
SmartSTEP: automatic configuration of Web
Services

João C. C. Leitão1

1 Instituto Superior Técnico, Technical University of Lisbon
Av. Rovisco Pais, 1

1049-001 Lisboa, Portugal
joaoleitao@ist.utl.pt

Abstract: Web Services (WS) are an important tool for the integration of
enterprise applications. With a growing set of WS related standards (WS-
*), the technology has become increasingly more complicated to
configure and manage, even more so when the Quality of Service (QoS)
requirements of the system are changing. This paper presents the results
of a study conducted on the ability of the major Web Services
implementations to adapt to changing QoS attributes. Their shortcomings
are then used as motivation for SmartSTEP, a policy-driven automatic
configuration solution.

Keywords: Web Services, Quality of Service, WS-Policy, Automatic
Configuration, STEP Framework, SmartSTEP.

1. Introduction

Enterprise applications have demanding requirements: many users, large
volumes of data, ever-changing business rules, and multiple systems’
integration interfaces to connect to other applications [1]. The fundamental
challenge is change so there is great value in techniques that enable
information systems to quickly adapt to changes in requirements.

Web Services [2] promise flexibility through the usage of services, as
proposed by Service-Oriented Architecture (SOA) [3]. According to SOA
principles, services should present a formal contract (WSDL [4]) with all the
information a client requires to use the described service.

A Web Service can be further defined as a network access endpoint to
resources: data and business functions [2]. Although this endpoint can be
accessed in many different ways, the most common is SOAP1 [5], an
extensible XML-based protocol for exchanging information in distributed
environments.

1 Although SOAP was initially defined as Simple Object Access Protocol, the 1.2
version of the standard dropped this definition and simply refers to itself as SOAP.

The three major Web Services implementations are Windows
Communication Foundation (WCF) [6], Metro [7] and Axis2 [8].

Recently, these projects have been focusing on the support of WS related
standards (WS-*), like WS-Policy [9], a framework for expressing policies that
refer to capabilities, requirements or other characteristics of an entity.

Although policies are mainly used for informational purposes, they can also
be used as a part of the Web Services configuration process, as shown by
some of the studied platforms. Besides the possibility of defining multiple
alternatives, the intersection operation is extremely useful in the negotiation of
requirements from the actors involved in a remote invocation.

The goal of the SmartSTEP project is to allow the definition and usage of
policies as the starting point for the automatic configuration of mechanisms
that can satisfy them.

The base platform for this system is version 1.3.1 of STEP [10], an
academic open-source Java [11] platform with support for Web applications
and Web Services. Its main design goals are extensibility and simplicity.

1.1. Motivation

Section 3. presents a use case that demonstrates how hard it is to
configure a mobile and dynamic system. This use case is based in the work of
a field salesman. These salesmen need to communicate with their agency's
central computer systems as well as other partner agencies' in order to obtain
public client data. These central systems present connection requirements like
different security levels for connections from different networks.

The difficulty of implementing a system like this led to the SmartSTEP
proposal, which can be described as a dynamic and automatic Web Services
configuration system.

1.2. Goal

SmartSTEP's goal is to support user-free automatic reconfiguration of
message handlers, as a response to an external event. A system with the
ability to reconfigure itself as a reaction to this type of event is normally
referred to as a self-adaptive system [12].

Message handlers are the software blocks responsible for the satisfaction
of QoS requirements.

1.3. Contributions

This work has two main contributions:

• The study of the configuration mechanisms of the main Web Services
implementations;

• The automatic Web Services configuration system for the STEP
platform.

2. Web Services implementations

This section presents the Web Services configuration mechanisms of the
major WS implementations: WCF, Metro and Axis2. The original STEP
features are also presented.

2.1. Features

The following table summarizes the main configuration features of the
studied platforms.

Table 1. Configuration features of existing Web Services implementations

Area Feature WCF Metro Axis2 STEP

Policies WS-Policy Yes Yes Yes No

Custom policies Yes (1) No Yes No

Server-side policy alternatives No No No No

Configuration WS-Policy based configuration No Yes Yes No

Runtime policy configuration No Yes Yes No

Automatic reconfiguration (2) No No No No

Extensibility Modular message handlers No No Yes Yes

Message handler extensibility Yes (1) Yes Yes Yes

Message handler hot deployment No No Yes (3) No

(1). Requires platform extensions (2). Without user intervention
(3). If available in Axis2 Web Application

WCF supports the majority of WS-* standards, but it doesn't support their
runtime configuration, making it a very static platform.

Metro fails in the lack of customization. Custom policies are not supported
and the difficulty of creating new modules discourages whoever needs to
support a new feature.

Axis2 has modules for the main WS-* standards, but there are still many
without a public stable implementation.

STEP 1.3.1 doesn't support WS-Policy and its configuration is fully static.

2.2. SmartSTEP requirements

The proposed feature list for the SmartSTEP system is composed by all the
features on Table 1, including those unsupported by all studied platforms,
namely server-side policies, automatic reconfiguration and handler hot
deployment.

The project requirements are listed in Table 2.

Table 2. SmartSTEP requirements

Number Description

Justification

SSR1. The definition of QoS requirements should be done using WS-Policy

WS-Policy allows the definition of service policies in a standard format
easing the future interoperability with other platforms

SSR2. The platform should support any policy

This requirement is based on STEP's extensibility principle

SSR3. The service policies should be defined in its WSDL contrat

With the definition of policies in WSDL contracts any client can access the
QoS requirements of a service

SSR4. A client should adapt to changes in the policies of a known service

Required for automatic configuration

SSR5. The platform should allow runtime modification of policies

Allows a more dynamic configuration

SSR6. The platform should allow message handler hot deployment

Since a service's policies can be modified in runtime and clients may need
to adapt to new requirements, it is logical to allow the hot deployment of
message handlers in runtime to satisfy the new policies

SSR7. A service should support policies with multiple alternatives

This requirement eases the configuration of a service without increasing its
functional complexity

SSR8. The supported policies should be implemented by reusable software
elements

Following in the footsteps of Axis2, this modularization allows the reusage
of public implementations

SSR9. The platform should support the definition of custom configuration
mechanisms

According to STEP's extensibility principle

3. Use case definition

To demonstrate the usefulness of policy-based automatic configuration, a
real world use case is defined: insurance sales (InSales).

Let's imagine a field insurance salesman, posted at the local university,
selling travel insurances for college students going on their senior trip.

A new client approaches him to create a new account and informs him that
he is already registered in a partner agency. After importing the client's data
from the partner and registering him as new client, the salesman creates a new
insurance proposal. After he explains the proposal details, the client accepts it
and the salesman submits the proposal. At the agency's office, a manager
studies the proposal and accepts it. After retrieving the result, the salesman
informs the client and they discuss any remaining details.

3.1. Requirements

Two different applications are required to implement this use case: central
systems (agencies) and mobile systems (salesman and manager).

The connections are made using Web Services, with the mobile systems
invoking the services provided by the agencies. The connection and
configuration requirements are listed in Table 3.

Table 3. Use case requirements

Number Description

UCR1. The connection requirements should be defined using WS-Policy

UCR2. Policies should be defined using custom assertions

UCR3. All Web Services should be functionally compatible

UCR4. A client can invoke any service functionally supported regardless of its
endpoint

UCR5. Clients should adapt to the requirements of any invoked service

UCR6. The multiple configurations of a Web Service should be defined as policy
alternatives

UCR7. A connection between systems in different networks should use a high
security scheme

UCR8. A connection between systems in the same network should use a low
security scheme

UCR9. The security scheme should be chosen by the client

UCR10. The client's network should be validated whenever he uses a low security
scheme

UCR11. A service's policies can be modified at any point during the execution of
the system

UCR12. A system can add new message handlers at any point during its
execution

3.2. Problems

The studied platforms have some limitations that prevent them from fully
supporting the defined requirements. Table 4 presents some problems that
their implementation would cause in the studied platforms.

Table 4. Use case implementation problems in studied platforms

Problem

WCF Metro Axis2

Definition of custom policies (UCR2.)

+ Extensions - Unsupported + Modules announce
policies

Invocation of any functionally supported service (UCR3. and UCR4.)

- Requires configuration - Requires configuration - Requires configuration

Adaptation to the services' requirements (UCR5.)

- Unsupported - Unsupported - Unsupported

Services with policy alternatives (UCR6., UCR7. and UCR8.)

- Unsupported - Unsupported - Unsupported

Choice and validation of security schemes (UCR9. and UCR10.)

+ Endpoint choice + Endpoint choice + Endpoint choice

Runtime modification of policies (UCR11.)

- Unsupported + Management interface + Management interface

Message handler runtime extensibility (UCR12.)

- Unsupported - Unsupported - If available in the
platform

The SmartSTEP system, described in the next section, intends to solve
these problems.

4. SmartSTEP details

This section describes the new features implemented in the STEP platform
as part of the SmartSTEP project.

The main focus of this project was the refactoring of the extension system,
the support of the WS-Policy standard and the implementation of a library
dynamic loading system.

4.1. Extensions

The extensions allow to add new abilities to a system. They can be used to
intercept local and remote services to perform additional tasks, like SOAP
message processing.

Each extension defines local (ServiceInterceptors) and remote interceptors
(WebServiceInterceptors), executed at specific interception points before and
after a service.

In SmartSTEP, each extension announces the policies it can handle,
standard or custom (SSR2.). WS-Policy interpretation (SSR1.) is based on the
Apache Neethi library [13].

Since extensions can be used in different applications, they allow to satisfy
requirement SSR8..

The extension processing is sequential, where each interceptor has access
to the results of the previous interceptor.

In order to allow dynamic configuration, SmartSTEP introduced the concept
of pipe, which can be described as a list of local or remote interceptors. A pipe
is responsible for the ordered execution of its interceptors.

The creation of pipes is achieved through pipefactories, SmartSTEP's
extension configurators. The factory to use is defined in the
config.properties file using the property name extensions.factory.

Four different configurators were created along the SmartSTEP system:

• NullPipeFactory: creates a pipe with no interceptors. To use this
factory, define the factory property with the value null;

• PropertiesPipeFactory: creates a pipe based on properties from
file extensions.properties. This is STEP's original extension
configuration system. To use this factory, define the factory property with the
value properties;

• PolicyPipeFactory: creates a pipe based on WS-Policy (SSR3.).
Remote service configuration is based on the service's policies and the client
policies defined in file smartstep.xml2. The two policies are intersected and
an alternative from the resulting policy is used to activate the respective
extensions. To use this factory, define the factory property with the value
policy;

• DynamicPolicyPipeFactory: creates a pipe based on WS-Policy.
Unlike PolicyPipeFactory, this is an adaptive configurator. Instead of
intersecting policies, this configurator uses only the service's policy. To use this
factory, define the factory property with the value dynamic.

2 SmartSTEP's XML-based policy configuration file.

Each application can also use custom configurators (SSR9.), defined with
the classname as value for the factory property.

4.2. JarLoader

The JarLoader is SmartSTEP's dynamic loading mechanism. A JarLoader
can be created to load all JAR's in given directory. This loading process can be
automized to periodically search for new JAR's to install. This mechanism is
used to load and install extensions, according to requirement SSR6..

5. Use case implementation

Table 5 presents SmartSTEP's response to the implementation problems
identified in section 3.2..

Table 5. SmartSTEP's response to the use case problems

Problem

SmartSTEP

Definition of custom policies

+ Extensions announce policies

Invocation of any functionally supported service

+ Use StubFactory3 to create the service interface for a given endpoint

Adaptation to the services' requirements

+ Using DynamicPolicyPipeFactory configurator

Services with policy alternatives

+ Announce the used alternative in a SOAP header

Choice and validation of security schemes

+ Customizing DynamicPolicyPipeFactory's alternative choosing algorithm

Runtime modification of policies

+ Directly in WSDL and smartstep.xml files

Message handler runtime extensibility

+ Using the JarLoader

3 Class used to create service interface objects (Port). Allows the modification of a service's
default endpoint.

6. Evaluation

Table 6 presents the evaluation of SmartSTEP's requirements
implementation.

Table 6. SmartSTEP requirements evaluation

Number Descrição Implementation

SSR1. Requirement definition using WS-Policy Parcial

SSR2. Support for any policy Total

SSR3. Definition of a service's policies in its WSDL Parcial

SSR4. Adaptation to changes in a service's policies Total

SSR5. Runtime policy modification Total

SSR6. Message handler hot deployment Total

SSR7. Support for service policy alternatives Total

SSR8. Support of policies through reusable components Total

SSR9. Definition of custom configuration mechanisms Total

Because of limitations of the used libraries or for time restrictions, some of
the initially planned standards were only partially implemented. Version 1.5
and some elements of version 1.2 of the WS-Policy standard are not
supported. WS-PolicyAttachment support is also limited as the definition of
policies in the WSDL is restricted to the services.

The full support of these standards requires some implementation effort, but
nothing compared to the testing required. This is caused by the complexity of
the algorithms defined by these standards. Although not supported, the
implementation of the missing elements is already prepared.

7. Conclusion

The study of existing technologies and systems has shown that they
focused on the support of multiple WS-* standards instead of simplifying its
use.

This led to the proposal of a new system: SmartSTEP. This project's main
goal was the creation of an automatic Web Service configuration system based
on WS-Policy.

The SmartSTEP system can support virtually any standard, with minimal
configuration effort. Human intervention is limited to the definition of policies.
The rest of the configuration process is automatic and dynamic.

Configuration alternatives, dynamic adaptation and runtime extensibility are
some of STEP's new features that make it one of the most powerful Web
Services platforms.

References

[1] Hohpe, G., & Woolf, B.: Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions. Addison-Wesley
Professional. (2003).

[2] Alonso, G., Casati, F., Kuno, H., & Machiraju, V.: Web Services -
Concepts, Architectures and Applications. Springer. (2004).

[3] Erl, T.: Service-Oriented Architecture (SOA): Concepts, Technology, and
Design. Prentice Hall. (2005).

[4] Chinnici, R., Moreau, J.-J., Ryman, A., & Weerawarana, S.: Web Services
Description Language (WSDL) Version 2.0 Part 1: Core Language.
(2007). Retirado de http://www.w3.org/TR/wsdl20/

[5] Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.-J., Nielsen, H. F.,
Karmarkar, A., et al.: SOAP Version 1.2 Part 1: Messaging Framework
(Second Edition). (2007). Retirado de http://www.w3.org/TR/soap12-part1/

[6] Lowy, J.: Programming WCF Services, Second Edition. O'Reilly Media.
(2008).

[7] Kalin, M.: Java Web Services: Up and Running. O'Reilly Media. (2009).
[8] Tong, K. K.: Developing Web Services with Apache Axis2. TipTec

Development. (2008).
[9] Vedamuthu, A., Orchard, D., Hirsch, F., Hondo, M., Yendluri, P., Boubez,

T., et al.: Web Services Policy 1.5 - Framework. (2007). Retirado de
http://www.w3.org/TR/ws-policy/

[10] Pardal, M., Fernandes, S. M., Martins, J., & Pardal, J. P.: Customizing
Web Services with Extensions in the STEP framework. In International
Journal of Web Services Practices, Vol.3, No.1-2 , 1-11. (2008).

[11] Arnold, K., Gosling, J., & Holmes, D.: Java(TM) Programming Language,
The (4th Edition). Prentice Hall. (2005).

[12] Heuvel, W.-J. v., Weigand, H., & Hiel, M.: Configurable adapters: the
substrate of self-adaptive web services. In ICEC '07: Proceedings of the
ninth international conference on Electronic commerce (pp. 127-134).
Minneapolis, MN, USA: ACM. (2007).

[13] Apache Neethi. Retirado de http://ws.apache.org/commons/neethi/

