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ABSTRACT
Currently, there are millions of sensors connected to the Internet.
These sensors gather various types of data, from temperature, hu-
midity, sound and image, to location or biometrics, to name a few.
These kinds of data can be very relevant for scientific or business
purposes. However, there is no online platform or marketplace
where it can be easily exchanged. In this work we design and imple-
ment Sensmart, a solution through which it is possible to purchase
and sell sensor data. Suppliers share their devices or data and con-
sumers can buy data or acquire control of a device over a period of
time. Sensmart goes beyond data exchange, and provides the ability
to control a sensing device, for example, a customer can position
a camera or move a robot. The platform was tested and evaluated
through use cases and the implemented solution allows customers
to share sensor devices and the data in an effective way.

CCS CONCEPTS
• Hardware → Sensor devices and platforms; • Information sys-
tems→Data access methods; •Computer systems organization
→ Sensor networks;
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1 INTRODUCTION
The Internet of Things “is a world where physical objects are seam-
lessly integrated into the information network, and where the physical
objects can become active participants in business processes” [2]. In
this everything-is-connected world, even everyday objects can be
integrated into the network, e.g. a temperature sensor, a coffee
machine, a car, etc. The technology that enables such connectivity
can be Bluetooth, ZigBee, or Radio-Frequency IDentification (RFID).
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It may change but, nevertheless, the concept of interconnection
remains.

The infrastructure and the popularity of the Internet of Things
make new interaction models possible, such as Sensing-as-a-Service
[7]. This model depicts a marketplace where interested consumers
trade sensor data. One good scenario for this is a Smart City [4]. It is
possible to measure and sell a variety of parameters and information
in an urban area, from pollution to automotive traffic, luminosity
in the streets, and others.

The work described in this paper was designed, implemented and
tested to provide a Sensor Data Market for the Internet of Things.
The solution, called Sensmart (SENSor data MARkeT), considers
the characteristics and limitations of different sensing devices. Ad-
ditionally, it facilitates integration with existing IoT platforms and
makes use of communication protocols specifically designed for
sensors. In the implemented system, currency transactions were
not implemented, being relegated to future work.

In the next Section, we start by analysing the state-of-the-art of
Internet of Things technology.

2 BACKGROUND
Devices, communication protocols and infrastructure are building
blocks of Internet of Things solutions.

2.1 Sensing Devices
One of the most common sensing devices in the world is a smart-
phone. The number of smartphones is expected to have reached
2.6 × 109 in 2017 and pass 5 × 109 by 2020. Additionally, according
to Perera et. al [5] there will soon be 1 × 1010 devices connected
to the Internet. We will discuss devices into two broad categories:
Simple devices and Rich devices.

Simple devices perform only basic tasks, such as sending data or
receiving instructions. Each sensor canmeasure and send data to the
Internet. A network of street lamps with luminosity sensors, could,
in addition to their normal functionalities, send the data measured
to a marketplace platform. Dozens of temperature, humidity and
air pollution sensors could be scattered in a city to create a map of
the city’s most polluted areas, not only to the scientific community
and to the energy producers, but also to the public.

Rich devices are capable of executing tasks more complex than
the simple devices, and these devices will have more processing
power. Controllable cameras, Unmanned Aerial Vehicles (UAVs), or
robots are examples of rich devices. A video clip or pictures of a
natural landscape or monument can be acquired by such devices,
and made available through a marketplace.
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2.2 Communication Protocols
The vast majority of devices in IoT are small sensors, thus having
low processing power and being very energy dependent, but also
they are limited devices and cannot have a full TCP/IP stack. As
the devices have limited processing capability, the communication
protocol cannot be too demanding on resources.

One of the most widely known and employed application proto-
cols is the Hypertext Transfer Protocol. HTTP 1 is characterized by a
request/response model and the communication is established over
TCP/IP. However, TCP connections do not perform well in the IoT
world, due to its primary characteristic, the connection. By establish-
ing a connection, with delivery assurance method and congestion
control system, it requires significant energy and processing power
resources. Furthermore, HTTP headers occupy a large portion of
the message, leading to low payload efficiency. Nevertheless, it is
widely available and allows high interoperability between various
components of a solution. There are other protocols better suited
to IoT solutions.

CoAP 2 is a specialized web transfer protocol for use with con-
strained nodes and constrained network, such as Wireless Sensor
Networks (WSNs), and also for machine-to-machine (M2M) applica-
tions. Unlike HTTP, CoAP communicates over UDP (User Datagram
Protocol) that does not require a connection. CoAP provides a re-
quest/response interactionmodel, in the same sense as HTTP. CoAP
can use gateways to communicate with HTTP agents, if necessary.
It has low header overhead, allowing more data payload in the mes-
sage, and the processing power requirements are fewer. However if
the message size increases, the probability of message loss in UDP
becomes higher than in TCP, therefore CoAP must retransmit the
whole message.

MQTT 3 is a widely adopted lightweight publish/subscribe mes-
saging protocol. It is useful for low power sensors and machine-
to-machine applications. The architecture assumed by the MQTT
protocol is composed of three main elements: publisher, broker and
subscriber. In MQTT a message is published to a topic. Clients may
subscribe various topics and every client subscribed to a topic will
receive every message sent to that topic. For the broker this is not
an issue, as this element does not read the messages, it only classi-
fies the data in topics and sends the messages to the subscribers.
This broker may represent a problem: every publisher must be con-
figured with the broker’s address and the broker itself can become
a single-point of failure. MQTT communicates via TCP so, as with
HTTP, there may be some issues regarding the performance of the
overall transmission when compared to CoAP (UDP).

2.3 Cloud infrastructure
Most IoT solutions rely on a back-end infrastructure to store data
and to perform the transactions required for their operation, such
as purchases. There are several IoT cloud platforms available from
renowned companies: Azure IoT Hub 4, IBM Watson IoT 5, and
AWS IoT 6.

1https://tools.ietf.org/html/rfc2616
2https://tools.ietf.org/html/rfc7252
3https://eclipse.org/community/eclipse_newsletter/2014/february/article2.php
4https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-what-is-azure-iot
5https://cloud.ibm.com/docs/services/IoT/index.html
6https://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-iot.html

The Azure IoT Hub provides a collection of services for connect-
ing and extracting data from sensing devices. It enables bidirectional
communication with the devices and the cloud, in a variety of com-
munication protocols, directly or through a gateway. Furthermore,
it exposes an API capable of sending messages to the devices, if the
devices support this mechanism.

The IBM Watson IoT Platform provides a versatile IoT toolkit to
connect, manage and extract data from a wide variety of sensing
devices. Watson IoT Platform can communicate or interact with
external applications, thus having the ability to export the data
collect to Databases or Management Dashboards.

The AWS IoT communication architecture revolves around the
concepts of topic and state. The state can be a value, a keyword or a
symbol. The topic acts like a channel: a device publishes amessage to
one topic and clients can subscribe to these topics to receive the new
messages sent by the devices. When a device (sensor) sends data, it
updates the current state of a property. This information is stored in
the Thing Shadow, a set of properties about a physical object. When
one device is registered in the AWS IoT, a shadow is created for it.
A device connects and sends/receives data to the AWS over MQTT,
HTTP or WebSockets. The Gateway and the Message Broker allow
secure and low-overhead communication between the devices, the
cloud and other applications. By deploying a Rule, via the Rule
Engine, it is possible to store or process data sent by sensors, or
even filter it. Amazon developed a set of SDKs from which a group
was designed to be used on micro-controllers/resource-constrained
devices.

Regarding security, the presented cloud solutions offer similar
schemes. IBM IoT allows for different security policies, character-
ized by combinations of authentication via certificate, via token, or
via both. AWS IoT can generate a certificate automatically when
a new device is registered in the platform. The certificate is used
for device authentication which is more secure system than other
schemes, such as user name and password. All platforms implement
TLS connections in client (device) to server communication.

2.4 Sensing-as-a-Service systems
Perera et. al [4] discuss a detailed architecture of a sensing-as-a-
service system, and more specifically a possible structure for its
implementation in a Smart City. The authors describe the various
layers of the model and categorize various classes of information,
sensors/devices and their owners. It gives examples of some appli-
cation opportunities within a Smart City and also describes three
imaginary operation scenarios. In the end the authors present sev-
eral advantages and benefits of the sensing-as-a-service model.

Chang et. al [1] focus in a framework for mobile sensing-as-
a-service. The authors discuss and classify types of sensing ser-
vices, sensing activities and devices. The architecture considers the
providers, the clients and the cloud platform service. The latter is
developed to connect all the other elements. The framework relies
on the cloud service as a proxy to deliver the data from the supplier
to the clients.

Montserrat [3] developed a software allowing a client to share his
sensors with another user of the platform. The author also discusses
the business model and implements a web application to manage
the sensor network.

https://tools.ietf.org/html/rfc2616
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The solutions presented in [4] and [1] provide a foundation for
future works. The Cloud in [1] is a crucial element in the architec-
ture of a marketplace platform and the analysis [4] of sensors and
information is determinant to properly develop a storage system.
Our solution has similar goals to the work [3], but presents a more
detailed analysis of the communication protocols, the architecture
is different and the solution has more functionalities.

3 SENSMART
We present our proposal, Sensmart (SENSor data MARkeT), start-
ing with the architecture, and then focusing on the Marketplace
operation with simple and rich sensor products.

3.1 Architecture
The architecture of the proposed solution is presented in Figure 1
and is composed of three modules: Device, Broker and Marketplace.
Each one has a defined Application Program Interface (API).

BrokerBroker

Broker API

DeviceDevice

MarketPlaceMarketPlace
Market API

Broker API Device API

IoT 
Marketplace

IoT 
Marketplace

VideoVideo

DataData

Real DevicesReal Devices AWS IoTAWS IoT

Figure 1: General architecture of the Sensmart system.

3.1.1 Device Module. When designing and developing an archi-
tecture for a given application, the variety of devices may present
an impediment or a difficult problem to solve due, for example, to
the integration of different hardware or communication protocols.
Not all devices can communicate in the same manner, since they
may be designed to use different radio frequencies and communi-
cation protocols. Additionally, the message payload format may
be different, from device to device. Sometimes bitwise operations
are required to translate the payload into intelligible information.
Gateways may be needed to hide the heterogeneity of devices from
the information systems that use them. Generically, a gateway can
be used with software or hardware implementation that enables
the communication between two sides.

As discussed in Section 2.3, the AWS IoT’s Shadow Thing is
a virtual representation of a real sensing device. The integration
of AWS IoT into the Device module provides a simpler and wider
communication interface for the Devicemodule to export. A sensing
device publishes its data to its topic via the MQTT protocol, for
example. The Broker module is able to interact with a topic by
means of AWS IoT’s interface. Also, the sensor’s owner can send
control messages to the sensor through the same method, i.e., the

owner can send a message to reboot the sensor via the Shadow
Thing topic. Therefore, the Device module is composed of actual
devices, gateways and the AWS IoT platform.

3.1.2 Broker Module. The Broker module is the link between the
marketplace and every sensor. This module is able to communicate
with both Device module and Marketplace module. In greater detail,
the Broker module is implemented through a Data/Video Broker
and Data/Video Handler. The first is responsible for receiving and
managing new requests originated from the Marketplace, while the
latter, establishes and controls the communication path between
the sensing device and the buyer/seller. Both components have
different implementations for each type of sensor. Nevertheless,
the Broker always communicates with the Marketplace module via
a RESTful HTTP API. The Broker defines a set of URLs allowing
for the Marketplace or the Device modules to send requests, i.e.,
purchase orders, data or control commands.

3.1.3 Marketplace Module. The marketplace is the intermediary
between the buyer (who wants to gather data from sensors) and
the seller (who has data or sensor control to sell). This module aims
to create an environment, where, for example, a person can place
a temperature sensor on the street where he/she lives and sell the
measurement data to a meteorological service.

Any entity will be able to search through the list of available
devices, select one or more, and send a request. This request can be
to acquire data (already collected or a future reading), or to control
a sensor. The owner of a sensor can designate a rate or price for
a single data measurement or a collection of measurements. This
entity is a representation of a person or company. An entity can
own a sensor or device and buy or sell data. For example, subject
A buys data from one sensor that belongs to subject B for a cost
of X. The platform will transfer an amount to A and will send an
instruction to the Broker module to transfer the purchased data to
subject B. Each device is associated with one entity. Nevertheless,
the latter can have multiple devices or none. To implement this
relation, a virtual replica of a device is created. This virtual device is
a Shadow Thing from AWS IoT platform. When a client purchases
real-time data from a sensing device, the data is published to the
sensor’s topic. In order to receive the data, the client listens to the
sensor’s topic, via his/her virtual device. The whole architecture
is developed around the role of the virtual device. This entity can
identify a real sensor, but it is also possible to use it just as a virtual
device. This issue is addressed in Section 3.2.1 in greater detail.

3.2 Marketplace Operation
The marketplace is the core element of Sensmart. Through this plat-
form, consumers and suppliers are able to exchange data and control
of sensing devices for currency. The marketplace was implemented
in Java 7 and its interaction involve the following five elements:
Customers, persons or entities that purchase and sell data; Sensing
devices, which collect data or to be controlled; Catalogs, which store
and present sensing devices to the customers; Stock, corresponding
to the inventory of each sensing device; Broker, which is the bridge
between the sensing device and the marketplace.

7https://docs.oracle.com/javase/8/docs/technotes/guides/language/index.html

https://docs.oracle.com/javase/8/docs/technotes/guides/language/index.html
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If one of these elements is not present, the marketplace will not
succeed. Without sensing devices, there is nothing to offer to the
customers, no data to be collected and no device to be controlled. If
it is not possible to organize and store the devices in a presentable
and searchable way, the customers will never find the device or
data they wish. If a stock/inventory is not implemented, although
it is possible to find sensing devices (through the catalog), when
a customer attempts to purchase data, the device might be offline
or not available at that moment. Thus, the client would pay for
something that he would never receive. Even worse, the device, a
controllable device, could already be in use by another customer,
resulting in two customers trying to control the same device at the
same time.Without a communication path between themarketplace
and the sensing devices, the customer will never receive any data
measurements or will never be able to control a device. Lastly,
if there are no customers, the marketplace will fail, for obvious
reasons.

The marketplace interacts with each of the previously presented
elements. Firstly, it can create Customers, Devices and Products.
Next, the Marketplace can manage the list of Customers and the
list of Devices, namely the Catalogs. It is possible to add, retrieve or
delete elements or find a specific sensing device or client. Regarding
a Stock, the Marketplace can add and retrieve a Product, verify if
it is available to purchase or mark it as unavailable. At this point,
two customers cannot exchange data for currency yet. In order
to exchange data or control of a sensing device, the Marketplace
interacts with the broker. Sale specification or sale spec, is the
designation of a set of data crucial to perform any exchange in the
marketplace. This information is in JSON format and is sent with
the HTTP request to the Broker or to the database. Considering the
item being purchased, the sale spec may contain the seller’s name
and topic, the buyer’s topic (associated with the AWS IoT) and the
time interval. For a different type of item, it may contain the IP
address of the video stream and of the control module, amongst
other information. The sale spec is critical. Without it, the Broker
will not be able to connect the buyer and the data/sensor.

3.2.1 Simple Sensor Products. The broker’s module implementa-
tion for sensing devices is composed of: AWS IoT platform, the
foundation of the communication infrastructure; Data Broker, the
entry point of communication; Data Handler (simple mode), respon-
sible for managing the customer-device connection in simple data
transactions; Data Handler (long mode), responsible for managing
the customer-device connection in long data transactions.

The AWS IoT platform was selected to be the infrastructure be-
hind the implementation for the simple sensors. Through AWS IoT
platform, each simple sensor owner has a Shadow Thing, a virtual
representation of the real sensor. However, a Thing can also be
a logical entity, i.e., it may not represent a real device. This char-
acteristic is particularly useful to represent a buyer, as it will be
explained below. Every simple sensor is connected to the AWS IoT
platform via its Thing and publishes data to a topic, designated
as topic S (Seller). Consider the following: a customer/buyer pur-
chases all data measurements from a sensor for a period of time;
All data messages from the sensor are published to topic S and,
since, the customer cannot communicate directly with the sensor,
the customer does not have access to topic S. As presented above,

a Thing can also be a logical entity. By associating a Thing to the
customer and creating a topic, topic B (Buyer), it is now possible for
the buyer to receive all the data measurements published in topic S.
The Broker, namely the Data Handler, will subscribe to topic S and
copy the messages to topic B.

Device: In order to illustrate a simple sensor, a temperature sen-
sor was implemented. The CPU temperature sensor of a Raspberry
Pi was used for this purpose. The Raspberry Pi is connected to the
Internet in order to be able to send the data it measures and to
receive instructions. The described setup aims to simulate a sensing
device composed of a temperature sensor and a GSM/WiFi mod-
ule. As pointed above, the AWS’s library that was implemented
communicates via the MQTT protocol. The device’s communica-
tion module or gateway was also implemented by means of the
same AWS library, thus ensuring compatibility. The software imple-
mented in the device executes two tasks recurrently: temperature
measurement and data message publication. Also, right before pub-
lishing a new message, the device verifies if there is a new message
directed to itself, such as a restart command. If there is, it processes
that message first.

Data Broker: The Data Broker is an HTTP server designed to
process every data transaction sent from the marketplace module.
The data broker isolates the data provider from the data consumer.
This is done to ensure that the consumer cannot bypass the mar-
ketplace and later access the device directly. For this reason, the
device is always indirectly contacted.

Two modes of data transaction were defined, namely simple
and long. When a customer/owner wishes to send a command or
control message to a sensor or requests a data measurement at a
specific time-instant, these situations are considered to be simple
data transactions. On the other hand, a long data transaction can be
described as a request that occurs for a time period. For example, a
customer wishes to collect all measurements from a sensor starting
at 13h00 and ending at 16h00. Hence, is it important to process
each transaction type separately. An HTTP request containing the
salespec is sent to the data broker. The request is validated and
upon success the broker will create a sub-process of a Data Handler.
Finally, the Data Broker will resume and wait for a new HTTP
request.

Data Handler (simple mode): The Data Handler for simple trans-
actions was designed to send a control message to a device or to
request a data measurement and deliver the data to the customer.
The broker module should handle every data transaction, ensur-
ing that the costumer can never interact directly with a device.
The sale specification of each purchase/request is enforced, and
the device is only required to publish data measurements. Thus,
the Data Handler is the intermediary between the sensor and the
customer. Consider the following scenario: a customer requests a
data measurement at 16h00. The sensor publishes data or messages
in a topic, designated as topic S. The Data Handler receives the
sale specification from the Data Broker. Afterwards, it subscribes
to topic S and sends the data measurement request or the control
message to the sensor via the sensor’s shadow topic, as previously
discussed. Upon receiving a message from topic S, the Data Handler
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verifies if the time of reception of the message satisfies a predeter-
mined deviation margin. If successful, the message is published to
the buyer’s topic, topic B. Otherwise, when the instant of reception
surpasses the upper limit, an error message is published to topic
B. However, if it does not reach the lower limit, the Data Handler
remains listening to topic S. Finally, after publishing to topic B the
Handler terminates itself.

Data Handler (long mode): This Data Handler was designed to
subscribe the seller’s sensor topic and publish any received message
to the buyer’s topic and acting as intermediary. Consider the follow-
ing example: a customer wishes to receive every data measurement
between 16h00 and 18h00. When a customer purchases data mea-
surements during a period of time, the Data Handler subscribes
to topic S. Upon receiving a new message, the Data Handler will
publish that message to the buyer’s topic, topic B. This interaction
terminates when the current time surpasses the end time of the
purchase. At this moment, the Data Handler shuts down and the
buyer will no longer receive messages, in topic B, from sensor.

3.2.2 Rich Sensor Products. As shown in Section 3.1.2 the mar-
ketplace module does not communicate directly with the device
module. The agent responsible to connect those modules is the
broker. Moreover, after a successful purchase of a time-slot on a
rich sensor, the customer will communicate with the sensor via the
broker module. With this module, the buyer can control the device
or receive any type of data stream, may it be video or sound. In the
case of video, the broker module is composed of: Video Broker, the
entry point of communication; Handler, responsible for managing
the customer-device connection; IP/TCP Tunnel, the communica-
tion channel; Web page, responsible for presenting the video stream
and control mechanism.

Device: The rich sensor implemented is an IP controllable web
camera. This device can create a video stream and associate it to an
IP and a port by creating a server. As it is controllable, the control
module has an IP and port also. The separation between video and
control is essential. Ensuring a division between the two prevents
a customer, which only purchased the visualisation and not the
control, to use the video IP/TCP connection to attempt to control
the camera. The device’s control module is a program developed in
C programming language. This program manages a TCP socket to
receive control messages from the Handler’s server, translate them
and move the camera.

Video Broker: The Video Broker is a server designed to handle
each HTTP request sent from the marketplace. After determining
if the request itself is valid, it will process the salespec sent by the
marketplace. Once processing is finished (with success), the broker
will create a file to store all the information from the specification,
create an instance of Handler and send a reply to the marketplace.
The reply contains the port associated to the HTTP server of the
Handler previously created.

Video Handler: A Handler will not only process each control
request sent by the customer, but also manage the IP/TCP connec-
tions for the video stream and to control the device. By opening the
web page, the customer activates a mechanism that sends an HTTP
request to the Handler’s server. This request triggers the creation of

a connection (IP/TCP tunnel) between the customer’s address and
the video stream address. This connection acts as a link. From the
customer’s perspective, the address of the video stream is the Han-
dler’s server address, thus ensuring that the video stream address
is never shown. Once a customer sends a control request, via one
of the buttons from the web page, the server will authenticate the
origin of the request. Upon a positive authentication, the request is
parsed and sent to the device’s control module. When the current
time reaches the end of the time window each Handler’s instance
terminates itself. Hence, each customer will no longer be able to
view the video stream or control the device.

4 RESULTS AND EVALUATION
The results presented in this section comprise three scenarios: single
data measurements, long data measurements, and video and control.
The section finishes with an overall discussion of the results.

4.1 Single Data Measurements
This experiment consists of scheduling three hundred measure-
ments to the same sensor and receiving the respective data. In
greater detail, the assessment is divided in three series of one hun-
dred measurements, respectively. For each series, the Marketplace
is set up with a pool of sensors, buyers and sellers. One buyer and
one sensor are selected and each data request is originated from the
same buyer to the same sensor. In the Marketplace, each request is
generated with a one-second interval. However, from the sensor’s
perspective, two consecutive data measurements are separated by
a sixteen second interval, i.e., the sensor measures the temperature
every sixteen seconds.

To better evaluate the performance of the Broker and the Han-
dlers, the requests are created with one second interval between
them. Since every measurement is set to occur in the future, the
Handler will be inactive until such time is reached.

Figure 2 presents the time difference between the reception time
and the scheduled time of each measurement. These values have a
high accuracy, since the marketplace (which originates the sched-
uling timestamp) and the client (which originates the reception
timestamp) share the same clock (both programs were running on
the same machine). The depicted data were collected throughout
the third series of one hundred measurements. In this series, the
mean value for the time difference is 1.23 seconds, represented by
a line in the graph. While analysing the graph, it is possible to
observe that a considerable number of samples are in the interval
from 1 to 1.5 seconds. Moreover, only six samples are above the 2
second mark, being that the maximum in the series is 3.44 seconds.

To evaluate the performance of the proposed solution, it is crucial
to assess the time required to process each purchase order or each
message replication. Figure 3 presents the proportion of processing
time to the total time, identifying its components using different
colors. The Marketplace takes more than 50%, the Handler more
than forty percent and the Broker consumes no more than one
percent. These values are in accordance with what was stated in
Section 3.2.1.

Table 1 presents the overall statistical results calculated from the
data collected throughout this experiment.
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Figure 3: Average time usage for each participant regarding
a data transaction.

Considering that the Marketplace only finishes processing when
it receives a reply from the Broker and the Client only receives
a message after it is published by the Handler, one would expect
that a high processing time in the Broker or in the Handler could
interfere with the processing time of the Marketplace or delay a
message to the Client. Nevertheless, this hypothesis is not verified.
Analysing the collected data, a higher time difference is not due to
a higher processing time in the Handler. The variation in the time
difference, for instance, may be caused by the processing inside the
AWS IoT platform itself.

In Table 1, the mean time difference is 1.35 seconds. Picturing a
real scenario where a client schedules a measurement from a sensor,
this value indicates that the service is feasible. From a set of three
hundred scheduled measurements, only one measurement was not
received by the client, which demonstrates a high success rate.

4.2 Long Data Measurements
This experiment is designed to analyse the performance of the im-
plemented solution when it executes one of the main operations.

Table 1: Single Data Results: Processing time for each actor
and overall time difference (seconds).

Market Broker Handler Time Diff.

Mean 1.05E-01 1.66E-03 8.68E-02 01.35

Standard Deviation 2.09E-02 5.20E-04 4.72E-03 00.63

95% Confidence Interval 2.37E-03 5.88E-05 5.34E-04 00.07

Maximum 3.38E-01 9.00E-03 1.00E-01 03.60

Minimum 9.87E-02 1.37E-03 8.00E-02 00.32

The procedure consists in purchasing real-time sensor data during
a time interval. In greater detail, the assessment is divided in three
series of forty-five minutes, respectively. For each series, the Mar-
ketplace is set up with a pool of sensors, buyers and sellers. Five
buyers and one sensor are selected and each buyer generates a long
data measurement request to the same sensor. Those requests are
created with a one-second interval. The sensor was configured to
measure and publish data to its topic every thirty seconds, even if
there is no one listening. Considering the sensor does not have the
ability to know if there are any subscribers to its topic, it will publish
data continuously. Each buyer purchases forty-five minutes of sub-
scription to the sensor’s topic. Bearing in mind the thirty-second
halt at the sensor, it is expected that each buyer obtains ninety
measurements. To approximate this experiment to a potential real
scenario, instead of having only one buyer listening to the sensor’s
topic, all five buyers are listening to the topic simultaneously.

Throughout the experiment, each client, stores all received mes-
sages and generates a timestamp for the instant of reception of
those messages. As stated on Section 3.2.1, one message contains
the measured temperature and the timestamp of measurement. The
sensor is a Raspberry Pi, wherein the time and date are configured
with the default specifications. All five Clients were running on
the same machine, thus having the exact same clock. Bearing in
mind that clients and sensor were on different machines, therefore
not being completely synchronized with each other, a 1 second
maximum desynchronization is considered. This 1 second is the
maximum desynchronization between the client’s clock and the
sensor’s clock. This value was obtained through visual inspection
and experimentation. Even though, it is not possible to guarantee
total synchronization, Figure 4 presents the time difference between
instant of reception (mean) and the instant of measurement.

These samples were collected during one of the three series
from this experiment. It is possible to observe that, in only two
occasions, the delay between the measurement and reception is
greater than 0.6 seconds, wherein the maximum time difference
is 0.93 seconds. Also, more than 60 percent of the samples are
below the mean value. Even considering a desynchronization of
1 second (the sensor’s clock is 1 second ahead of the actual time),
the mean time difference, in that situation, is 1.47 seconds. In a real
scenario, the client intends to receive every measurement taken by
the sensor in real-time, i.e., with a delay small enough to satisfy
most applications. Table 2 presents the overall statistical results
calculated from the data collected throughout this experiment.

As discussed in Section 2, the results do not support a causality
relationship between a higher processing time and subsequent
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Figure 4: Temporal discrepancy between reception and
scheduled times.

Table 2: Long Data Results: Processing time for each actor
and overall time difference (seconds).

Market Broker Handler Time Diff.

Mean 1.06E-01 1.44E-03 8.67E-05 00.51

Standard Deviation 7.36E-03 7.10E-05 1.01E-05 00.10

95% Confidence Interval 3.73E-03 3.59E-05 5.41E-07 00.01

Maximum 1.30E-01 1.63E-03 1.68E-04 01.49

Minimum 9.98E-02 1.37E-03 7.20E-05 00.42

delays when receiving a message. In this experiment, the mean
processing time of the Marketplace and the Broker are similar
to the values from Table 1. However, the Handler has a smaller
processing time when compared to the previous experiment. In this
experiment, the Handler subscribes the sensor’s topic and publishes
to the buyer’s topic. Furthermore, the Handler must also alert the
sensor. This additional task explains the extra processing time.

4.3 Video and Control
This experiment is designed to analyse the performance of the im-
plemented solution when it executes one of the key operations.
The procedure consists in watching a video stream from a video
camera whilst having the ability to control the camera in real-time.
In opposition with the previous experiments, this assessment is
aimed at more complex sensing devices, e.g., devices capable of
creating a video feed and accepting control requests. This assess-
ment is divided in three series of one minute, respectively. In each
series, the Marketplace is set up with a pool of sensors, buyers and
sellers. One buyer and one video camera are selected to perform this
test. The buyer generates one video and control request directed to
the selected camera. This request contains the start time and end
time, among other specifications. When the time limit is reached,
the video stream ends and the buttons no longer control the video
camera.

To evaluate the performance, several timestamps, processing
times and messages were collected throughout this experiment.

In order to increase the accuracy of this experiment, the agent
that generates the message (to control the camera) and sends it to
the Handler is replaced by a helper application called Postman8.
This application issues the control order, an HTTP request, to the
Handler. Postman runs a set of four HTTP requests seventeen
times. Two consecutive requests are separated by five-hundred
milliseconds. This configuration results in a total of sixty-eight
instructions during the one-minute test period.

For every control order issued, Postman determined the response
time, i.e. the time required to receive the HTTP reply from the Han-
dler, considered to be the total time. The Handler calculated the
time necessary to create and communicate the control message
to the control module of the video camera, designated TCP, and
estimated the total time required to process the request, designated
Processing. This time includes a simple authentication verification,
the TCP time and the HTTP reply to the client (Postman). Figure 5
presents the total time and the fractions due to each component.
Approximately sixty percent of the total time is due to the Com-
munication component. This element is considered to be the time
spent outside the Handler and Postman. Analysing the Handler, the
TCP component is responsible for nearly ninety-eight percent.
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Figure 5: Average time usage for each component regarding
a Video and Control transaction.

Table 3 presents the overall statistical results calculated from the
data collected throughout this experiment. The column Aggregate
represents the total time registered in the Handler, i.e., the time
required by the TCP communication plus the processing time. The
maximum values registered for both Postman and Handler (Aggre-
gate) occur in the first control order. According to [6] the one-way
latency for interactive video applications should be no more than
150 milliseconds. The measured latency corresponds to the pro-
cessing and reply of the control request, thus a two-way latency
with a mean value of approximately 200 milliseconds. This result is
acceptable, considering that the two-way latency should be less that
than 300 milliseconds. The mean value required for the Handler
to fully process a request in approximately 80 milliseconds, thus
having some impact in the delay between instructing the camera
to move and observing that movement in the video stream.

4.4 Discussion
While developing and executing the two experiments for the Simple
Device, the sensor sent more than one thousand messages through
8https://www.getpostman.com

https://www.getpostman.com
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Table 3: Video and Control Results: time spent in the TCP
connection and overall two-way latency (seconds).

Aggregate TCP Postman

Mean 5.73E-02 5.65E-02 2.01E-01

Standard Deviation 3.44E-03 1.61E-03 1.28E-02

95% Confidence Interval 4.72E-04 2.21E-04 1.76E-03

Maximum 8.23E-02 6.48E-02 2.84E-01

Minimum 5.39E-02 5.275E-02 1.93E-01

the AWS IoT. Only five messages were not received by the client,
leading to a 0.005 fail ratio. Overall, the implemented solution
proved to be: robust (when the customer attempted to open the
video URL in another computer or browser, the Video Handler
detected this abnormal behaviour and cancelled the request); ef-
fective (considering a 0.005 fail ratio in data transaction tests); fast
(a low-delay was visually observed during the video and control
experiments, as well as during data transactions). The mean delay
between measuring and receiving is 1.54 seconds for the Single
Measurements and 0.51 seconds (or 1.51 seconds, considering a 1
second desynchronization) for the Long Data Measurements, which
are suitable values. In the final experiment (Rich Device), both the
video stream and the control module proved to be responsive and
accurate. The results were obtained using a personal computer to
run the Marketplace, a regional virtual machine from Amazon Web
Services to host the Brokers and AmazonWeb Services IoT platform
to support the Device module. Configuring dedicated machines to
host the Marketplace and the Brokers could improve the results.
Optimizing AWS IoT platform to the specific requirements of the
Sensor Data Market may decrease the delay and the setup time nec-
essary to establish the connections to the platform. Nevertheless,
the delay between receiving a data measurement and the instant of
the measurement itself may not be an issue for some applications
or scenarios. For instance, a network of constrained sensing devices
(sensors with low processing power and limited connectivity) may
collect data every two hours. The data is stored locally in the de-
vices and uploaded once a day to a gateway. After receiving the data
measurements of all sensors, the gateway publishes it to the AWS
IoT platform. In this scenario the delay should not be an evaluation
parameter.

5 CONCLUSION
We proposed Sensmart, a Sensor Data Market for the Internet of
Things. It is an intermediary between data suppliers and data con-
sumers, and sensors are made available to any customer, in a service-
like structure. The Amazon Web Services Internet of Things plat-
formwas integrated in the proposed solution, due to its architecture
and support for MQTT and HTTP protocols. The AWS IoT infras-
tructure regarding the MQTT protocol is the foundation of the
simple device implementation. The rich device is controlled using
HTTP. Two sets of tests were designed and conducted, one set for
the simple device and the other for the rich device. The example
simple device was a temperature sensor and the rich device was a
remote-control web camera. Considering the results obtained and

presented before, we conclude that the platform prototype designed
and implemented in this work is a practical solution for a Sensor
Data Market for the Internet of Things.

Some future work points can improve the current solution: im-
plement more types of devices to widen the range of sensors that
can be integrated in the marketplace, thus strengthening the of-
ferings of the Sensor Data Market; design and implement a web
interface to interact with the platform will enrich the current so-
lution; support widely used database engines, to better store in-
formation of customers, accounts, transactions, and devices; inte-
gration with currency transactions, both based on cryptocurrency
and regular money; finally, security and privacy concerns must
be addressed, both to protect buyers and sellers, but also people
potentially surveilled by these kinds of systems.
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