors - i.e. Puppet and Ansible - mainly
because of this knife tool as it is very powerful and allows us to interact with our entire infrastructure. For example,
with knife ssh it is possible to execute a command on a certain number of nodes in our environment. Also, if we
change the role configuration that is assigned to a set of nodes, knife is able to update all of them to the most recent
policy with a single command.

3.1. Smart Warehouse Deployment

The main goal of the “smart warehouse” application deployment is to guarantee that the latency requirements of
these applications are fulfilled.

Smart Warehouse Cloud

Filter & Capture
Collection | Appiication
Server

Smart RFID
Objects Reader

EPCIS
Repository

MysQL
Database

Apache Tomcat

Fig. 3. Cloud deployment: smart warehouse technological architecture.

https://www.chef.io/
https://puppetlabs.com/
http://www.ansible.com/
http://saltstack.com/

4 Marcus Gomes and Miguel L. Pardal / Procedia Computer Science 00 (2016) 000-000

For the cloud deployment, illustrated in Figure [3] all the Fosstrak components are provisioned in a single virtual
machine. The Fosstrak FCServer, EPCIS repository and Capture application require an Apache server to run. The
EPCIS repository is connected to a MySQL database that stores the event data. The “smart warehouse” can be
connected to the cloud through a wired (e.g. ADSL or Fiber-optic) or a wireless network connection (e.g. Wi-Fi or
3G).

For the fog deployment, illustrated in Figure[d} part of the Fosstrak components are provisioned closer to the “smart
warehouse”. This is in contrast with the cloud deployment, where all the provisioning is done at a long distance from
the location, e.g. hundreds of kilometers away. The Fosstrak components are provisioned across the Core and the

EPCIS MysaL
Repository | Database

Apache Tomcat

I Connection

Smart Warehouse

Filtering &
Collection
Server

Capture
Application

nne
«—>

Apache Tomcat

Smart RFID Data Storage

Objects Reader

Fig. 4. Fog deployment: smart warehouse technological architecture.

Edge (see architecture depicted in Figure[I)). At the Core, the Electronic Product Code Information System (EPCIS)
repository is deployed and running on top of an Apache Tomcat server. The repository is connected to a MySQL
database, which stores the event data. At the Edge, the Filtering & Collection Server (FCServer) and the Capture
application are deployed on a Tomcat server. The Capture application sends the events collected by the FCServer to
the EPCIS repository through the EPCIS Capture Interface - via HTTP requests. Again the network connections can
be wired or wireless.

4. Evaluation

The main goal of the evaluation is to compare the cloud and fog deployments and measure which one is more
suitable to fulfill the latency requirements of the “smart warehouse” application. The response time between an event
that occurs in the “smart warehouse” and the corresponding action that is triggered in the physical space is measured.
The detailed instrumentation required for collecting the measurements is shown in Figure[3}

The FCServer module is responsible for collecting and processing the reader events. The collection and processing
of reader events is performed according to an Event Cycle specification. The Event Cycle is a set of periodical cycles
where the FCServer collects events from the RFID readers. The data about the Event Cycle is delivered to the client
application through a report. The information in the report is used to trigger an action, in the warehouse such as
“open” or “close” a door.

The network connections were monitored with the tcpdump (http://www.tcpdump.org/), a command-line tool
that allows the monitoring of the packets that are being transmitted or received over a network. Through the logs
produced by this tool, we are able to determine how the connection time was spent.

http://www.tcpdump.org/

Marcus Gomes and Miguel L. Pardal / Procedia Computer Science 00 (2016) 000-000

Server

.

Smart Place

Connection

ALE

Collect

Events—

Monitoring
-
Network | | cpy | Monitoring Connecti o (readi
System Network onnection while (reading_tags)
) Monitoring {

if (event_collected)

/ EPC Compliant Middleware \ { t = time();

Client Application } B !
EPCIS Deliver if (report_received)

Report RFID System { 12 = time();

}
}
latency_time = t2 - t1;

Fig. 5. Latency measurement approach.

4.1. Setup

To perform the evaluation experiments we chose Amazon Web Service (AWS) Elastic Cloud Computing (EC2)
instances running the Amazon Linux Amazon Machine Image (AMI) operating system. The Virtual Machines (VMs)
presents a configuration with a 2.5 GHz single-core processor with 1 GB of RAM.

In the fog deployment configuration, the experiments were conducted in a VM with a 2.6 Gigahertz (GHz) dual-
core processor with 2 Gigabyte (GB) of Random-access memory (RAM) and running the Linux Ubuntu 14.04.2 LTS
operating system. The smart warehouse was connected to the cloud and fog through a Asymmetric Digital Subscriber
Line (ADSL) connection with a bandwidth of 10 Mbps.

Regarding the software components, the application stack is composed of Apache Tomcat 7.0.52.0 with Java ver-
sion [.7.0 update 79. The Fosstrak versions were: FCServer version 1.2.0; Capture Application version 0.1.1; and
EPCIS Repository version 0.5.0. Furthermore, the EPCIS Repository was connected to a MySQL database server
version 5.5. The Rifidi Emulator used to emulate the RFID readers was in version 7.6.0.

The experiments performed in our evaluation were based on the scenario and data from RFIDToys®, that provides
low level RFID readings recorded from a warehouse demonstrator where a robot transported products identified by
RFID tags through a physical space.

To evaluate the latency we consider the moment in the RFIDToys dataset when the robot stops during 5 seconds in
front of the door and then continues on its way. The door must be opened before the robot starts to move again. To
perform the simulation we defined two different specifications (ECspec) for the Event Cycles of the FCServer module,
Full Event Cycle with the default value of 10 seconds and a Half-period Event Cycle with a 5 second value, aligned
with the robot waiting time.

The evaluation of the event latency for the proposed approaches was performed in two steps. First, we determine
during a Event Cycle how much time the FCServer is processing an event and how much time the module is in an
idle state. Furthermore, we determine how much time each stage of the event processing takes: (i) Upload Time; (ii)
Tag Processing Time; (iii) Filtering & Aggregation Time; (iv) Report Creation Time; and finally (v) Response Time
(Download).

4.1.1. Cloud-based warehouse latency

The behavior expected with a shorter Event Cycle specification is that the event latency presents a better overall
performance. According the obtained results it is possible to observe that the event latency decrease from 8.244s to
4.266s. The values for the network latency improved when the FCServer is configured with the faster ECspec, close
to ~ 65% of improvement for the Upload Time metric - from 0.294s to 0.103s - and = 40% for the Response Time
metric - from 0.228s to 0.149s. The values for the time where the FCServer remains in an idle state also presented a
significant improvement, from 7.346s to 2.569s. The value for the Tag Processing Time increased ~ 1000% when the
FCServer is configured with Half-period ECspec - from 0.002s to 0.024s. The value for the Filtering & Aggregation
Time metric increased ~ 300% - from 0.370s to 1.490s.

a) Overall latency breakdown.

6 Marcus Gomes and Miguel L. Pardal / Procedia Computer Science 00 (2016) 000-000

100% N W (die Time (%) 100% el W idie Time (%)

Il Effective Time (%) l Effective Time (%)

75% 75%

50% 50%

37.528%

25% 25%

11.061%

0% 0%

Average Average

Fig. 6. Full and Half-period Event Cycle for Cloud deployment: overall latency breakdown.

In both Full ECspec and Half-period ECspec, shown in Figure [6] the FCServer module is in an idle state during
most of the time. Also, it is possible to observe that the ECspecs affected the percentage of time where FCServer is
processing the events (Effective Time) and where is in an idle state (Idle Time). With the Full ECspec the FCServer
remains ~ 89% of the Event Cycle period in an idle state while when configured with the Half-period ECspec this
value decreases to ~ 62%. This means that during the Event Cycle period the FCServer module can be in an idle state
during 9 seconds when configured with the Full ECspec and for 3 seconds with the Half-period ECspec.

b) Effective time breakdown. Figure[]] presents the how much time is spent in each phase of the pipeline when the
FCServer is configured with Full ECspec and with the Half-period ECspec.

100% B Response Time (%) 100% 12.325%
1O/ ©, B
VIS I Report Creation (%) Report Creation (%)

[Filtering & Aggregation (%) I Filtering & Aggregation (%)
M Processing Time (%) TSN M Processing Time (%)
M Upload Time (%) M Upload Time (%)

Response Time (%)

75% 75%

50% 50%
25% 25%
3.274%
11.048%
0% o
Average 0% Average

Fig. 7. Full and Half-period Event Cycle for Cloud deployment: effective time breakdown.

Comparing the obtained results, it is possible to observe that time breakdown is evenly distributed between the
Upload (= 35%), Filtering & Aggregation (= 30%) and Response (=~ 34%) stages when the FCServer module is
configured with the Full ECspec, while the Tag Processing and Report Creation stages represents a small percentage
of the total time, less than ~ 1%. When the FCServer is configured with the Half-period ECspec, the Filtering &
Aggregation stage is the most time consuming, representing close to ~ 73% of the total time. As when configured
with the Full ECspec, the Upload and Response stages presents similar results, respectively close to ~ 11% and
~ 12%. Regarding the Processing stage, the time required to process the event data increased from less than ~ 0.3%
to = 3%. The Report Creation stage presented the same values as the Full ECspec configuration (= 0.3%).

4.1.2. Fog-based warehouse latency

As in the previous experiment the event latency presented a better overall performance for the shorter ECspec.
According the obtained values we observed that the event latency improves in a significant way - from 7.450s to
4.250s. This result is achieved thanks to the improvement in the latency of at the Filtering & Aggregation Time

Marcus Gomes and Miguel L. Pardal / Procedia Computer Science 00 (2016) 000-000 7

by ~ 52% - from 2.530s to 1.230s - and the amount of time that FCServer is in an idle state - from 4.944s to
2.747s. Regarding the network latency, the values for the Upload Time and Response Time improved 1ms for both
metrics. However, when configured with a faster Event Cycle specification the tag processing time presented an
inferior performance, where time to process the event data increases ~ 470% - from 0.049s to 0.279s. Also the report
creation time increased 300% - from 0.001s to 0.003s.

a) Overall latency breakdown. Figure 8] shows the latency breakdown for an event when the FCServer module is
configured with the Full ECspec and when it is configured with the Half-period ECspec.

100% Il Idle Time (%) 100% & e Time (%
W Effective Time (%) o e Time (%,
) e7.7e8% M Effective Time (%)

67.920%

75%
75%

50%

50%

32.080%

32.205%

25% 25%

0% 0%

Average Average

Fig. 8. Full and Half-period Event Cycle for Fog deployment: overall latency breakdown.

Comparing the graphs for both ECspecs is possible to conclude that during most of the time of an Event Cycle the
FCServer module is in an idle state (Idle Time) - close to =~ 68% in both configurations - while in the remaining time
the FCServer is processing the event that was collected (Effective Time). Considering the duration of the ECspecs it
means that in average when the FCServer is configured with the Full ECspec the module can be in an idle state during
7s while with the Half-period ECspec this idle state can last for 3 seconds.

b) Effective time breakdown. FigureD]presents the time breakdown for each stage of the pipeline when the FCServer
is configured with Full ECspec and with the Half-period ECspec.

. o (siar 100% 20700
100% B i Response Time (%) IEEZLSN W Response Tlr_ne (ZA’)
S SEA% I Report Creation (%) T T I Report Creation (%)

I Filtering & Aggregation (%) - E:éi'é’;ilﬁ A‘?i?r:g(s/")on (%)
M Processing Time (%) = dTg o/ o)
Il Upload Time (%) 75% pload Time (%)

50% 50%

25% 25%
18.004%
2.525% 1.121%
0% — 0%
Average Average

Fig. 9. Full and Half-period Event Cycle for Fog deployment: effective time breakdown.

It is possible to observe that the Filtering & Aggregation stage is the most time consuming for both Event Cycle
specifications. With the Full ECspec this stage occupies close to ~ 95% of the total time, while with the Half-period
ECspec this value is close to = 75%. The reason for this difference is in the Tag Processing stage. With the Full
ECspec the time for processing the event data represents close to = 2.5% of the total time while with the Half-period
ECspec this value is close to ~ 18%. The Upload and Response stages together represents a small percentage of the
time spent to process the event - close to * 5% for both specifications - while the percentage of time to create the
reports represents less than = 1% of the total time.

8 Marcus Gomes and Miguel L. Pardal / Procedia Computer Science 00 (2016) 000-000

4.2. Discussion

Regarding the latency metric, the fog-based deployment presented the best results, but with a small difference when
compared with the cloud deployment. According to the results, both deployments meet the requirement of having a
latency time lower than the robot wait time, i.e. the warehouse door only will be able to open in time for the robot to
pass. But only when the FCServer is configured with the Half-period ECspec (5 seconds). The default configuration
value of 10 seconds does not allow meeting the latency requirement. The experimental methodology was able to assert
this configuration inadequacy in a clear way.

The values for the Upload and Response (Download) metrics presented a substantial difference, where the fog
deployment is the best one. This can be explained by the proximity to the physical location. However, for the time
scale considered in the RFIDToys dataset, where the robot stops for 5 seconds at the door, the difference between
cloud and fog deployments is irrelevant in this case.

5. Conclusion and Future Work

The present work explored alternative deployments of an IoT application for a “smart warehouse” using RFID
technology. A fully automated provisioning solution using Chef tools was built for this purpose. One approach
deployed the application in a typical cloud. The other approach deployed the application in a fog-like infrastructure,
where part of the components are at the Edge tier and the rest are at the Core tier. The goal of the exercise was
to determine if a cloud-based approach is able to meet the latency requirements of the applications, given that low-
latency is an often considered an essential requirement of many IoT applications. With the followed methodology we
were able to compare the event latency performance for both cloud and fog deployments. The obtained results show
that the event latency performance presented better results when the application was deployed according the fog-based
approach. However, for the specific case of the considered “smart warehouse” application with the RFIDToys dataset,
both deployments were able to meet the requirement.

Regarding the system evaluation, it was performed only in AWS EC2 instances in the closest geographical loca-
tion. For the future is important to evaluate our solution in other regions and with other cloud providers to compare
performance. Also, in the performed experiments we considered only a particular situation — a robot approaching a
door. In future work, we want to evaluate the latency performance in more varied latency-sensitive situations. For the
specific case considered, we saw that cloud deployment was able to satisfy the requirements of the IoT application, but
it remains to be seen if it is able to cope with more demanding scenarios, such industrial settings in the IIoT (Industrial
Internet of Things). Using the tools developed for this work, we will have a head start to perform latency-sensitive
tests for more applications in diverse scenarios.

Acknowledgements This work was supported by Portuguese national funds through Fundacgdo para a Ciéncia e
a Tecnologia (FCT) with reference UID/CEC/50021/2013 (INESC-ID)

References

1. Mattern, F, Floerkemeier, C.. From the internet of computers to the internet of things. In: From active data management to event-based
systems and more. Springer; 2010, p. 242-259.

2. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A.,etal. A view of cloud computing. Communications of the ACM
2010;53(4):50-58.

3. Want, R.. An introduction to RFID technology. Pervasive Computing, IEEE 2006;5(1):25-33.

4. Zhang, Q., Cheng, L., Boutaba, R.. Cloud computing: state-of-the-art and research challenges. Journal of internet services and applications
2010;1(1):7-18.

5. Floerkemeier, C., Roduner, C., Lampe, M.. RFID application development with the Accada middleware platform. Systems Journal, IEEE
2007;1(2):82-94.

6. Bonomi, F, Milito, R., Zhu, J., Addepalli, S.. Fog computing and its role in the Internet of Things. In: Proceedings of the first edition of the
MCC workshop on Mobile cloud computing. ACM; 2012, p. 13-16.

7. Bonomi, F, Milito, R., Natarajan, P., Zhu, J.. Fog computing: A platform for internet of things and analytics. In: Big Data and Internet of
Things: A Roadmap for Smart Environments. Springer; 2014, p. 169-186.

8. Correia, N.. RFIDToys: A Flexible Testbed Framework for RFID Systems. Master’s thesis; Instituto Superior Técnico; Portugal; 2014.

	Introduction
	Related Work
	Solution
	Smart Warehouse Deployment

	Evaluation
	Setup
	Cloud-based warehouse latency
	Fog-based warehouse latency

	Discussion

	Conclusion and Future Work

