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ABSTRACT

Wi-Fi hotspots are a valuable resource for people on the go, especially tourists, as they provide a
means to connect personal devices to the Internet. This extra connectivity can be helpful in many
situations, e.g., to enable map and chat applications to operate outdoors when cellular connectivity is
unavailable or is expensive. Retail stores and many public services have recognized that hotspots
have potential to attract and retain customers, so many of them offer free and open Wi-Fi. In busy
cities, with many locals and visitors, the number of hotspots is very significant. Some of these
hotspots are available for long periods of time, while others are short-lived. When we have many
users with devices collecting hotspot observations, they can be used to detect the location – using
the long-lived hotspots – and to prove the time when the location was visited – using the short-lived
hotspots observed by others users at the location.
In this article, we present a dataset of collected Wi-Fi data from the most important tourist locations
in the city of Lisbon, Portugal, over a period of months, that was used to show the feasibility of using
hotspot data for location detection and proof. The obtained data and algorithms were assessed for a
specific use case: smart tourism. We also present the data model used to store the observations and
the algorithms developed to detect and prove location of a user device at a specific time.
The Lisbon Hotspots dataset, LXspots, is made publicly available to the scientific community so that
other researchers can also make use of it to develop new and innovative mobile and Internet of Things
applications.

Keywords Wi-Fi Scavenging · Location Proofs ·Mobile Applications · Internet of Things · Smart Tourism

1 Introduction and Related Work

Discovering an individual’s location on the go is a common and indispensable function of the smartphones and many
wearable devices. Location-based services use geographical information to provide useful applications for the end-users
such as: maps, driving assistance, parking, goods delivery, and trip advisory. For outdoor location, the dominant solution
is to use GPS [1, 2]. For indoor location, there are solutions that use signal strength collected from Wi-Fi Access Points
(APs) to determine the locations inside specific buildings [3], after a complete mapping of the signal strength in each
room has been created earlier. However, in both outdoors and indoors, the user’s location is vulnerable to hacking and
spoofing attacks [4], leaving some services unprotected from malicious users who fake their locations [1, 5, 6]. Location
proofs provide protection against these types of attacks by creating digital certificates that attest to an individual’s
presence at a geographical location whereby services can validate the location claim.

1.1 Location Proofs

Location proof (or location certification) systems collect evidence when a device is at a specific location. The evidence
can be stored and then later be verified, proving the device was at a specific time and place. For example, the STAMP [7]
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system provides time-bound location proofs where mobile users can generate proofs for each other. There are also
solutions for moving vehicles, such as the Vouch system [8]. The SureThing system [9] also allows devices to produce
and validate location proof certificates, to make proof of their locations and to reliably verify the locations of other
devices, using the neighboring devices as witnesses that as well collect GPS, Wi-Fi, or Bluetooth evidence.

More recently, SureThing was expanded to become a framework 1. It now provides common data formats and procedures
to be used by applications that use location proofs. It allows system participants to play different roles, with flexibility.
The prover role is usually played by a device that makes a location claim backed by some evidence. A witness is another
device that endorses the claim and adds its own evidence. Finally, a verifier device (usually a server) analyzes all the
evidence and ultimately makes a decision to issue - or not - a location certificate. Each application has its own operator
that assigns the roles and the authority of the verifiers. This allows each application to decide which specific kinds
of location evidence need to be collected and presented by the provers and witnesses, and also what are the specific
conditions for the verifiers to accept a location claim and issue a corresponding location certificate.

The SureThing framework supports both ad-hoc and fixed witnesses. On the one hand, ad-hoc witnesses are neighboring
devices that verify the location of the prover. These witnesses need not to be fully trusted, since they are not directly
controlled by the system operator (or by the verifier) and their security comes more from their quantity and diversity,
i.e., there need to be multiple and different witnesses to support a location claim. On the other hand, fixed witnesses
are devices that are placed on-site by the operator and can be more trusted. These can take the form of kiosks or other
dedicated hardware.

The SureThing framework also supports beacons. These devices can be added on-site and, once deployed, broadcast
unique signals that can be picked up by provers and witnesses. The signals can be random, or pseudo-random sequences.
In this latter case, the verifier can predict the signal values, if it knows the seed number, and the overall system is kept
in synchrony, i.e., clock skew below a maximum difference time for all devices [10].

Ideally, to keep its costs down and availability up, a location proof application should rely as much as possible on
existing devices. If these devices are owned and operated by third parties, then we can have a signal scavenging
approach to build a location proof.

1.2 Wi-Fi Scavenging

A scavenging strategy for location proofs is centered around the idea of collecting existing signals at public places like
retail stores, restaurants, and public services. A device does not need to connect to the network, as it only needs to see
the announced identifiers, like the SSID (service set identifier). If viable, this strategy requires minimal investment,
since only previously available infrastructure is used, whose operation cost is already being supported, usually by third
parties.

Most cities nowadays have plenty of Wi-Fi hotspots available for public use. The scavenging approach is promising
because the hotspot networks may be divided in two sets: a set of networks that remain available over long periods
of time and another set that change more frequently. The former are likely associated with retail stores and services
whereas the latter are probably associated with vehicles and people passing by the location. The idea then, is to take
advantage of the long-lived hotspots to detect the location and to use the short-lived hotspots to prove the time when the
location was visited. Wi-Fi traces can be captured by the user device at the visited locations and compared later with
traces collected by devices of other users that were co-located at the same locations. This approach is only expected to
work in busy locations, so that the short-lived hotspots are sufficient in number for the desired time span of the location
proof.

1.3 Field work

To validate the hypothesis of using Wi-Fi signals collected from public hotspots for location proofs, we set out to do
field work for collecting data and then verifying if the approach was feasible. We chose the city of Lisbon, Portugal for
the real-world data collection. The work occurred over a period of 6 months, on 6 locations, and we made a total of 11
data collection sessions in all locations. We picked locations of interest, namely tourist attractions, because of their
large number of wireless networks and potential high number of available ad-hoc witnesses at any given period of time.

A prover device creates evidence for a location by collecting Wi-Fi signals from nearby APs at a single location. The
APs are identified by their associated unique SSID (Service Set IDentifier) and other Wi-Fi signal characteristics. On
the verifier, the evidence from the location claim is compared against previously stored location evidence, submitted by
other devices that act as witnesses. For a time-bound location proof, the verifier tries to establish a time interval with

1http://surething-project.eu
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evidence of co-location of the prover device and its witnesses. This gives the verifier the ability to ensure that the prover
location claim is valid within certain time-interval.

1.4 Contributions

The contributions of this work are the following:

• A Wi-Fi access point dataset collected in the city of Lisbon, Portugal;
• A data model to store and query the collected observations;
• Algorithms to determine the location and time bounds of the visits that can be used to issue location certificates.

1.5 Document Overview

The rest of the paper is organized as follows: Section 2 presents the data set and how it was collected; Section 3 analyses
the dataset in the context of a smart tourism use case; Section 4 presents a formal model of data and algorithms, defined
to make inferences from the dataset. The paper concludes in Section 5.

2 Dataset

We performed a field experiment to collect Wi-Fi access point traces. The goal is to use this data to later assess the
viability of the scavenging approach to produce location proofs. The dataset is called Lisbon hotspots or just LXspots
and it is publicly available 2. We present the rationale for selecting locations, the collection sessions, and the details of
the collected data.

2.1 Location Selection

We started by selecting the locations where data was going to be collected. The locations to select should contain
different types of attractions, while also containing different types of Wi-Fi networks. Our selection was based on the
following criteria: Indoor vs Outdoor, Dense vs Sparse and Central vs Remote. Indoor locations tend to have more
variation in Wi-Fi signal strength when comparing to Outdoor locations, since more sources of interference exist. Also
indoor locations are more likely to have higher number of Wi-Fi APs than outdoor locations. The population density
3on a location is reflected based on the types of captured Wi-Fi networks. Highly populated areas tend to have more
Wi-Fi mobile hotspots. On the contrary, sparsely populated ones tend to have more fixed Wi-Fi APs. Finally, the actual
position of attractions in the city influences the collected Wi-Fi traces from the APs. The locations that are more central
in the city tend to have more Wi-Fi APs and more likely to have higher population density than the remote locations.

Once the criteria were set, we used well-known traveling websites to retrieve the top tourist attractions places recom-
mended for the tourists visiting the city of Lisbon. Namely, we used: TripAdvisor, Booking, and City Tour bus lines.
We then filtered the locations from those websites to get only 5 that better fulfilled the criteria identified above. Finally,
we added one extra location that represents a residential area (Reference Name: Alvalade), so that we could observe
differences between the attractions and residential neighbourhoods.

The selected locations are listed in Table 1 and Figure 1 shows a photo taken at each of the locations.

Table 1: Data collection locations of the LXspots dataset.
Reference Name Coordinates Matched Criteria

A Jerónimos 38°41′50.9′′N9°12′21.5′′W Outdoor & Dense
B Comércio 38°42′30.2′′N9°08′12.1′′W Central & Dense
C Sé 38°42′34.8′′N9°08′01.3′′W Central & Outdoor
D Oceanário 38°45′45.1′′N9°05′38.7′′W Remote & Outdoor
E Alvalade 38°45′16.4′′N9°08′48.3′′W Remote & Sparse
F Gulbenkian 38°44′13.7′′N9°09′12.0′′W Central & Indoor

A total of six (6) different locations were selected across the city of Lisbon, Portugal. Five (5) of them reflect highly
visited tourism attractions such as museums and cathedrals. The 6th location was intentionally a residential area of the
city, to see how the Wi-Fi networks are different in a non-touristic location.

2https://github.com/inesc-id/SureThing-LXspots
3In this work, population density describes the volume of people visiting/passing near a collection location, and it is not related to

the statistical index of population per unit area.
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(a) Jerónimos (b) Comércio

(c) Sé (d) Oceanário

(e) Alvalade (f) Gulbenkian

Figure 1: Pictures taken at each of the LXspots data collection locations.

2.2 Data Collection

Data was collected at each location over 6-month period, with most of the collection concentrated during 1 week. The
collected data is composed of discrete measurements of existing Wi-Fi networks. The measurements contain detailed
information obtained through Wi-Fi scanning such as MAC addresses and signal intensities.

As mentioned, the data collection was done over 6-month period, and since we targeted public places, continuous
scavenging was not possible due to legal and infrastructural constraints. Our approach was to visit each location, during
the course of a day, and gather data for a time span of 15 minutes. The visit route was settled from location A to F for
ease of navigation through the city. The first collection route was on July 19th 2019, and the last was on January 19th
2020. Table 2 details each of the days and the rationale for selecting them.

Table 2: Days of data collection for the LXspots dataset.
ID Day Observations
1 2019-07-19 First day of scavenging.
2 2019-07-26 One week after first scavenging.
3..9 2019-07-29 : 2019-08-04 Full week of scavenging.
10 2019-08-19 One month after first scavenging.
11 2020-01-19 Six months after first scavenging.

4
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Table 3: Features present on the LXspots dataset.
Feature Name Description
device_id Device identifier [A,B or C].
date Date of the observation.
time Time of the observation.
ref_name Location reference name.
latitude Latitude in degrees.
longitude Longitude in degrees.
altitude Altitude in meters above the WGS 84 reference ellipsoid.
accuracy Estimated horizontal accuracy, radial, in meters.
SSID Service Set IDentifier, the network name.
BSSID Basic Service Set IDentifier, the address of the access point.
capabilities Authentication, key management, and encryption schemes supported.
frequency The primary frequency of the channel [MHz].
level The detected signal level in dBm, also known as the RSSI (Received Signal Strength Indicator).

centerfreq0
0 if AP bandwidth is 20 MHz.
If the AP uses 40, 80 or 160 MHz, center frequency [MHz].
AP use 80 + 80 MHz, center frequency of the first segment [MHz].

centerfreq1 AP use 80 + 80 MHz, center frequency of the second segment [MHz].
channelwidth Channel bandwidth [0=20MHz; 1=40MHz; 2=80MHz; 4=160MHz].

For redundancy, the data collection was done using three different smartphones. Each one has a scavenger mobile
application installed to detect nearby Wi-Fi networks and retrieve their properties. The application was installed on
three different smartphones running the Android operating system: Samsung Galaxy S9, Huawei Mate 10, and LG V10
thinq. We will refer to these smartphones in the rest of the paper as devices A, B and C, respectively.

2.3 Data Features

The majority of the data features describe information related to the Wi-Fi network protocol. Additionally, there are
features that present information related to the GPS position, date and time of collection, the device used, and reference
names of the locations. The full details of the features are presented in Table 3.

2.4 Summary

For the LXspots dataset, a total of 6 different locations across the city of Lisbon, Portugal, were selected; 5 of them
reflect highly visited tourism attractions such as museums and cathedrals. The data was collected using multiple mobile
devices and over different days of the year, during a busy tourism season and in an almost standstill of a city-wide
lockdown4. The most important data features are the GPS position, the date and time of collection, the device used,
and the reference identifiers of the locations.

3 Assessment

In this section we leverage the collected dataset and assess the feasibility of using a scavenging approach to location
proofs with time-bounds for a specific use case: smart tourism.

3.1 Smart Tourism Use Case

We will assume a smart tourism application [11] as background for the feasibility assessment. Smart tourism is an
important byproduct of a smart city ecosystem. This new approach to traditional tourism has greatly benefited from
technological innovation, with new applications appearing in different business fields [12]. More specifically, we think
that the main benefit is routing people from main tourist attractions to less-known ones, promoting better distribution of
visitors to decongest popular attractions.

We assume that each tourist will carry its mobile phone running the application that is collecting the Wi-Fi hotspots.
The application offers a small reward, like a souvenir or a discount coupon, to each user that visits all the locations in a
tourism route, as illustrated in Figure 2.

4Specifically, data collection was done during the months of July 2019, January 2020 and July 2020; with the last one done
during the city lockdown caused by the COVID-19 pandemic.

5
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Figure 2: The smart tourism application rewards users that collect location proofs in all locations [13].
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Figure 3: Location proof system based on scavenged Wi-Fi access point data.

The overall assumed system is represented in Figure 3. The APs are broadcasting their identifiers. The mobile devices
are collecting the Wi-Fi traces and uploading them to the application server. The prover device also uploads its traces
and, when it needs a location certificate, it sends a request with the claimed location and time to the verifier. The verifier
accesses the database and checks if there is enough evidence to certify the prover location in the claimed time (or
interval) . If so, a location certificate is issued and returned to the prover.

3.2 Data Processing

We will process the data collected in multiple sessions to compute the long-lived hotspots – that we call stable networks
– and the short-lived ones – that we call the volatile networks. The collected data was divided into training and testing
sets. The first dataset was comprised of the first 10 collection days. The testing dataset contains data collected 6 months
after the initial one.

3.2.1 Stable Networks

The training dataset is used to identify the stable Wi-Fi networks at the locations. This dataset contains in total 10 days
of data collection.

The first step was to merge the observations at each location from all the 10 days, from all the three devices (A, B, C).
This allowed us to count the total number of occurrences of each network in each place. We then selected the top 10%
networks based on this count for each location. This threshold was arbitrarily chosen in an ad-hoc way, given the values
present in the dataset.

6
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Table 4: Detected networks and stable set size for each location.
Location Stable set Total
Jerónimos 70 677
Comércio 58 551
Sé 47 363
Oceanário 25 243
Alvalade 17 163
Gulbenkian 30 292
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Figure 4: Stable set identification, 6 months after.

Table 4 lists the total number of Wi-Fi networks present in each location and the number of calculated stable networks.
As expected, locations that were identified as densely populated (Jerónimos and Comércio) have higher variety of
networks when compared to residential area (Alvalade).

The second step was to verify that the calculated number of stable Wi-Fi networks could be detected by the prover’s
device. For that, we used the testing dataset (as described before). We separated the observations by each device and
compared that with the stable networks, computed in the training step. Figure 4 presents the results. The results show
that we were able to identify, in all the six (6) locations, the networks that are present in the stable Wi-Fi networks set,
with some disparities in the number of detected APs. We identified the possible reason for these disparities: The type of
locations has an impact in the immutability of the scavenged Wi-Fi networks. For example, we have better results in
Alvalade (98% matched) and in Gulbenkian (89% matched) than in Jerónimos (14% matched). Alvalade is a residential
neighbourhood, and so has a large number of domestic APs owned by families. These tend to remain stable through
large period of time. Gulbenkian is an interesting location. We identified that the networks contained in the stable
networks set are almost only alias of three networks owned by the museum. Moreover, since the data collection was
done indoors, this was expected because we captured the Wi-Fi signals from multiple APs with the same SSID. These
institutions owned networks that also tend to remain stable. On the other hand, Jerónimos is an outdoor place, without
many buildings nearby, reducing the number of stationary APs. Thus, despite the larger number of networks detected,
most of them were Wi-Fi hotspots.

3.2.2 Volatile Networks

The main purpose is to produce time-bound location proofs. We now present the methodology to identify the volatile
Wi-Fi networks set and the analysis that was done to validate the creation of time-bound location proofs. In our
approach, the volatile networks set is comprised of the bottom 10% networks that were observed by a single device
during a period of time. Again, the specific threshold was chosen ad-hoc. These networks, counted in the same manner
as before, represent the total number of occurrences of each network. We selected the bottom ones since those are the
least observed, allowing us to shorten the time-period of the proofs. We also removed from the volatile networks set the

7
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Table 5: Volatile networks detection for each location. Values indicate the number of pairs (prover/witness) that
succeeded (out of 6 total).

Location 15 min 7.5 min 3.75 min 1.875 min
Jerónimos 6 6 5 3
Comércio 5 1 0 0
Sé 6 4 2 0
Oceanário 6 5 0 0
Alvalade 6 6 6 4
Gulbenkian 6 6 6 6

Table 6: Volatile networks detection for each device. Values indicate the number of pairs (prover/witness) that succeeded
(out of 12 total.)

Device 15 min 7.5 min 3.75 min 1.875 min
A 11 10 6 4
B 12 10 7 5
C 12 8 6 4

networks that are present in the stable networks set. This was done as precaution to not falsely the produced location
proof using the stable networks.

To create a time-bound location proof, both the prover and witnesses have to be in the same place, at the same time.
Using the 3 devices (A, B, C) in the dataset, we combined them in pairs, where one has the role of the prover, and the
other of the witness. We then generated the volatile networks set for each of the devices. We compared the generated
volatile networks set of the prover with the one generated by the witness. This procedure was repeated for each pair of
prover/witness, for each location in the dataset, and for 4 different time intervals (deltas). Table 6 presents the results of
the volatile networks identification.

We considered a match if at least one volatile network is present on both the prover and witness sets. We divided the
15 minute samples for each location and device to study how fine grained the temporal resolution can be. The values
present on the table refer to the number of prover/witness pairs (out of 6 total) succeeded in detecting at least one
network on each other’s volatile networks set. We can see that for the 15-minute interval, almost all the pairs produce
a match, with match percentage of 97%. As expected, these values decrease as we shorten the time interval, with
the following match percentages: 97% for the full 15-minute interval; 78% for the 7.5-minute intervals; 53% for the
3.75-minute interval; and 36% for the 1.875-minute interval. We also verified if the variation in values depended on the
device that had the role of the prover. However, as shown in Table 6 the results are not dependant on the device.

3.3 Discussion

The results show that the stable networks set detection is sufficient for the smart tourism use case, but if we want to add
more guarantees to the location proof, stronger constrains need to be placed. Instead of detecting only a percentage of
stable networks, an alternative would be to detect all networks present in the stable networks set. This alternative gives
stronger guarantees, but raises new challenges, for example, requiring more intervention from the system operator if an
AP from the stable networks is physically removed.

From our experimental analysis with the volatile networks, we observe that for intervals of approximately 7 minutes,
our approach can produce time-bound location proofs. In the smart tourism scenario, visits to museums and attractions
tend to take at least 30 minutes, making this approach viable. From our initial assumptions on the location types, all the
locations have results according to their criteria except for Comércio, which we expected would have sufficient diversity
of networks. Thus we reason that 7 minutes is small enough time interval for a viable tourism location proof system.
If we require more time granularity on the creation of time-bound location proofs, some measures can be taken, for
example add infrastructure that generates either noise to the network spectrum, e.g. a beacon, or deploy a custom AP
that dynamically changes its address.

With the positive results of this assessment, that show the feability of the approach, we set out to formalize a model for
the data and its operations.

8
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Table 7: Relations in the model.
Relation Attributes Description

Obs
id, obsTime, location

device, signalType
transmitterID

Collected signal

Locations id, name, coordinates Locations or
Points of Interest

Devices id, name, userID Users mobile
devices

Users id, name Users of the system

4 Formal Model

We now have Wi-Fi traces being collected, from multiple devices, at different locations. We also did a preliminary
assessment. Now, we to make sense of all this data in a more formal way, it needs to be organized, according to the
time of collection, and prepared for use in well-defined location and time determination and verification operations.

4.1 Data Organization

We use Relational Algebra [14] to represent the hotspot data model. A set of relations5 has been defined that represent
the system entities and can store information about the collected signals made by the users at different locations. The
model is a formal way to define and verify these relations with respect to their use in computing and evaluating the
location evidences. Table 7 lists the relations and their attributes and descriptions. Each relation has a set of attributes
that describe the interesting properties for the operations.

4.2 Time Intervals

An explicit definition of the temporal property of the model is essential. We define a precise time-framing that accurately
defines boundaries and limits scope and amount of data needed for each operation on the relations. The proper
time-framing to use in the model mainly depends on the application and relevant to the implemented use case and its
value is given as a configuration parameter in the system setup. There are three time intervals in the model.

• Epoch: The longest time frame which defines the time interval that selects data for the computation of the
stable networks at each location or point of interest. At the start, the system computes the stability of the
Wi-Fi networks at each location considering only observations collected within the defined epoch time window
of the system. For example, a time interval of 1-week epoch means that the system should consider data
(observations) collected only during last week to identify the stable Wi-Fi networks at each location.

• Period: A period is a subdivision of an epoch that defines the deadline for the collection of device observations.
For example, a time interval of 1-day period defines that the system needs to wait until end of the day to
collect observations and then be able to verify the locations of the users. It means that we consider only data
submitted until the end of the period, as these data will be most relevant for computing time-bound location
proofs.

• Span: This time interval is defined to represent the accuracy of the produced time-bound location proof. Upon
receiving a location claim from the prover, the system computes the smallest span around the time of the claim
( tp) with additional parameter δ, i.e., the interval is between tp − δ and tp + δ. The value of δ needs to be
smaller or equal to the period, but, the ideal is to have the smallest delta possible, so that the location proof can
better support the time and location claim made by the prover. For example, the prover may claim that a device
d was at location Jerónimos at 10 : 30” and the system may only be able to verify that there is evidence that
device d was at location Jerónimos between 10 : 00 and 11 : 00” or “10 : 30± : 30”. In this case the delta is
30 minutes. If more fine grained evidence was available, the claim could be more bound. For δ of 10 minutes,
the verification could state “10 : 30± : 10”.

In summary, the epoch is the interval for computing stable networks that provide location, the period is the interval for
collecting observations, and the span is the smallest interval where evidence was found to verify a location and time

5Relations can also be seen as tables of data, with rows and columns. This is the terminology usually adopted in relational
databases. However, the model we present abstracts from specific technologies.

9
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Table 8: Relational Algebra notations
Operation Description

σ<condition>(R)
select tuples from

relation R

Π<attributelist>(R)
project subset of columns

from relation R with no duplicate tuples

τ<attributelist>(R)
return ordered list of tuples

from relation R

← assign
operation

claim. The specific interval sizes – 1-week epoch, 1-day period, 30-minute span – are just illustrative and should be
adjusted for the time granularity required by a specific application domain. However, the following invariant must hold:
epoch > period > span.

4.3 Operations

The main operations that need to be supported are determining the location and time interval (as small as possible) of a
visit. A visit here is the act of the tourist going to a place to enjoy it.

To support the main operations, we need some auxiliary operations that need to be done with relational algebra. Table 8
shows the meaning of the notations used in the algorithms.

4.4 Location of Visit

To uniquely estimate the location of a device during a visit, we need to know, beforehand, the identifications of the
stable Wi-Fi networks at all locations or points of interests. Then we use this knowledge to estimate the locations of the
users.

4.4.1 Computing Stable Networks

This step is done by the system operator before the system is live and is used to identify stable and longer available
Wi-Fi network APs at each location within the pre-defined epoch time interval of the system. For better accuracy, the
system operator uses multiple devices to gather the Wi-Fi traces.

Algorithm 1 illustrates, in relational algebra, how to compute the stable network identifications from observations
collected within a previous epoch time interval.

Algorithm 1 computeStableIDs
Input obs // set of collected observations
Input e // epoch time window
Ouput stableIDs //stable ids in all locations

1: epochObs← τloc(σobsTime≥e.start
∧

obsTime≤e.end(Obs))
2: for each loc ∈ Locations do
3: locObs← σlocation=loc(epochObs)
4: devObs← φ // start with empty device observations
5: for each d ∈ Devices do
6: devObs(d)← πtransmitterID(σdevice=d(locObs))
7: end for
8: if (NOTdevObs.isEmpty()) then
9: stableIDs(loc)← set.intersection(devObs)

10: end if
11: end for
12: assertFalse(stableIDs.isEmpty())
13: assertTrue(set.intersection(stableIDs).isEmpty())
14: return stableIDs

Observations within the epoch time window are selected and ordered by location. The algorithm takes the observations
in each location individually and iterates over each device’s observations to collect the unique set of networks IDs.
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Then the algorithm computes the intersection between the devices observations to identify the stable networks IDs of
the location – stableIDs(loc). The algorithm repeats these steps for each location observations to compute the stableIDs
of all locations.

4.4.2 Determining the Location

When the prover submits a location claim/proof request (as in Figure 3), the system compares the prover submission
with the stableIDs to determine the location of the prover.

Algorithm 2 illustrates the steps of the location estimation.

Algorithm 2 Prover Location Estimation
Input Obs(p) // prover observations
Input stableIDs // stable networks at all locations
Input threshold // minimum number of detected APs
Output loc // estimated prover location

1: while stableIDs.hasNext() do
2: locStableIDs← stableIDs.next()
3: if (locStableIDs.compare(Obs(p)) ≥ threshold) then
4: loc← locStableIDs.loc
5: return loc
6: end if
7: end while
8: return loc // NULL or default location

The algorithm starts by iterating over all stable networks present in the stableIDs to find the StableIDs that best-matched
the prover’s submitted observations. This location will be the estimated location of the prover device.

4.5 Time of Visit

After estimating the location of the prover, the time of visitation at a location can be determined. This requires sets of
observations, i.e., Wi-Fi traces, reported by other users (witnesses) that happen to be available at the prover’s location
during the same time span. This is done in the model by computing volatileIDs, containing a set of network APs resulted
from the intersection of the observations reported by the witnesses, excluding those that appeared in the stableIDs of the
location. Networks that are stable over long periods of time do not contribute to the location’s entropy and, therefore,
are not suitable to determine time of visitation.

4.5.1 Computing Volatile Networks

Algorithm 3 illustrates how to compute the volatileIDs, considering observations from the witness users.

Algorithm 3 computeVolatileIDs
Input obs // set of collected observations
Input c // location claim
Input s // span time window
Input threshold // minimum number of witnesses
Ouput volatileIDs

1: spanObs← σ(obsTime≥s.start
∧

obsTime≤s.end)
∧
(loc=c.loc)(Obs)

2: witnesses← πdevice(spanObs)
3: for each w ∈ Witnesses do
4: witnessObs(w)← πtransmitterID(σdevice=w(spanObs))
5: end for
6: assertTrue(witnessObs.size()≥ threshold)
7: volatileIDs← set.intersection(witnessObs)− stableIDs
8: return volatileIDs

Figure 5 presents a Venn diagram that illustrates the computation of the volatileIDs.
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Figure 5: Computing the VolatileIDs from two witness observation sets.

4.5.2 Determining the Time Interval

We hypothesize that dividing the time span of the prover’s location claim into smaller intervals and verify each of those
intervals individually can help to pinpoint, with more certainty, the time interval at which the prover was at the claimed
location. Algorithm 4 illustrates the computation with list of possible time spans we call them deltas. Given the list

Algorithm 4 timeBoundProof
Input obs // set of collected observations
Input claim // location claim
Input Deltas[120min, 60min, 30min, 15min, 10min, 5min, 1min, 0min]
Ouput proof(TRUE / FALSE)
Ouput proofDelta

1: proof ← FALSE
2: proofDelta← 0
3: for each delta ∈ Deltas do // from larger delta to smaller delta
4: span← (claim.time− delta, claim.time+ delta)
5: volatileIDs← computeV olatileIDs(obs, claim, span)
6: proofSet← set.intersection(volatileIDs, claim.evidence)
7: if (proofSet = φ) then // intersection was empty
8: break
9: else

10: proofDelta = delta
11: end if
12: end for
13: if (proofDelta > 0) then
14: proof ← TRUE
15: end if
16: return proof, proofDelta

of deltas, the algorithm starts by computing the span time for each delta in the list. As mentioned, a span is the time
window around the time of the location claim (tp) requested by the prover with additional delta that makes up the
interval between tp − δ and tp + δ. The algorithm then computes the volatileIDs with respect to the selected delta. This
step is performed by calling Algorithm 3. Then the intersection between the volatileIDs and the location evidence in the
prover claim is computed. A non-empty set result from the intersection indicates that the system can produce proof of
location for this time span (proofDelta). Then the algorithm iterates over all deltas to find the smallest that can be used
for producing the location proof. The result is TRUE for the proof and the smallest time span found for the location
proof. In case all the deltas gave empty results, then the algorithm returns FALSE proof, indicating that the location
proof cannot be produced.
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4.6 Summary

We presented the model for the formal definition of the data relations and the algorithms that use them to compute the
relevant network sets, and to perform the operations to determine the location and the smallest time interval where the
presence verification is possible.

5 Conclusion

The premise of this work was that there is a large number of publicly available Wi-Fi hotspots in a city, and that some
of these are long-lived and others are short-lived. We investigated how the hotspot observations can be combined to
detect the location and to prove the time when the location was visited and showed how the intersection of observation
sets by other users – witnesses – can corroborate the location claims and produce credible location proofs.

The results of the field experiment made in 6 locations of Lisbon over a period spanning 6 months, was collected as
a dataset called LXspots. The data was assessed in a smart tourism context and we have shown that the approach is
viable and worth implementing in practice. The assessment also lay the groundwork that allowed the development of
the formal data model and algorithms for determining the location and time interval of a tourist visit. The results show
the feasibility of a Wi-Fi scavenger approach. The developed model can be extended to include other kinds of volatile
network signals, such as nearby Bluetooth devices, to further improve the produced time-bound location proofs.
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