
Linked Product Data

Rita Peres Cruz Curado

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisor(s): Prof. Miguel Filipe Leitão Pardal
Prof. José Manuel da Costa Alves Marques

Chairperson: Prof. João António Madeiras Pereira
Supervisor: Prof. Miguel Filipe Leitão Pardal

Member of the Committee: Prof. Bruno Emanuel da Graça Martins

May 2016

ii

To my grandfather who always supported me throughout this journey, even though he could not witness

its outcome

iii

iv

Acknowledgments

I would like to thank my advisor Miguel Pardal, for all the support and for always being available to

help me clear my thoughts, motivate me and also help me review my work. I would also like to thank my

family and friends who never allowed me to give up whenever the obstacles seemed insuperable. And

last but not least, I would like to thank all the technical and common users who helped me evaluate this

work.

v

vi

Abstract

Over the years, the Web has become a place accessible to everyone and that fact was responsible

for the increasing amount of data that is available today. The AAA slogan which means that “Anyone can

say Anything about Any topic” describes the open nature of the Web. In this so-called “Web of Data” the

task of search is becoming harder. When someone performs a search in an engine, like Google, several

web pages are returned, that are related to the search by the words given by the user, but most of

those web pages are documents without a well defined data schema. This makes it difficult to reference

information and to compare it accurately when it comes from different sources. The aim of this work was

to develop an identity mapping engine for informational entities based on Semantic Web Technologies

that can find similarities between data that is kept in different data sources and presented in different

web sites, and decide which of these sources are referencing the same real world objects. With that

information it is possible to create links between the different data sources and offer richer information

to the users, by merging disjoint information. An application for mapping and merging product data in

the Web was developed and evaluated, in different scenarios.

Keywords: Linked data, identity mapping, Semantic Web, RDF, SPARQL.

vii

viii

Resumo

Ao longo dos anos a Web tornou-se um lugar acessı́vel para todos e esse facto foi responsável pela

quantidade crescente de dados disponı́veis hoje. O slogan AAA - “Anyone can say Anything about Any

topic”, que significa que qualquer um pode dizer qualquer coisa sobre qualquer assunto descreve bem

a natureza aberta da Web. Na tão conhecida “Web of data” a tarefa de pesquisa tem-se tornado cada

vez mais difı́cil. Quando alguém realiza uma pesquisa num motor de busca, como o Google, várias

páginas da web são retornadas, as quais estão relacionadas com a mesma pelas palavras dadas pelo

utilizador. Contudo, a maioria das páginas retornadas pela web não possuem uma estrutura de dados

bem definida, o que torna difı́cil a referenciação da informação e sua comparação quando provêm

de diferentes fontes. O objetivo deste trabalho foi assim desenvolver um motor de mapeamento de

identidade entre entidades informacionais, com base em tecnologias de Web Semântica, capazes de

encontrar semelhanças entre os dados que são mantidos em diferentes fontes de dados e apresentados

em diferentes páginas, e decidir quais dessas fontes fazem referência ao mesmo objeto do mundo real.

Com essa informação, será possı́vel criar vı́nculos entre essas diferentes fontes de dados e oferecer

informações mais ricas aos utilizadores, através da fusão de informação disjunta. Uma aplicação de

mapeamento e fusão de dados de produtos na Web foi desenvolvida e avaliada em diferentes cenários.

Palavras-chave: Associação de dados, mapeamento de identidade, Semantic Web, RDF,

SPARQL.

ix

x

Contents

Acknowledgments . v

Abstract . vii

Resumo . ix

List of Tables . xiii

List of Figures . xv

Acronyms . xvii

1 Introduction 1

1.1 Motivation . 1

1.2 Challenges . 2

1.2.1 Identity Problem . 2

1.2.2 Mapping Problem . 3

1.2.3 Duplicated Data Problem . 3

1.3 Solution Overview . 4

1.4 Use Case Scenarios . 5

1.4.1 Pharmaceutical Products . 5

1.4.2 Cinematographic Works . 5

1.5 Contributions . 5

1.5.1 Document Structure . 6

2 Background 7

2.1 The Semantic Web . 7

2.2 Resource Description Framework . 8

2.3 SPARQL Protocol And RDF Query Language . 10

2.4 Linked Data . 11

2.5 Linked Open Data Project . 12

2.6 Summary . 13

3 Related Work 15

3.1 Manual Approach . 15

3.2 Deterministic Approach . 17

3.3 Heuristic Approach . 18

xi

3.4 Probabilistic Approach . 19

3.5 Summary . 19

4 Solution 21

4.1 Architecture . 22

4.2 Technologies . 25

4.3 Implementation . 27

4.3.1 Gather information . 28

4.3.2 Filter information to remove duplicate values . 30

4.3.3 Map entities based on similarity . 32

4.3.4 Perform searches . 35

5 Evaluation 39

5.1 Pharmaceutical Scenario . 39

5.1.1 Filtering Data . 40

5.1.2 Filtering Data From a Second Data Source . 42

5.1.3 Mapping Data From Two Data Sources . 42

5.2 Cinematographic Scenario . 47

5.3 User Validation . 48

5.3.1 Data Curator Users . 48

5.3.1.1 Task 1. Pair Properties . 48

5.3.1.2 Task 2. Filter Data Sources . 48

5.3.1.3 Task 3. Map Data Sources . 49

5.3.2 End-users . 51

5.3.2.1 Task 1. Simple Search . 51

5.3.2.2 Task 2. Map Disparate Data Sources . 52

5.3.2.3 Task 3. Complex Search . 52

6 Conclusion 55

6.1 Contributions . 56

6.2 Future Work . 56

Bibliography 57

A Questionnaires 61

A.1 Search User Answers . 62

A.2 Data Curator Answers . 68

xii

List of Tables

2.1 Existing Ontologies on the Semantic Web . 8

2.2 Difference between SQL and SPARQL queries . 11

3.1 Manual Mapping Approaches . 17

3.2 Different Mapping Approaches . 20

4.1 Example of duplicated data . 30

5.1 Infarmed Filtering Rules . 41

5.2 Infomed Filtering Rules . 43

5.3 Example of two data sources with different properties . 43

5.4 Used mapping rules and metrics evaluation . 45

5.5 Rule distance from the ideal expected matches . 46

5.6 Average spent time by Curator users in the tasks (in minutes) 49

5.7 Average spent time by the Search users in the tasks (in minutes) 52

xiii

xiv

List of Figures

1.1 Current Search Engines Architecture . 1

1.2 Products with different URIs referring to the same real object 3

1.3 Linkage of information about the same product from different sources 4

2.1 RDF graph representation and pratical example . 9

2.2 Cloud Diagram of Linked Open Data Project . 14

4.1 Solution Overview . 21

4.2 Data Converter Engine . 22

4.3 Semantic Web Engine . 23

4.4 Search User Engine . 24

4.5 Data Curator Engine . 24

4.6 Example of two different data sources . 33

4.7 Result of applying the mapping rule . 33

4.8 System’s model evolution, before and after applying a mapping rule 37

5.1 Knowledge in databases by the Curator users . 50

5.2 Curator users most time-consuming tasks . 50

5.3 System utility in the Curators’ perspective . 51

5.4 Search users most time-consuming tasks . 53

5.5 System utility in the Search users’ perspective . 53

5.6 Platforms where the Search users would like to have the system available 54

xv

xvi

Acronyms

AAA “Anyone can say Anything about Any topic”

CNPEM Código Nacional para a Prescrição Eletrónica de Medicamentos

CSV Comma Separated Values

DB Data Base

FI Folheto Informativo

HTTP Hypertext Transfer Protocol

INFARMED Autoridade Nacional do Medicamento e Produtos de Saúde, I. P.

JSON JavaScript Object Notation

LinkedMDB Linked Movie Data Base

LOD Linked Open Data

OWL Ontology Web Language

RCM Resumo das Caracterı́sticas do Medicamento

RDF Resource Description Framework

RDFS Resource Description Framework Schema

SPARQL SPARQL Protocol And RDF Query Language

SQL Structured Query Language

SWE Semantic Web Engine

TSV Tab Separated Values

URI Uniform Resource Identifier

URL Uniform Resource Locator

W3C World Wide Web Consortium

XML Extensible Markup Language

xvii

xviii

Chapter 1

Introduction

In the old days, when someone wanted to know something about a certain topic s/he had to search

for information in an encyclopedia or go to a library and search for it in specific books. Nowadays

the information is electronic and spread all over the world, accessible everywhere and kept in several

formats which is collectively known as the Web. However, despite all of its advantages, the Web has

become a confusing place because there are many sources of information about the same real objects

but with inconsistent values for some properties. Therefore, it is on the user’s hands to perform the

search, decide which sources are reliable and understand which of those are referencing the same real

object. This burden should be relieved.

1.1 Motivation

Search engines crawl the Web starting from some specific Uniform Resource Locator (URL) trying

to find, in the content of those references, the list of words given by the user. Then they return a list of

web pages, indexed by ID, where the number of occurrences of the given words is shown to be higher.

After that, these engines give back to the user a list of web pages sorted by word occurrence ranking

[1]. Figure 1.1 shows the work flow of this approach.

Figure 1.1: Current Search Engines Architecture

1

The former approach leads the user to collect all the necessary information about a topic, by her/him-

self. Each web page returned by the engine will have information also contained in other web pages, but

that page can contain unique information. Therefore, the user is required to visit all the sites returned

(or a reasonable number of them) to collect the information s/he is searching for. Moreover, the user is

responsible for the filtering of information, i.e., he has to decide which are the web pages that reference

the intended product.

Let us see a specific example of this: When a user searches on the Web for a specific smarthphone,

s/he will get the manufacturer web page, a web page with reviews about the phone’s features, a web

page with comparisons between the specified camera and others, some retailers’ web pages with prices

and retailer’s web pages with the phone’s accessories. Therefore, if the user wants to collect official

information but also reviews, prices and comparisons, s/he will have to visit all the web pages returned

by the search. Also, s/he will have to filter the information retrieved to only visit the web pages that are

about the smartphone and exclude the ones that, despite of the similar name of the product, do not refer

to the phone itself like the accessories page. Obtaining complete and unified information about a topic

could be very useful to the users. In the example, this consolidated information would help her/him make

a better purchase decision.

1.2 Challenges

Search engines are optimized for quick answers but not for providing complete and unified infor-

mation about a topic. To achieve this it is necessary to merge data, which, at first, might not seem a

very difficult task, however the sources of information differ in their structure, therefore it is essential to

standardize the data before mapping and merging it. Beyond that, inside each data source there are du-

plicated information which needs to be initially filtered, to not hamper the identity, mapping and merging

processes.

1.2.1 Identity Problem

Data is kept in different databases created by different people with different points of view and dif-

ferent interpretations about things. This is why, to describe the same smartphone’s model, certain

databases will have the attribute “Name” and others will have the attribute “Model”, although both at-

tributes give the same information. The same applies to the identification of products where, according

to a specific database, the product has a specific identifier that is unique inside that scope. However,

many databases could describe the exactly same product with different identifiers, which might mislead

us to think that they are representing different objects. This issue is known as the identity problem.

In the Semantic Web entities are differentiated through its Uniform Resource Identifier (URI) to en-

sure their uniqueness, therefore Figure 1.2 illustrates the problem of ”How can we decide if two objects

with completely different URIs are actually the same?”

2

Figure 1.2: Products with different URIs referring to the same real object

Since entities have a unique identifier, given by an URI, that is different according to the source they

belong to, there had to be a way to find if two entities were referring the same real object based on their

attributes.

1.2.2 Mapping Problem

Taking into account the impossibility of mapping entities based on its URI, another process would

have to be created for us to conclude similarity based on the entities’ properties. The Ontology Integra-

tion Process [2] is one process made for the purpose of merging similar information on the Web. In this

process there appear two fundamental concepts: Ontology Mapping and Ontology Merging.

Ontology Mapping aims to build a new ontology by finding common concepts between different on-

tologies whereas Ontology Merging goal is to build a new ontology by merging several ontologies into a

unique one, thus creating a generalized ontology about a certain topic. This process is then responsible

for, firstly, mapping similar ontologies and then merging the information contained in each one of them.

However, in our work we decided not to use ontologies, so this process had to be implemented in the

scope of entities (objects references). Moreover, it had to be responsible for identifying similar entities

and merging their information, thus creating a new representation of a real product, that was a mixture

of several representations (entities).

1.2.3 Duplicated Data Problem

While identifying which different entities refer to the same real objects, we became aware that in the

scope of products, duplicated data exists. To better explain this issue we will give an example.

Imagine that a user is searching for a specific smartphone, for example the iPhone 6. In fact there

will be many data sources with information about this product but in each one of them we could find

variations of it, i.e., the iPhone 6 16GB, the iPhone 6 32GB, etc. Obviously, from the perspective of

bar code identifiers these products are not the same and consequently they have to be described with

different codes, but from a user search perspective the only thing the user wants to know are the product

characteristics and probably the variations it has. As a matter of fact, both iPhones have the exactly same

properties except their storage capacity and the associated price. Therefore these two entries, from one

3

of the available data sources, could be seen, or not, as the same real object depending on the user’s

perspective.

1.3 Solution Overview

First, the information is filtered based on rules that specify which properties from a data source need

to have the same values, in order to be able to infer the notion of duplicated information. After that,

we have to identify entries from separate data sources that refer to the same real world object and

merge their information. This implies the development of a process identical to the Ontology Integration

Process, responsible for evaluating which entities (as RDF models) are equivalent based on its prop-

erties and create a single entity (single model) that refers to a specific product, concatenating all the

information extracted from the mapped entities. Figure 1.3 shows the overall goal of this work.

Figure 1.3: Linkage of information about the same product from different sources

4

1.4 Use Case Scenarios

1.4.1 Pharmaceutical Products

Medicines are well known products in all developed societies in the world, i.e., when someone refers

to an active substance, it is clear to people which object is being referenced, like Ibuprofen. However,

each country has its own drug regulator entity that defines which medicines can be commercialized

in that same country and under which brands. Consequently, sometimes it is necessary to merge

information between data available in each country and data available on the Web of Data to enrich

information. An example of this kind of data available on the Web is the Drug Bank, a dataset that is part

of the Linked Open Data (LOD) project and that contains loads of specific information about drugs [3].

1.4.2 Cinematographic Works

After the first scenario was fully developed we wanted to prove that the developed application was

flexible enough to be used in other domains. Besides that, we wanted to prove that this tool could

deal with information from distinct data sources, i.e., that the base of the information was not the same

entity (as it happened in the previous case). To address the flexibility domain issue, we decided to take

advantage of structured data available on the web, via the Linked Open Data community (Section 2.5

describes this concept in more detail).

After a research for available repositories, we decided to cross information between two well known

repositories: “LinkedMDB” and “DBpedia”. The Linked Movie Data Base (LinkedMDB) project provides

a high quality source of RDF data about movies [4], while the DBpedia focuses on the task of converting

Wikipedia content into structured knowledge, such that Semantic Web techniques can be employed

against it (asking sophisticated queries to Wikipedia, linking it to other datasets on the Web, or creating

new applications) [5].

Overall, what we would like to offer to the user is an unified answer to all the possible questions s/he

can has about a movie.

1.5 Contributions

This work had the aim of gathering information about products over the Web and existent repositories

in the LOD community, filtering that information to remove duplicate entries, standardize it as RDF

models and finally mapping and merging it to be presented to the user. Therefore, the main goal of this

work was to solve the identity problem in the Semantic Web scope, i.e., identify which information was

referring to the same product even though the identifiers do not coincide with each other. For that reason

we developed a system, available in a public repository 1, where we were able to link information from

different sources, join it into one model and offer it to the user.

1https://github.com/inesc-id/AdvancedSearchApp

5

The system proved to be useful and friendly in a end-user perspective, and domain independent.

Besides that, for a know set of information, the system has shown the ability to find and manage duplicate

information with high levels of precision, depending on the filtering rules applied, and also the ability to

merge information from different data sources.

Therefore as a second goal we hoped that the reduction of the users workload could be seen as an

advantage, despite of not being able to return the information as fast as the actual search engines. A

goal that we have achieved, taking into account the feedback given to us by users who have tested the

system and shown in Chapter 5.

1.5.1 Document Structure

The remainder of the paper is organized as follows. Section 2 explains with more detail the concepts

of Semantic Web, Linked Data and Ontologies; In Section 3 the related work is presented; The architec-

ture design and used technologies are described in Section 4; The evaluation methods and results are

discussed in Section 5 and Section 6 concludes the dissertation.

6

Chapter 2

Background

Many concepts and languages have been created with the aim of structuring data on the Web:

Semantic Web, Linked Data, RDF, SPARQL or OWL.

In this chapter the Semantic Web technologies and the most relevant concepts for this work will be

presented in more detail below.

2.1 The Semantic Web

One of the basic slogans of the Web is that “Anyone can say Anything about Any topic” (AAA) and

while it brought a richness of information, it also brought some problems in the scope of the information’

interpretation. In other words, two crucial questions emerged:

1. How to know if different data sources are representing the same real object?

2. What value should be shown to the user if different values exist for the same property?

The Semantic Web [6] [7] came to answer these questions once it refers to World Wide Web Con-

sortium (W3C) vision of the Web of linked data and aims to convert the current web, with unstructured

documents, into a web of data to provide an environment where applications can query the data and

draw inferences. Therefore, Semantic Web supports a distributed web at the data level rather than at

the presentation level, like in the web as we know (HTML, CSS, etc.) and uses a standard known as

Resource Description Framework (RDF), intended to be a simple and universal manner of representing

anything [8]. Several companies, like NASA, Facebook, Google and CIA, are using this new approach

to structure information on the Web1.

In the history of artificial intelligence it is shown that knowledge is critical for intelligent systems and

in many cases, better knowledge can be more important for solving a task than better algorithms. To

have truly intelligent systems, knowledge needs to be captured, processed, reused, and communicated.

To identify the web resources uniquely, the Semantic Web uses URIs to provide a global identification

for a resource that is common across the web. Most of the times, the resources are identified with URLs
1http://www.webnodes.com/who-uses-semantic-tech-today

7

(Uniform Resource Locator) that are a special case of a URI - besides identifying the resource, they

also identify the resource’s location. Therefore, instead of having pointers from a web page to another,

there are pointers from one data item to another that consist in global references given by URIs. An-

other aspect of this concept is that every pair of entities (RDF subjects) that present the same URI are

seen as the same object once RDF model is able to merge objects automatically whenever they have

this characteristic in common (equal subject values). For that reason, every time two datasets want to

reference the same real object, they could agree on establishing the same URI for it.

On the Semantic Web, the concepts and relationships (terms) used to describe and represent an

area of concern, are defined as vocabularies. Vocabularies are used to classify the terms that may

be used in a particular application, characterize possible relationships, and define possible constraints

on using those terms. Consequently, vocabularies have the role of helping data integration when, for

example, ambiguities may exist on the terms used in different datasets, or when a bit of extra knowledge

may lead to the discovery of new relationships.

Vocabularies can be also referred as ”ontologies”, where ontology is seen as an explicit specification

of conceptualization. They are able to capture the structure of the domain, i.e. conceptualization, which

includes the model of the domain with possible restrictions. For example, ontologies are applied in

the field of health care by medical professionals to represent knowledge about symptoms, diseases,

and treatments. Pharmaceutical companies, in the other hand, use ontologies to represent information

about drugs, dosages, and allergies. Combining this knowledge from the medical and pharmaceutical

communities with patient data enables a whole range of intelligent applications such as: decision support

tools that search for possible treatments, or systems that monitor drug efficacy and possible side effects.

Many ontologies were created throughout the years, according to the ”semantiweb.org”2, and some

of them are shown in Table 2.1.

Ontology Name Ontology Language Revised Date
GoodRelations OWL DL 2011
Music Ontology OWL DL 2010
Dublin Core RDF 2006
FOAF OWL DL 2005
BIO RDF 2004
VCard RDF RDF 2001

Table 2.1: Existing Ontologies on the Semantic Web

2.2 Resource Description Framework

As previously said, the Resource Description Framework [8] is a standard model for data on the Web

that facilitates data merging between schemas that can differ from one another. It is both simple and

universal, and it can represent data as triples (subject-predicate-object) which can be uniquely identified
2http://semanticweb.org/wiki/Ontology.html

8

by URIs, extending the linking structure of the Web. For processing, RDF can be represented as a graph

thereby having the capability of linking its nodes with relative ease.

An RDF Model is represented as a set of statements, which can be shown as a directed graph, where

each statement is composed by three parts:

1. Subject - Resource from which the arc leaves;

2. Predicate - Property that labels the arc;

3. Object - Resource or literal pointed by the arc.

Figure 2.1: RDF graph representation and pratical example

Each subject can assume an URI or an unnamed node, known as blank node, as value. This way, a

subject is always seen as a RDF Resource, which can has Properties that represent a relation between

two components (subject and object). In its turn, an Object can be either a Resource or a Literal, being

this last an absolute value (integer, string, boolean, etc.) [9].

Throughout the years many companies started to see the use of Semantic Web technology, such

as RDF, as a benefit. Two examples are BBC3 and Volkswagen4. Many are the reasons that lead

companies to have this interest in the RDF technology, therefore we will present some of them [10].

Basic instance data is simply represented as attribute-value pars where the subject represents the

instance itself, the predicate is the attribute and the object is the value. Such instances are known as

the ABox.

RDF triples can be applied to all types of data: structured (standard Data Base (DB)), semi-structured

(html) and unstructured (text). By defining new types and predicates, more expressive RDF vocabularies

could be created which make this technology a language for data federation and interoperability across

dispare datasets. Therefore, it is easy to aggregate new datasets or new information due to the no need

of format or serialization.

To enrich basic vocabularies Resource Description Framework Schema (RDFS) was introduced and

it was responsible for bringing new concepts as ”class” and ”subClass” for subjects, and ”domain” and

”range” for properties. The next layer was Ontology Web Language (OWL) which brought expressive-

ness to describe the relationships between entities - known as TBox.
3https://www.w3.org/2001/sw/sweo/public/UseCases/BBC/
4https://www.w3.org/2001/sw/sweo/public/UseCases/Volkswagen/

9

In the conventional relational databases, the information is represented as a table of rows and

columns with keys to other tables, but as soon as that representation changes, those connection can be

lost. RDF does not show that kind of limitations since it represents both instance data and the schema

that describe them. Moreover, as new data and new relationships are discovered or created, they can

be added to the existing model without any change or update to the prior schema. This adaptability

characteristic made RDF to be seen as a data-driven design.

Besides all these advantages, RDF could also be seen as a graph database which from a com-

putational perspective could mean scalability. Having this type of design could also offer new search

paradigms.

To conclude, RDF is a framework for modeling all forms of data, describing that data as vocabularies,

and interoperating it through shared conceptualizations and schemas.

2.3 SPARQL Protocol And RDF Query Language

For users to be able to query information in RDF format, W3C consortium developed the SPARQL

Protocol And RDF Query Language (SPARQL) that is able to query and manipulate this kind of data

stores, called triple stores, where the information is stored in a RDF format [11]. SPARQL has the

particularity of being able to query a dataset without knowing anything in advanced about the contained

data [10].

SPARQL consists of two parts: query language and protocol. The query part’s purposed straightfor-

ward: SQL is used to query relational data, XQuery is used to query XML data and SPARQL is used

to query RDF data. Despite the similarity with Structured Query Language (SQL) and being able to

access relational data as well, SPARQL differs in that it was designed to operate over disconnected

sources over a network in addition to a local database. In particular, the SPARQL protocol allows trans-

mitting SPARQL queries and results between a client and a SPARQL engine via Hypertext Transfer

Protocol (HTTP), which can be used to query live and public SPARQL endpoints.

SPARQL was designed to be easily learned by SQL users. A SPARQL SELECT query is composed

by two parts: a set of question words, and a question pattern. The keyword WHERE indicates the

selection pattern, written in braces, which is a pattern that is matched against the data graph. The

action of the query engine is to find all matches for that pattern in the data, and to return all the values

that the question word matched.

In order to exchange the results in machine-readable form, SPARQL supports four common ex-

change formats, namely the Extensible Markup Language (XML), the JavaScript Object Notation (JSON),

Comma Separated Values (CSV) and Tab Separated Values (TSV).

Next, in this section, and in Table 2.2 some differences between SQL and SPARQL are presented.

SPARQL reuses some key words familiar to SQL users: SELECT, FROM, WHERE, UNION, GROUP

BY, HAVING and most aggregate function names.

SQL uses the token NULL to indicate that data is not available or not applicable and this approach

10

SQL SPARQL
SELECT <attribute list> SELECT <variables list>
FROM <tables list > WHERE { <graph pattern>}
WHERE <test expression>
SELECT EmployeeID, HireDate, City SELECT ?employeeID ?hireDate ?city
FROM Employees WHERE {
WHERE City=’London’ ?s <http://company/empID>?employeeID

?s <http://company/hireDate>?hireDate
?s <http://company/city>?city
}

Table 2.2: Difference between SQL and SPARQL queries

has some implications: SELECTs match table rows even if the selected attributes are NULL, however,

JOIN rules will typically eliminate rows if there are no rows with corresponding values. To solve this

problem OUTER JOIN operator could be used - it performs a regular (”inner”) join without eliminating

solutions if the join constraints are not met. In comparison, missing data is simply not expressed in RDF.

Also and consequentially, SPARQL graph patterns will not bind if there are missing attributes. Therefore

SPARQL uses the key word OPTIONAL instead of LEFT OUTER JOIN, but with a similar effect.

Probably the main feature of SPARQL which will impress SQL users is the ability to federate queries

across different repositories, since SQL has no standard system for query federation. RDF provides the

integration of large databases as a trivial task, but instead of retrieving the data and merging it locally,

SPARQL queries could be written to delegate portions of the query to remote query services.

The “P” in SPARQL stands for “protocol.” Since SPARQL was designed as a query language for the

Web, it includes a protocol for publishing the results of a query to the web, which can deal with binary

results (ASK queries - Yes/No), tabular results (SELECT queries), and, of course, triples (CONSTRUCT

queries). This means that the output of a SPARQL query could be used on the Web as input for another

query.

A server for the SPARQL protocol is called a SPARQL Endpoint — a service that accepts SPARQL

queries, and returns results, according to the details of the protocol. That is why the reserved word

SERVICE is used to dispatch a subquery to a specific endpoint.

Many SPARQL Endpoints are available today, providing information about a variety of subjects. Also,

many of them are linked with other endpoints which has created the concepts of Linked Data and Linked

Open Data, both described in the following sections.

2.4 Linked Data

The Linked Data concept is the activity that creates links between data, from different sources, which

was not previously related, using the Web [12]. This is achieved by defining some specific attributes in

the description of the objects which identifies that one resource is similar to another previously defined

in a different dataset, on the Web.

11

The data is described in RDF with the purpose of be all in the same format and facilitate their linkage,

once RDF make typed statements that link things in the world [12]. Moreover, with everything in the same

format it is possible to make conversion and on-the-fly access to existing databases.

Linked Data is based on four main principles [13]:

1. Use URIs to denote things;

2. Use HTTP URIs so that these things can be referred to and looked up by people and user agents;

3. Provide useful information about the thing when its URI is dereferenced, using standards such as

RDF and SPARQL;

4. Include links to other related things (using their URIs) when publishing data on the Web.

The AAA slogan along with the Semantic Web and Linked Data were able to create an increasingly

referenced concept known by the Web of Data.

The Web of Data [14] is the concretion of the structuring and connection of data on the Web, hence

it is build upon two main principles: Use the RDF data model to publish structured data on the Web and

create links between data that belong to different data sources.

The Web of Data is thus achieved by the joint effort of Semantic Web and Linked Data, since the

Semantic Web aims to structure the data, with the help of RDF models, and Linked Data aims to create

links between data within different data sources.

Linked Data became an important issue since the Web began to be accessible for many people and

along with it came the AAA slogan, meaning that ”Anyone can say Anything about Any topic”. Therefore,

there are many databases that reference the same objects (products) in different ways that can be linked.

One example of this reality is the Linked Open Data Project that will be described in further detail in the

next section.

2.5 Linked Open Data Project

The Linked Open Data (LOD)5 6 is a community effort founded in January 2007 and supported by

the W3C Semantic Web Education and Outreach Group.

Initially participants were researchers and developers in universities and small companies but with

the growth of the project large organizations like BBC, Thomson Reuters and the Library of Congress,

have become involved

In the beginning, LOD was a project with the aim of transforming unstructured data in the Web into

structured data. This was achieved by publishing the data in RDF format and by using URIs and HTTP

URIs to denote and reference objects, respectively. Nowadays, LOD is open to everyone, thus people

who want to join simply have to publish data according to the Link Data principles and link it to data within

some existing datasets. Because of its open nature, the LOD concept has been growing significantly

5http://linkeddata.org/
6https://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData

12

every year and that growth is illustrated in Figure 2.2 that compares the 2010 (Figure 4.8(a)) and 2011

(Figure 4.8(b)) visions of the LOD cloud.

In these figures we can see that the information is divided into seven main groups which refer:

• Media - television stations, radio stations, newspapers, etc.;

• Geographic - describe places geographically;

• Publications - organizations where people can publish their papers, journals, books, etc.;

• User-generated content - references blogs, forums, posts, chats, etc.;

• Government - services hold by the government like public schools and public transports, etc.;

• Cross-domain - datasets that cross information from several others. Ex.: DBPedia has structured

information from Wikipedia;

• Life sciences - all information that has to do with science of life like genes, medicines, diseases,

etc.

Every arrow shown in the figures represent a link between two different datasets which means that

a described object in a certain dataset refer to the same real object as the one described in another

dataset.

The growth of this project is visible in terms of number of links between data sources, for example, the

number of links with DBpedia have increased, as well as the ones with GeoNames and DBLP. Besides

that, data about cross-domain and user-generated content groups also increased in quantity.

In 2014 the LOD community has grown a lot which resulted in the appearance of two more groups

named Social Networking and Linguistics, respectively. Figure 2.2(c) shows the most recent Linked

Open Data cloud.

These images illustrates that data is being created in large quantities and without a centralized

coordination. Therefore, in this context, it can be useful to merge information from different sources from

an individual perspective, to provide it in adequate context to a specific user.

2.6 Summary

In this chapter we addressed the Semantic Web technologies such as RDF, SPARQL, Linked Data

and LOD in further detail.

13

(a) LOD cloud diagram 2010

(b) LOD cloud diagram 2011

(c) LOD cloud diagram 2014

Figure 2.2: Cloud Diagram of Linked Open Data Project
14

Chapter 3

Related Work

With the growth of data in the Web, the problem of verifying if two entities from different sources

are referring the same real world object has been recognized as an important issue by several other

researchers. In fact, unique identifiers are absent in most of the existing data over the Web and therefore

the need of identifying real world objects became a area of study.

We started by looking at a manual approach, where humans take a central role in the mapping by

introducing their knowledge into the system. Then we explored the deterministic approaches, which take

advantage of a specific ontology property to define which products are actually the same. After that, we

present heuristic approaches known by defining which properties from different data sources are “good”

to decide “similarity”, and finally we addressed probabilistic approaches which are based on the creation

of similarity probabilities for each pair of products.

3.1 Manual Approach

The first example of introducing human users in the system to obtain knowledge is Muse [15], a map-

ping design wizard that uses data examples to assist designers in understanding and refining a schema

mapping towards the desired specification. To do so, Muse uses examples to differentiate between

alternative mapping specifications and infer the desired mapping semantics based on the designer’s ac-

tions, then automatically constructs a small number of, yes-or-no questions using small examples. The

designer’s answers to these questions will allow the system to infer the desired semantic grouping.

Another example is Clio [16] which uses reasoning about queries to create, manage and rank al-

ternative mappings. However, the final choice of mappings must necessarily be made by a user who

understands the semantics of the target application. By examining and manipulating carefully chosen

data examples, the user decides what source data should be combined and transformed, and where in

the target this data should be placed.

Belhajjame et al. [17] developed a system where users comment on results to queries evaluated

using mappings previously made and applied to the data. In their simplest form, the schema matchings

derived are binary relationships, each of which connects an element of a schema, e.g., a relational table

15

in a source schema, to an element that is predicted to be semantically equivalent in another schema.

The feedback required from users provides information about the usefulness of the results obtained by

evaluating queries that use the generated mappings, i.e., given a certain tuple it was expected or not in

the answer, or it was expected but was not retrieved.

In Cao et al. [18] the authors propose and formalize four kinds of feedback (SHOULD, SHOULD-

NOT, LIKE, and DISLIKE) to filter and reorder results to a path query. Initially, the user poses a query

and then the path results that match that initial query are retrieved. The user marks then parts of the

presented results as preferred or not preferred and may also highlight some other parts as required or

to be eliminated. This way, users give feedback for ordering paths based on preference criteria and for

eliminating irrelevant paths from consideration.

In the work of McCann et al. [19] the key idea is to enlist the multitude of community members

(i.e., users) to help the builders (small set of volunteers) match schemas. During the matching process

the system asks users simple questions, then learn from the answers to improve matching accuracy,

thereby reducing the builders’ matching workload. Builders examine a list of candidate matches, ordered

by ranking, to find the correct match, while users can answer ”yes”, ”no”, ”don’t know”, or ”postpone”

according to their beliefs. To deal with unpredictability the system classifies users as trusted or untrusted,

based on their answers to a set of evaluation questions (with known answers) and ignores untrusted

ones.

Doan et al. [20] create Cimple, a project that aims to develop a software platform that can be rapidly

deployed and customized to manage data-rich online communities. To its functionality, a community ex-

pert has to provide a set of relevant data sources, domain knowledge about entities and relationships of

interest, and possibly hints on extracting relevant mentions from the listed data sources, so the system

can crawl the web looking for entities’ relations. After transforming the raw data into a semantic entity-

relation (ER) data graph a mass collaboration is employed to evolve and maintain the inferred graph

while learning from users’ interactions.

However, and according to [21] there are two main problems with the approaches based on user

feedback: feedback inconsistency and validity.

Inconsistency - different users may have different requirements. Moreover, the requirements of the

same user may change over time. The basic idea is that if two users have different requirements, then

this difference may give rise to inconsistency between the feedback instances they supply. Similarly, if

the requirements of a given user changes over time, then this change may give rise to inconsistency

between feedback instances supplied at different points in time.

Validity – the user feedback is classified into valid, invalid or unknown, depending on the conflicts that

arise trough the process or, in the last case, due to the absence of the entities inside the data sources.

Table 3.1 summarizes the manual approaches described before in terms of objects on which feed-

back is given by users.

Many other approaches to solve the mappings and data heterogeneity problems were used.

16

Work Objects on which feedback is given

Muse[15]
An instance of a given schema and the in-
stance obtained by transforming the source
schema into target

Clio[16] A view of the mapping result
Feedback-based annotation, se-
lection and refinement[17]

A result tuple or an attribute and respective
value

Feedback-driven result ranking
and query refinement[18]

A candidate query or a pair of candidate
queries

Matching schemas in online
communities[19]

A list of candidate matches or a view of the
matches results

Cimple [20] A semantic entity-relation data graph create
before applying mappings

Table 3.1: Manual Mapping Approaches

In the next sections some of those approaches, used to map resources in some given scope and

decide if there is any pair of resources that can be merged into a single one, will be presented.

3.2 Deterministic Approach

In deterministic approaches the outcome is precisely determined through known relationships among

different sources, without any room for random variation. In such models, a given input will always pro-

duce the same output. In this particular case, we have the certainty that two entities are the same when,

for example in an ontology, we have the attribute “owl:sameAs” referencing a object in other dataset.

One of the done researches belongs to Raimond et al. [22] that developed an automatic interlinking

for music databases. For the purpose, they implemented two different approaches: the first one was

able to link data from two overlapping web datasets and the second was able to link data from the

end-user with data from a public dataset. In both of them they manage to find similarities in pairs of

resources, from the different sources, by comparing the literals attached to them. Whenever they find a

similarity value that was higher than all the other values, they derived statements based on ontologies

like “owl:sameAs”. Therefore, they were able to traverse different datasets just with the created links.

Despite the obtained results, their approach does not work for large datasets because that would

mean thousands of comparisons. Besides that, for datasets without meaningful similarities or based on

different ontologies, the algorithm will not be able to link the resources correctly.

The Ramezani et al. [23] work has led to another approach [24] that aimed to find association rules

in Linked Data. For this approach, the authors collected the desired data by dealing with ontologies and

traverse the datasets through predicates like “owl:sameAs”. After that, they made decisions to solve the

duplicated data problem and placed the data in a central database with a unified ontology. Finally they

called the SWApriori [23] algorithm and were able to create the association rules. This approach is able

to recognize when two resources are the same by traversing datasets based on information stored in

the ontology, placing the data together without any conflict and using the same data structure.

17

3.3 Heuristic Approach

Heuristic approaches aim to find an identity mapping which is not guaranteed to be optimal, but good

enough for a given set of goals.

Heuristic methods are used to speed up the process of finding a satisfactory solution by facilitating

the cognitive load of making a decision. For that purpose there are made rules that permit us to verify

if two objects are referencing the same real world product, for example, if two given properties have the

same values in both objects it can be assumed that they are referencing the same real product.

Some works based on this approach are described below.

Isele et al. [25] developed an algorithm called GenLink that learns linkage rules from a set of refer-

ence links using genetic programming. Therefore they get a list of pairs of properties with similar values

that will be analyzed by tokenizing and lowercasing those values and creating a new property pair (p1,

p2, measure), where measure is the distance measure according to how similar two tokens are, given

a specific threshold. After that, a linkage rule is built consisting of a random aggregation and up to two

comparisons which have selected random pairs, made in the previous step. The Matthews Correlation

Coefficient (MCC) is then used to associate a value to each linkage rule and decide if it represents a true

positive, true negative, false positive or false negative. Finally they use a aggregation crossover function

that permits concatenation of rules to define objects structure.

Friedrich et al. [26] present a totally different approach for this problem. Instead of regular expres-

sions or ontology classification, they analyze the HTML headers of the Web pages and the anchors that

point to it. As it is known some identifiable HTML tags contain names of entities mixed with irrelevant

information and to solve that problem they applied classification filters to extract the identifier of the in-

stance. Therefore, tags (title tags and anchor tags) contain useful information about the product name

they are referring to as strings, and for that reason they are considered as observation strings of a Web

page. Then, they split the strings by tokens and, each occurrence of a token in an observation string

is considered a positive token observation and the number of occurrences, associated to that token,

is incremented by one. They use HAC (Hierarchical Agglomerative Classification) as a classification

algorithm in order to group objects by proximity, once the goal is to put in different clusters specific

Web information like “Specifications & Features” and specific product information, like “18mmto-55mm

lens (silver)”. Once they achieve this goal, tokens with few observation are removed from each cluster

and names are given based on unifying tokens of the observation strings. In the end they have named

groups with corresponding product describing Web pages.

The SWApriori [23] algorithm mine association rules from Semantic Web data but the first steps of it

could be used for this problem of linking data from different sources. This approach is divided in 5 steps

but the first two are particular interesting. In the first step data is collected from different sources and

maintained in memory as triple format (RDF), after that the algorithm generate 2-large itemsets based

18

on the objects frequency. With that information, the algorithm is able to create larger item sets and find

association rules for each itemset. For the linking data problem, higher object frequencies could mean

that different resources are representing the same object.

3.4 Probabilistic Approach

Probabilistic approaches enable variation and uncertainty to be quantified, mainly by using distribu-

tions instead of fixed values. A distribution describes the range of possible values for some property,

and shows which values within the range are most likely. In the scope of link products, this approach

is used to define classes of products and determine how probable a product belong to a certain class,

according to the similarity between its properties and the ones defined for the class.

Kopcke et al. [27] use this approach to determine if two products’ references are identifying the

same real world product, thus they do the matching of product entities based on machine learning and

probabilistic classifiers.

First they construct a base of knowledge that is divided into several categories (classes) based on

the products’ properties (eg. title, price, description). Whenever it is needed to insert a new product

information to the knowledge base, Naive Bayes Classifier was used to calculate the probability of the

new product p belong to a certain category c P(cjp). This probability was achieved by testing how the

properties’ values of p were similar to the ones defined for each category.

Finally, when all products are categorized, they use a heuristic approach to decide if two products

refer to the same real object. To this end, for each category and for each pair of objects they verify if the

manufacturer is the same and if it is so, the objects are merged.

3.5 Summary

The Table 3.2 summarizes the approaches above described.

Our approach in this work presents a particular way of creating mappings between two dissimilar

datasets. As referred before we firstly provide our system to expert users (Data Curators), which have

the capacity to extract information from a schema file and suggest mappings that could make sense to

other users, and then we make the system available to common users which are able to choose the

mappings that suits them best. This way our work does not present any of the problems described in

[21] since the users choose the mappings whenever they turn on the system, they are free to choose

their relevant requirements at each moment. Besides that, the validity of the mappings does not apply

in this case due to the dynamic search on the different data sources at each run of the system and due

to the user’s choices not being saved for later researches in the system.

Overall, our work combines both manual and deterministic approaches since it is based on the

users knowledge to create mapping rules, but also because it uses the property “owl:sameAs” to map

products, and in case of existence of that property before the mapping, it is used to determine which

19

Approach Level of certainty Description

Manual High
Users are responsible for confirm the accu-
racy of existing mapping rules based on its
returned results.

Deterministic High
Some properties provide the mapping re-
sult. In this case, the ontology property
“owl:sameAs”

Heuristic Medium-high

Rules are created to define the results. In this
case it is decided which properties from differ-
ent RDF models have to be compared to de-
clare that the information is about the same
real product.

Probabilistic Medium-low

The rules created are based on the prob-
ability of similarity between RDF models.
Classes are made to cluster similar products
to be merged afterwards.

Table 3.2: Different Mapping Approaches

different products are actually the same real world objects with certainty. However, going through those

other presented approaches is something that is in our future plans.

20

Chapter 4

Solution

As a useful application of an identity mapping engine, we developed a linked data search application.

Although actual search engines are optimized for the quick answer, obtaining a complete and unified

information about a topic could be very useful to the users. The proposed solution will not be able to give

a quick answer but will produce a complete and unified result. Therefore, this search approach aims to

reduce the user workload by identifying different data sources with information about the same topic of

interest, linking that information and retrieving it in a single interface step without the need to visit more

than one site.

Figure 4.1: Solution Overview

21

4.1 Architecture

Figure 4.1 shows an overview of the implemented solution’s architecture. This solution is divided into

four distinct modules:

• Data Converters (green box);

• Semantic Web Engine (orange box);

• Search User Interface (light blue box);

• Data Curator Interface (dark blue box).

Throughout this section each module will be explained in further detail.

The Data Converters (green box) in this architecture is responsible for extracting the information

and give it a standard structure to allow its manipulation. For that purpose, it is composed by as many

Converter Processes as Data Sources. That is because each Data Source has its own data repre-

sentation format. i.e., the properties used to describe the products are not the same for every source.

Therefore, it has to exist one Converter Process per Data Source, which has the knowledge about the

used properties, and consequently, the ability of extracting the data and convert it to RDF format. When

all the data is standardized, this engine sends the RDF triples to the Semantic Web Engine. Figure 4.2

illustrates this part of the solution architecture.

Figure 4.2: Data Converter Engine

The Semantic Web Engine (orange box), shown in detail in Figure 4.3, is composed by three dif-

ferent repositories: a RDF triple store, a repository to keep aggregation rules and another one to keep

Mapping rules, and by three engines: SPARQL, Aggregation and Mapping.

This module in particular could receive a considerable range of inputs, which are:

• List of properties to create new aggregation or mapping rules;

• A particular aggregation or mapping rule to be applied to the repository;

22

• A product/object identifier to perform a search in the RDF dataset.

Besides that, it also receives RDF triples created by the Data Converter and stores them in the RDF

Repository.

Concerning the three existing engines, each one plays a different role. The Aggregation Engine is

responsible for creating new aggregation rules and store them in the Aggregation repository. Also, it

is responsible for getting all the stored information about a certain rule, chosen by the user, and cre-

ating a query to be then applied to the RDF repository by the SPARQL Engine. The Mapping Engine

is very similar to the previous one, the only difference is that it creates and manipulates mapping rules

rather than aggregation ones. Finally, the SPARQL Engine is responsible for make all the queries to the

Repository and return the respective results.

Figure 4.3: Semantic Web Engine

The Search User Interface (light blue box) represents the interaction between the system and the

user who is performing a search. The Search User is responsible for choosing a mapping rule, so the

information can be merged, and for search on the system by giving as input an identifier of the product

s/he wants to search for. After receiving the inputs given by the user, the User Interface is responsible

for communicate with the Semantic Web Engine and return to the user the results of the requested in-

formation. All these interactions are shown in Figure 4.4.

The Data Curator Interface (dark blue box), with higher detail in Figure 4.5, is the novelty brought by

this project. This engine is composed by a Data Curator and a system for her/him to create aggregation

and mapping rules. Therefore, the Data Curator is responsible for two main tasks:

23

Figure 4.4: Search User Engine

1. Give a list of properties that will be used to create a new aggregation rule and consequently, will

remove duplicated entities;

2. Give a list of properties used to create a new mapping property which will define if two entities

from different sources are referring the same real world object;

Each list of properties are going to be given as an input for both Aggregation and Mapping engines.

Figure 4.5: Data Curator Engine

Overview of Solution Processing

In the presented solution, the gathering of information is done before before any of the users interact

with the system. That work was made a priori by choosing two sources of information and converting

them into a RDF format.

There is an interface for each type of user, and the data curator should primarily be the first to run

the application. This is because he is the responsible for creating both the filtering and the mapping

rules, i.e., it is required a expert user to make the decision of which properties tells us that an entity has

24

duplicates and which entities represent the same real world object.

The Data Curator, despite being an expert user and being responsible for the creation of such rules,

he has also the possibility of querying the repository to see how the data changed and infer whether the

created rules are working properly.

After the Data Curator step, the Search User can run the application and will be informed about how

the filtering of the data was made by the Curator, since he is the only one with the ability of decide which

two entities represent a integral copy of information. From that point on is the Search User who is going

to make the decisions. This second user can now choose which mapping rule is going to be applied to

the data and perform searches in the updated repository.

Relative to the Semantic Web Engine, depending on the input, a specific sub-engine (SPARQL,

Aggregation or Mapping) will be called. In the case of creation or appliance of an aggregation rule, it will

be the Aggregation Engine to deal with the input. Similarly, if the input is a list of mapping properties or

a mapping rule, the Mapping Engine will be called. Whenever a query has to be made to the repository,

the SPARQL Engine is activated, even when the input comes from inside the Semantic Web Engine.

This engine is then responsible for returning the query’s results back to the entity that has requested

them.

Inputs from the users are passed to higher layers (lower layers of abstraction) until they arrive to the

engine capable of treating them. In the end, users are presented with a complete information, listed in a

friendly and easy understandable format (tables).

4.2 Technologies

A few years ago the World Wide Web was a Web of linked documents, full of content intended to

be displayed for humans. The information contained in those documents (web pages, videos, images,

etc.), was opaque to computers and so hard to be treated in any automated way.

The Semantic Web was introduced to the world in a 2001 article in Scientific American [28] where

a new vision of the web appeared, i.e., software agents explore the Web, discovering and consuming

structured content and semantic relationships that allow them to automate many aspects of our lives.

The reason why we chose the Semantic Web as technology to this work was the fact that it is recent

and a reality. In fact there are hundreds of data sets across the Web linked together at the data element

level by millions of relationships. Consequently, we chose the Resource Description Framework (RDF)

as the technology to describe the data in the system, according to the W3C consortium practices and

due to its main advantage of combining metadata with data in the same format.

Comparing the semantic web approach with the dominant approach: the relational model.

As it is known relational data is stored in tables, with particular columns, from which the data meaning

derives from. Details about each table and its columns (name, definition, acceptable values, etc.), are

kept and stored separately from the contained data - known as catalog - which difficults the access to it.

In sum, this means that software that accesses relational data needs to have the meaning of the data

25

hard-coded into it in some way to be able to draw inferences. In contrast, the meaning of RDF data is

part of the data itself, in other words, wherever data is its details (i.e. metadata) are always immediately

available. There is no need of explicit knowledge of the meaning of the data, nor the need for completely

separate mechanisms to interrogate its meaning, i.e. RDF data is self-describing.

As before, we continue to choose technologies recommended for the W3C and so, for querying the

data kept in RDF format we chose the SPARQL Query Language. The main reasons for this option were

based on the advantages brought by this language, previously described in Section 2.3.

Since we had the goal of linking information from disparate datasets, SPARQL proved to be the most

obvious way to achieve it, since it can be used to express queries across diverse data sources, whether

the data is stored natively as RDF or viewed as RDF via middleware [11]. Moreover, SPARQL has the

capability of querying required and optional graph patterns along with their conjunctions and disjunc-

tions, also supports value testing and constraining queries and could create new RDF graphs based on

the existing ones. Another advantage is that since the results of SPARQL queries can be results sets or

RDF graphs, it is possible to create a chain of queries, where the output of a query is the input of the

following query.

For our purpose of “Linked Data” (to link the information together), we chose the OWL language

for having the purpose of publishing and sharing ontologies on the World Wide Web and for being

developed as a vocabulary extension of RDF [29]. OWL is a language to extend the expressibility that

RDF provides, once it was projected to be used over the World Wide Web and all its elements (classes,

properties and individuals) are defined as RDF resources and identified by URIs. Besides that, this

language has also the advantage to be appropriate for computers to process it and extract knowledge

more easily.

The Linked Data concept will be used to link the data inside the application. Since the data are de-

rived from different sources this approach will be used to describe which RDF subjects are representing

the same real world object. Therefore, we are only using the OWL property ”owl:sameAs” to later be

able to infer similarity relationships.

For the programming development the Apache Jena Framework1 was the chosen one because its

a free and open source framework designed for the development of Semantic Web and Linked Data

applications.

For storing RDF data there are two available triple stores Virtuoso Quad Store and Jena TDB. Virtu-

oso Quad Store is scalable, high-performance and open-source triple store, however it requires separate

installation of Virtuoso Universal Server and additional libraries to work with Jena RDF API. On the other

hand, Jena TDB is native file based triple store of Jena, which is highly scalable and requires no extra

tool other than Jena Framework.

1https://jena.apache.org

26

The Apache Jena is written in Java and was created by the Apache community. Moreover, this

framework complies with all recommendations and technologies from W3C and offers:

• Java programming API;

• Parsers for RDF in multiple formats: XML, Turtle and N-triples;

• Rule-based inference engine for RDF Schema (RDFS) and OWL connections;

• SPARQL query language (complete implementation);

• SPARQL endpoint (named Fuseki);

• In-memory, SQL, or native tuple storage.

In order to crawl web pages for the extraction of information for further RDF formatting HtmlUnit2 was

used, a well known web browser tool, written in Java, with a large community to help solve some issues

and with a easy way to include in a project (simply add some specific libraries to the class-path). HtmlU-

nit 3 models HTML documents and provides an API that allows the programmer to invoke pages, fill out

forms, click links, etc. just like it is done in a common browser. It has JavaScript support and is able to

work with quite complex AJAX libraries, simulating Chrome, Firefox or Internet Explorer depending on

the configuration used. Typically it is used for testing purposes or to retrieve information from web sites.

Summing up, this tool allows the manipulation of websites from other Java code and emulates part of

browser behavior. Besides that, it allows users to navigate through hypertext over HTTP and obtain web

pages that include HTML, Ajax, JavaScript and cookies.

Finally, with the purpose of structuring the project we decided to use the Apache Maven4 tool - a pop-

ular open source build tool for enterprise Java projects, designed to facilitate the build process. Maven

uses a declarative approach, where the project structure and contents are described, rather then the

task-based approach used in Ant or in traditional “make files”. Moreover, Maven is a project manage-

ment tool which includes a project object model, a set of standards, a project lifecycle, a dependency

management system, and logic for executing plugin goals at defined phases in a lifecycle [30]. This way,

one of the main advantages in our case is the dependency management with all the technologies we are

using due to the creation of project dependencies, extracted from the Maven repository at the building

time.

4.3 Implementation

For the aim of linking product data a Java application was created to gather information from the Web,

map it in a similarity concept view and search for specific data inside the created repository. Therefore,

the developed application is divided into four main steps:

2http://htmlunit.sourceforge.net/
3according to Mike Bowler (its creator) is a ”GUI-Less browser for Java programs”
4https://maven.apache.org/

27

1. Gathering and formatting of information;

2. Filter information to remove duplicate values;

3. Map entities based on similarity;

4. Perform searches.

4.3.1 Gather information

The first step is performed in the beginning of the application launch, more precisely upon the cre-

ation of the Semantic Web Engine (SWE). Therefore, in the end of the SWE initialization the RDF

Repository, contained in it, is already filled with the information extracted for the different datasets and

formatted in RDF. In this way, firstly a Data Converter is created for each source of information and two

main things are made.

The first thing to do is to extract the schema from the data source and it is made by the function

“setSchemaModel(Model model)”. In the scenario of Pharmaceutical Products this function is respon-

sible for crawling the web page where the information is kept, and convert the table structure to a RDF

schema that will then be added to the model given as argument in the function. The crawl of the web

page and extraction of the table structure information is done through the HtmlUnit tool, i.e., a navigation

in the web page is simulated and information is extracted as we are going through the table columns.

A distinct Data Converter is needed for each source due to the different way that information is

presented, i.e., each source has its own tables with its own properties and most of the times, even

when the area of activity is the same, the characteristics of a product are represented by properties with

different names. For example, in our case Autoridade Nacional do Medicamento e Produtos de Saúde,

I. P. (INFARMED) present to the users two distinct webpages where the columns relative to a given type

of information have different names: in one of them the user find the property “Substância Activa” while

in the other the same information has the property name “Nome Genérico”. Therefore, in this work we

simulate a system with previous knowledge about the manner as the information is presented to the

user, in other words, the system knows a priori the existing columns of the displayed table.

The Listing 4.1 shows briefly how a Data Converter extracts the information contained in a web-

page and translates it into RDF triples. The reserved words RDF.type, RDF.Property, RDFS.Class and

RDFS.domain have the aim of describing the schema of the repository.

1 public void setSchemaModel (Model model) throws Except ion{

2 S t r i n g baseURI = ” h t t p : / / www. infarmed . p t / ” ;

3 L i s t<Resource> p r o p e r t i e s = new Ar rayL i s t<Resource > () ;

4

5 Resource medicine = model . createResource (baseURI + ” Medicine ”) ;

6 medicine . addProperty (RDF. type , RDFS. Class) ;

7

8 WebClient webCl ient = new WebClient () ;

9 HtmlPage page = webCl ient . getPage (

10 ” h t t p : / / www. infarmed . p t / gener icos / pesquisamg / pesquisaMG . php ”) ;

11 HtmlTable tab l e = (HtmlTable) page . getElementById (” mainResult ”) ;

28

12

13 p r o p e r t i e s . add (

14 model . createResource (baseURI + tab le . ge tCe l lA t (0 , 2) . asText () . rep lace (’ ’ , ’ ’))) ;

15 p r o p e r t i e s . add (

16 model . createResource (baseURI + tab le . ge tCe l lA t (0 , 1) . asText () . rep lace (’ ’ , ’ ’))) ;

17 p r o p e r t i e s . add (

18 model . createResource (baseURI + tab le . ge tCe l lA t (0 , 3) . asText () . rep lace (’ ’ , ’ ’))) ;

19 p r o p e r t i e s . add (

20 model . createResource (baseURI + tab le . ge tCe l lA t (0 , 4) . asText () . rep lace (’ ’ , ’ ’))) ;

21 p r o p e r t i e s . add (

22 model . createResource (baseURI + tab le . ge tCe l lA t (0 , 5) . asText () . rep lace (’ ’ , ’ ’))) ;

23

24 for (Resource p : p r o p e r t i e s){

25 p . addProperty (RDF. type , RDF. Proper ty) ;

26 p . addProperty (RDFS. domain , medicine . getURI ()) ;

27 }

28 }

Listing 4.1: Extract Web page schema

After this first extraction of schema information, the real data is extracted and allocated to each prop-

erty as shown in the Listing 4.2.

1 public void infarmedModel (Model i n f a r , S t r i n g substancy , S t r i n g name, S t r i n g type ,

2 S t r i n g dosage , S t r i n g numUnits , i n t prescr ip t ionCode , f l o a t pr ice ,

3 S t r i n g gener ic , S t r i n g rcm , L i s t<St r ing> rcmInfo ,

4 S t r i n g f i , L i s t<St r ing> f i I n f o){

5

6 th is . drugID ++;

7 S t r i n g baseURI = ” h t t p : / / www. infarmed . p t / ” ;

8

9 i n f a r . se tNsPre f i x (” ” , baseURI) ;

10

11 Resource r = i n f a r . createResource (baseURI + name + ” ” + drugID) ;

12 r . addProperty (RDF. type , baseURI + ” Medicine ”) ;

13

14 r . addProperty (i n f a r . ge tProper ty (baseURI + ” Nome do Medicamento ”) , name) ;

15 r . addProperty (i n f a r . ge tProper ty (baseURI + ” Subs tanc ia Act iva ”) , substancy) ;

16 r . addProperty (i n f a r . ge tProper ty (baseURI + ” Forma Farmaceutica ”) , type) ;

17 r . addProperty (i n f a r . ge tProper ty (baseURI + ”Dosagem”) , dosage) ;

18 r . addProperty (i n f a r . ge tProper ty (baseURI + ” Tamanho da Embalagem ”) , numUnits) ;

19 r . addProperty (i n f a r . ge tProper ty (baseURI + ”CNPEM”) , I n tege r . t o S t r i n g (prescr ip t ionCode)) ;

20 r . addProperty (i n f a r . ge tProper ty (baseURI + ” Preco (PVP) ”) , F loa t . t o S t r i n g (p r i ce)) ;

21 r . addProperty (i n f a r . ge tProper ty (baseURI + ” Generico ”) , gener ic) ;

22 }

Listing 4.2: Extract Webpage data

29

Product 1
ID <http://med/med1>

Name Aspirin
Dosage 100mg

Number of units 20

Product 2
ID <http://med/med2>

Name Aspirin
Dosage 100mg

Number of units 60

Table 4.1: Example of duplicated data

4.3.2 Filter information to remove duplicate values

This step consists in a data filtering with the purpose of removing duplicated information. This issue

became one of great importance because duplicated information represents a negative influence on the

performance evaluation of mapping rules. To better explain this problem we give a concrete example:

Imagine that, in the pharmaceutical field, the repository A contains two products “Aspirin 500mg

30und” and “Aspirin 500mg 60unid” and that repository B has only “Aspirin” with information about the

drug’s side effects. In this case, the number of pills inside the drug box does not matter for the linkage

of the products from A and B, therefore what would happen would be a total of two mappings instead

of one which would mean a worse mapping in terms of performance. Following the logic, if we have a

repository A with 5 entries and a repository B with 10 entries, at most we can pair 5 entities.

Under this assumption we realized that the filtering of repositories was essential before initiating the

mapping process. The next challenge was to answer the question “Has the user enough knowledge to

decide how the filtering should be done?”, more than that “Has the user the ability to understand the

information given by the schema of a repository?”. At that time we concluded that a common user could

not understand the information that was being presented to him, and consequently a more experienced

user would have to came to help him. Therefore, we decided to bring the concept of “Data Curator” thus

dividing the interaction between user and the solution into two parts: first a interface for the expert user

to interact - the Data Curator - and second a interface for a common user - the end-user.

Based on the need of expert knowledge to understand the extracted information, we have decided

that only the Data Curator had the ability to create aggregation rules (used for removing duplicates) and

also mapping rules (used for defining object similarity).

Regarding the Aggregation Rules, these rules aim to find duplicate information in a given repository

but because the duplicated information lies in the same data source, it is expected that two entities that

represent the same real object are presented with different identifiers. Therefore, these rules are created

based on a set of properties that together can say that two entities are a case of duplicated information.

As shown in Table 4.1 the two products have the same characteristics differing only in the property

“Number of units”. In this case, the aggregation rule should be centered on finding instances with the

same values for properties “Name” and “Dosage”.

In Listing 4.3 a more compact view of the function “createAggregationRule(...)”, responsible for the

creation of aggregation rules, is shown. This function represents the interaction between the Data Cu-

30

rator Engine and the Aggregation Engine, inside SWE, with the input “List of properties” (as criteria)

and the further creation of a new rule inside the Aggregation Rules repository.

1 public void createAggregat ionRule (S t r i n g source , S t r i n g ruleName , S t r i n g c r i t e r i a){

2

3 S t r i n g baseURI = ” h t t p : / / ” + source ;

4 Resource newRule ;

5

6 newRule = d b F i l t e r s . createResource (baseURI + ” / ” + ruleName) ;

7 newRule . addProperty (RDF. type , baseURI + ” / Aggregat ionRule ”) ;

8 newRule . addProperty (d b F i l t e r s . ge tProper ty (baseURI + ” / c r i t e r i a ”) , c r i t e r i a) ;

9

10 d b F i l t e r s . commit () ;

11 }

Listing 4.3: Create Aggregation Rule

After this, the Data Curator has the opportunity of listing all the aggregation rules already created

and seeing the consequent results in the RDF repository by choosing one rule per data source (with the

possibility of choosing none of the existing rules). Whenever a rule is chosen the Data Curator Engine

sends that information to the Aggregation Engine. inside the SWE. In its turn, it will get the list of

properties associated to that given rule, and finally apply the rule to the main repository, with the help of

SPARQL Engine.

In the code, the list of properties request is done by the function “showAggregationCriteria(String

rule)” as shown in Listing 4.4, after that a SPARQL query is constructed for applying the rule to the main

repository.

1 public S t r i n g showAggregat ionCr i te r ia (S t r i n g r u l e){

2 Query query ;

3 QueryExecution qe ;

4 Resul tSet r e s u l t s ;

5 S t r i n g querySt r ing , r e s u l t ;

6 ByteArrayOutputStream go = new ByteArrayOutputStream () ;

7

8 querySt r ing = ”SELECT ? A g g r e g a t i o n C r i t e r i a \n ”

9 + ”WHERE { ”

10 + ”<” + r u l e + ”> ?p ? A g g r e g a t i o n C r i t e r i a . ”

11 + ” ?p a <h t t p : / / www.w3 . org /1999/02/22 – rd f – syntax –ns#Property>}” ;

12

13 query = QueryFactory . c reate (querySt r ing) ;

14 qe = QueryExecut ionFactory . c reate (query , d b F i l t e r s) ;

15 r e s u l t s = qe . execSelect () ;

16 Resul tSetFormat ter . out (go , r es u l t s , query) ;

17

18 r e s u l t = go . t o S t r i n g () ;

19 qe . c lose () ;

31

20

21 return r e s u l t ;

22 }

Listing 4.4: Asking for Aggregation Rule properties list

In Listing 4.5 an example of an aggregation rule query is shown, based on the previous example

given by the Table 4.1. The type of triples the query is trying to gather are the ones that belong to the

class “Product” (given by the “a” expression) and have individually the same values for the properties

“Name” and “Weight”. The last line of the query guarantees that the products “ID” are different.

1 SELECT ?s ?s1

2 WHERE {

3 ?s a <h t t p : / / med/ Product> .

4 ?s1 a <h t t p : / / med/ Product> .

5 ?s <h t t p : / / med/Name> ?Name.

6 ?s1 <h t t p : / / med/Name> ?Name.

7 ?s <h t t p : / / med/ Dosage> ?Dosage .

8 ?s1 <h t t p : / / med/ Dosage> ?Dosage .

9 FILTER (? s != ?s1)

10 }

Listing 4.5: Aggregation Query

With the triples return from the above query, the Aggregation Engine is responsible for creating an-

other query, responsible for eliminating the duplicates. We chose to maintain the subject relative to the

“?s” and eliminate the subject “?s1”. The created query uses the reserved word “DELETE” but in fact it

represents an update to the repository, through the following line of code “UpdateAction.parseExecute(delete,

dbInitialModel)”, where the “dbInitialModel” is the main RDF repository and the “delete” argument is the

query shown below.

1 DELETE

2 WHERE { <s1> ?p ?o } ” ;

Listing 4.6: Delete Query for removing duplicates

4.3.3 Map entities based on similarity

The next step focuses on creating mapping rules and again the lack of knowledge by the general

user led us to assign this task back to the Data Curator.

As we said throughout this paper, there are many data sources with information about the same topic

of interest. Given that information belongs to different sources, that data is structured in different ways,

with different identifiers and properties. This happens because there is no defined standard for every

activity area and also because it is in the hands of each company to decide which technologies will be

32

used to describe the data. Therefore, the process of linking data through the web is highly complex,

which is known as the Identity Problem.

Being aware of this great obstacle, we decided to give the Data Curator the task of find similarities

in terms of the properties being used for describing entities in each data source. For this process to be

automatic we would have to introduce Artificial Intelligence, where a knowledge base of synonyms would

be essential to conclude “Similarity”. However, and since it was not the aim of this thesis we introduced

a Human Data Curator, with logical reasoning.

Figure 4.6: Example of two different data sources

The Figure 4.6 well illustrates the identity problem based on two different schema’s approaches which

do not use unique identifiers to identify products. This way it is impossible to identify two references for

the same real product based only on the URI and for that reason a mapping between each source’s

properties has to be made.

In this case the only rule that could offer a sense of total similarity is by mapping “Name” with “Name”

and “Dosage” with “Compound Quantity”. The remaining properties are added to the final object in order

to give additional information that was previously unknown. All this is illustrated bellow in Figure 4.7.

Figure 4.7: Result of applying the mapping rule

33

In terms of the developed software, the Data Curator is responsible for interact with the Mapping

Engine by sending the list of mappings as input. That list is written according to a standard sug-

gested by the application to the Data Curator, which describes the multiple mappings in this way:

<source1propertyX>-<source2propertyY>&<source1propertyZ>-<source2propertyW>where X,

Y, Z and W are the properties’ names and the symbol “-” has the meaning “maps with”. Just to clarify,

this rule means that the property X from source 1 maps with the property Y from source 2 and also that

the property Z from source 1 maps with the property W from source 2.

Similarly to the creation of aggregation rules, the creation of mapping rules is made by a particular

engine, in this particular case, the Mapping Engine which has to save the new rule into the Mapping

Rules repository for further use. The corresponding code block for this action is shown in the Listing

4.7. When applied, this rule is represented by a SPARQL CONSTRUCT query which is a very complex

one. That is why it is needed the creation of all the query parts (schema, variables, where and optional)

as we are going to show later.

1 public void createMappingRule (S t r i n g source , S t r i n g ruleName ,

2 Map<St r ing , S t r ing> queryParts){

3 S t r i n g baseURI = source ;

4 Resource mainClass , newRule ;

5 L i s t<Resource> p r o p e r t i e s = new Ar rayL i s t<Resource > () ;

6

7 mainClass = dbMappings . createResource (baseURI + ” / MappingRule ”) ;

8 mainClass . addProperty (RDF. type , RDFS. Class) ;

9

10 p r o p e r t i e s . add (dbMappings . createResource (baseURI + ” / schema ”)) ;

11 p r o p e r t i e s . add (dbMappings . createResource (baseURI + ” / v a r i ab l e s ”)) ;

12 p r o p e r t i e s . add (dbMappings . createResource (baseURI + ” / where ”)) ;

13 p r o p e r t i e s . add (dbMappings . createResource (baseURI + ” / o p t i o n a l ”)) ;

14

15 for (Resource p : p r o p e r t i e s){

16 p . addProperty (RDF. type , RDF. Proper ty) ;

17 p . addProperty (RDFS. domain , mainClass . getURI ()) ;

18 }

19

20 newRule = dbMappings . createResource (baseURI + ” / ” + ruleName) ;

21 newRule . addProperty (RDF. type , mainClass . getURI ()) ;

22

23 newRule . addProperty (dbMappings . ge tProper ty (baseURI + ” / schema ”) ,

24 queryParts . get (” schema ”)) ;

25 newRule . addProperty (dbMappings . ge tProper ty (baseURI + ” / va r i a b l e s ”) ,

26 queryParts . get (” v a r i a b l e s ”)) ;

27 newRule . addProperty (dbMappings . ge tProper ty (baseURI + ” / where ”) ,

28 queryParts . get (” where ”)) ;

29 newRule . addProperty (dbMappings . ge tProper ty (baseURI + ” / o p t i o n a l ”) ,

30 queryParts . get (” o p t i o n a l ”)) ;

31

34

32 dbMappings . commit () ;

33 }

Listing 4.7: Create Mapping Rule

After the creation of all the desired mapping rules, the Data Curator has the possibility to view the

results generated by applying a specific mapping rule to the repository. However and since the Data

Curator’s responsibility is not to choose the mapping rule to be applied in the system, a simulation is

made in a way that the results are shown to the curator but without definitive implications to the system.

4.3.4 Perform searches

The fourth and final step is made by the general user, known as Search User once it is with that

goal that s/he uses the application. Therefore, at the start, the Search User is informed about how the

different sources of data were filtered and which mapping rules were created by the expert user. After

that, an overview about the data sources to the general user is presented, i.e., which classes exist;

which properties exist per class; and which values each property can assume.

Then, the Search User has to choose a mapping rule to be applied to the system, in order to obtain

the information as completely as possible. The Search User is responsible for choosing the mapping

rule because only s/he knows what makes sense given the search goals. If the property “Dosage” is

irrelevant for the Search User because s/he only wants to know all the existing “Names” for a specific

“Lab”, that property will not be included on the mapping rule although it guarantees a better notion of

similarity. Therefore, it is in the Search Users hands the responsibility of creating the connection between

the User Interface Engine and the Mapping Engine inside the SWE by the choosing of mappings.

In the same way as choosing aggregation rules, choosing mapping rules means that the Mapping

Engine asks for the characteristics of a specific mapping rule to the Mapping Rules repository, and

then sends all the information to the SPARQL Engine that creates a SPARQL CONSTRUCT query to

be applied to the RDF repository.

A CONSTRUCT query, as the name suggests, constructs a new RDF model based on the first given

for the query. In our case, this query consists in four parts:

1. Schema - introduces new classes and properties;

2. Variables - defines all the properties for the new subject;

3. Where - defines the graph pattern to be found in the given model;

4. Optional - permits that some properties do not have a value (similar to the OUTER JOIN of SQL).

Since this type of query is very extensive in the real project, a pseudo-code version of it is shown

in Listing 4.8. The four parts of the query are represented as follows: schema (lines 2 to 7), variables

(lines 9 to 13), where (lines 16 to 17) and optional (lines 19 to 21).

1 CONSTRUCT {

35

2 <ruleName> <RDF . type> <RDFS . Class> .

3 <s rc1 s rc2 / p1 : p2> <RDF . type> <RDF . Property> .

4 <s rc1 s rc2 / p1 : p2> <RDFS . domain> ” ruleName ” .

5 <src1 / p2> <RDFS . domain> ” ruleName ” .

6 <src1 / p3> <RDFS . domain> ” ruleName ” .

7 <src2 / p1> <RDFS . domain> ” ruleName ” .

8

9 ?s1 <RDF . type> ” ruleName ” .

10 ?s1 <s rc1 s rc2 / p1 : p2> ?o1 .

11 ?s1 <src1 / p2> ?o2 .

12 ?s1 <src1 / p3> ?o3 .

13 ?s1 <src2 / p1> ?o4 .

14 }

15 WHERE {

16 ?s1 <src1 / p1> ?o1 .

17 ?s2 <src2 / p2> ?o1 .

18

19 OPTIONAL { ?s1 <src1 / p2> ?o2 .}

20 OPTIONAL { ?s1 <src1 / p3> ?o3 .}

21 OPTIONAL { ?s2 <src2 / p1> ?o4 .}

22 }

Listing 4.8: Construct query to perform the appliance of a mapping rule in the system

When we first implemented this query we faced a significant challenge. Despite the using of the

existing model as the base for the creation of a new model, the schema from the bases is not passed

for the new model and this would have an impact throughout the whole system. I.e., whenever we list

all the properties or classes in the model the result would be just the new classes and properties, once

that information was created during the construct. That kind of result would not suit us due to the aim

of presenting a complete information, so if we cannot access all properties we are not able to offer the

whole available information to the user. Therefore, we first decided to add the property “subclassOf” to

the new rule class with the vision of inheritance in mind. However, according to the conceptual model

of this work, that vision did not mean what we wanted. In fact, a “subclassOf” tries to specify a generic

concept, for example, the classes Drug and Nutritional Supplement are a specification of the class

Pharmaceutical Product, therefore, Drug and Nutritional Supplement are sub-classes of Pharmaceutical

Product. But what we are trying to do is to create a function that transforms a starting domain into an

arrival domain. That being said, we solve the problem by extracting the schema of the starting model

and added it to the final model.

Another detail we found about the CONSTRUCT query is that as this query is based on a given

model to be able to create another one, at least one of the initial subjects as to be used. This means that

whenever two entities, s1 and s2, are mapped, a new model is created but keeping all s1 initial subjects.

However, our goal is to create a new model that is the intersection of the previous two or more data

source models, where the entities inside it are new whole entities, i.e., there are new subjects (URIs) to

identify new entities. With that purpose, we had to crawl the new model’s list of statements, in order to

36

(a) Initial repository model

(b) Repository model after mapping

Figure 4.8: System’s model evolution, before and after applying a mapping rule

update the subjects’ URIs.

Figures 4.8(a) and 4.8(b) were placed in this paper to better describe the use of models.

The decision of separating the sources was due to the aiming of offer to the Search User the possibil-

ity of search for the information he needs, wherever he wants to. To that end, whenever a mapping rule

is applied to the main repository, a new merged dataset is created and all the initial entities that mapped

are removed from the other datasets, in order to avoid duplicates. This way, when the Search User

performs a search s/he could decide in which dataset the query will be made, for example, according

to the Figure 4.8(b) the user can choose one of the following datasets: Data Source 1, Data Source 2,

Data Source 1 & 2 or the big dataset which encompasses all the others.

In fact, in our vision of the system, the goal was to present to the user all the information about a

given topic as completely as possible, so, preferably the user would always search in the big dataset and

the system would present all the mapped information plus the information that did not mapped but that

references to the same search topic.

Since the aim of this work is to offer to general users a tool for performing searches with complete

results, is essential to give to the user the ability to perform those searches. Therefore a SELECT query

is created by the SPARQL Engine based on the search criteria given by the Search User during his

interaction with the Search User Interface.

To give more detail, the Search User Interface presents to the user all the available datasets where

the search could be performed. After choosing the dataset, it is time to choose the search criteria which

is shown as a list of all the properties, that belong to the chosen dataset, and a input text box per prop-

37

erty where the user can assign a specific value to it. After this interaction, the Search User Interface

is responsible for sending the search criteria do the SPARQL Engine which, in its turn, will create a

SELECT query to be applied to the RDF repository and, of course, to the chosen dataset. Listing 4.9

shows an example of a SELECT query.

1 SELECT ∗

2 WHERE {

3 { ?s a <chosenClass> . /∗ not app l i cab le f o r the b ig dataset ∗ /

4 ?s <www. infarmed infomed . p t /Name:Name> ?Name .

5 FILTER (regex (s t r (?Name) , ’ Brufen ’))

6 }

7

8 OPTIONAL { ?s <www. infarmed infomed . p t / Dosage : CompoundQuantity> ?Dosage }

9 OPTIONAL { ?s <www. infomed . p t / Lab> ?Lab }

10 OPTIONAL { ?s <www. infarmed .com/ Pr ice> ? Pr ice }

11 }

Listing 4.9: Select Query to perform a search

As can be seen, properties created by the mapping rule assume a new domain in their URI that is a

composition of the linked data sources, while the remaining properties keep their original domain. This

is made due to the LOD vision where existing schemas should be reused in the community.

Whenever a search is made to the whole set (containing all the other independent and intersected

sets), the complex properties are separated to its original form, i.e.,

<http://infarmed infomed/Dosage:CompoundQuantity> is decomposed into <http://infarmed/Dosage>

and <http://infomed/CompoundQuantity>, so that the query is able to search all existing sets, each one

with their own properties.

In summary, the process starts with the work of the Data Converter Engine that extracts and con-

verts to RDF the information contained in different data sources. Then, the Data Curator interacts with

the system through the Data Curator Engine to filter the data and create mapping rules that define sim-

ilarity. Finally, the Search User chooses the mapping rule that is better suited to the search goals and

performs searches through the interaction with the Search User Engine. All the three referred engines

are connected via Semantic Web Engine at the “heart” of this system.

38

Chapter 5

Evaluation

This work was evaluated with two approaches: first, with an evaluation based on metrics and sec-

ondly, with another based on tests with real users. The second part of the evaluation was itself divided

into two parts: an evaluation questionnaire with expert users and another with common users, in order

to simulate both the Data Curator and the Search users.

5.1 Pharmaceutical Scenario

The “Pharmaceutical Products” scenario was chosen to be presented to the real users at the time

of interacting with the system because the repository was populated by us. Therefore, we had the

knowledge about the schema and also about which entities were referring to the same real world object

beforehand. Given that, we were able to validate the engine results according to the number of false

positives and false negatives returned.

The initial goal of this work was to cross information between that global dataset called Drug Bank

and the Portuguese medicine regulator INFARMED1, in order to present a more detailed information

about the commercialized medicines in our country. However, the translation proved to be an obstacle

difficult to be transposed due to its consequent time overload.

Under these circumstances, we found another data source that also belongs to INFARMED called

Infomed, containing only medicines for human use and described in Portuguese. In this way, we not

only avoided the time overload with translation but we also constructed a prototype of a system where

the information came from different datasets and it is merged to provide richer knowledge to the users.

We see this case as a prototype because basically the information comes from the same source, which

is INFARMED. However, and strange as it may seem, different information could be obtained from each

of the sources. Additionally one of them does not even have product’ identifiers.

1http://www.infarmed.pt

39

5.1.1 Filtering Data

As stated before, each database could have duplicate information and in this specific case of In-

farmed we found some duplicate instances. Therefore, and not to compromise the mappings perfor-

mance, we first decided to filter each data source based on their specific properties.

The data source named “Infarmed” is composed by 21 properties, 11 of which belong to the drug

package leaflet assuming large blocks of text. From the 10 remaining properties we only use the first 5

to define duplicate information. The ten properties have the following names:

• Nome do Medicamento (Drug Name);

• Substância Ativa (Active Substance);

• Dosagem (Dosage);

• Forma Farmacêutica (Pharmaceutical Form);

• Génerico (Generic);

• Tamanho da Embalagem (Package Size);

• Código Nacional para a Prescrição Eletrónica de Medicamentos (CNPEM) (Prescription Code);

• Preço (Price);

• Folheto Informativo (FI) (Information Leaflet);

• Resumo das Caracterı́sticas do Medicamento (RCM) (Drug Characteristics Summary).

Where CNPEM stands for prescription code, Genérico states if the medicine is, or not, a generic

product and the last, FI and RCM, that are URLs that refer to the package leaflet. Throughout this

process we assumed that the package size (Tamanho da Embalagem) and the CNPEM represented

irrelevant information due to the fact that, for the same medicine, the number of pills contained in the

pack could vary, as well as the price associated to it. Besides that, we found out that the code CNPEM

was not a unique code, i.e. the same code can represent different drugs. That being said, we assumed

that for a product to be considered a copy of another it must have the same values as the other for

the first 5 properties listed before. That way, we learned how many duplicate products existed in the

“Infarmed” database and had the ability to evaluate our own filtering rules as “Data Curators”.

For the “Infarmed” dataset (composed by 326 products, 74 of which are duplicates), we have eval-

uated 33 aggregation rules which differ from each other in terms of complexity (number of properties

tested together) and variety (for the same number of properties tested together, there are compositions

of different properties).

For filtering, with these 30 different rules we realized that for this particular data source, we only be-

come to get close to the true number of duplicates when we test together at least 3 of the 5 properties.

For a smaller number than that, none of the existing properties was sufficiently descriptive.

Based on our first match rule, we continue to test variations of it and concluded that the combina-

tion Nome do Medicamento & Dosagem & Forma Farmacêutica represents the best combination of

40

properties to reach a correct result. Also, we have found that the property Forma Farmacêutica is more

valuable than the property Genérico and that the property Substância Áctiva produces worse results

than Nome do Medicamento when combined with others. In fact there is no rule without the property

Nome do Medicamento that can reach the right number of duplicate instances.

We evaluated the obtained results in terms of number of duplicates, true positives, false positives,

precision and recall. Where Precision (5.1) gives us the percentage of correct duplicates in the set of

duplicates returned, and Recall (5.2) shows the percentage of correct duplicates in the set of duplicates.

Precision = Number of duplicates correctly detected
Number of duplicates detected (5.1)

Recall = Number of duplicates correctly detected
Number of existing duplicates (5.2)

Regarding the number of found duplicates and the number of false positives, these two metrics reveal

a directly proportional relation, i.e. the greater the number of duplicated products found, the greater the

number of false positives. Moreover, the greater the number of properties included in a rule, the greater

the accuracy of that rule, which will mean a good aggregation rule. In terms of precision and recall

we have concluded that as the number of duplicates increases, the precision decreases, while as the

number of false positives comes close to 0, the recall comes close to 1, as expected. Table 5.1 shows

some examples from where the conclusions were drawn.

Rule Detected duplicates False positives Precision Recall
N (Nome do Medicamento) 120 56 0.533 0.865
S (Substância Activa) 291 271 0.068 0.270
F (Forma Farmacêutica) 302 293 0.029 0.122
D (Dosagem) 272 245 0.099 0.365
T (Tamanho da Embalagem) 280 279 0.004 0.014
G (Genérico) 324 323 0.003 0.014
C (CNPEM) 196 192 0.020 0.054
P (Preço) 136 129 0.051 0.095
N & S 120 56 0.533 0.865
N & D 77 4 0.948 0.986
N & F 111 46 0.586 0.878
S & D 245 209 0.147 0.486
S & F 267 236 0.116 0.419
D & F 245 210 0.143 0.473
D & G 253 222 0.123 0.419
N & S & D 77 5 0.935 0.973
N & D & F 74 0 1 1
N & D & G 77 4 0.948 0.986
S & D & F 232 192 0.172 0.541
N & S & D & F 74 0 1 1
N & S & D & G 77 4 0.948 0.986
N & D & F & G 74 0 1 1
S & D & F & G 211 167 0.209 0.595
N & S & D & F & G 74 0 1 1

Table 5.1: Infarmed Filtering Rules

41

5.1.2 Filtering Data From a Second Data Source

The data source named “Infomed”2 is composed by 442 products, 37 of which are duplicated, and

by 5 properties that are all used for the filtering process as a way of finding duplicates. Those properties

have the following names:

• Nome do Medicamento (Drug Name);

• Nome Genérico (Generic Name);

• Dosagem (Dosage);

• Genérico (Generic);

• Titular (Holder).

We assumed that for a product to be considered a copy of another it must have the same values as

the other for all the 5 properties listed above. That way, as in the first source, we learned how many

duplicate products existed in the database and again the ability to evaluate our own filtering rules.

We have evaluated 30 aggregation rules which differ from one another in terms of complexity and

variety. With these rules we realized that for this data source the property Nome do Medicamento

was the most relevant when grouped with others. Also, we realized that Dosagem is a good indicator

when analyzing duplicates while Genérico does not help much. Furthermore and despite being a great

indicator in this database, the Dosagem property works better when brought together with the property

Nome do Medicamento.

Similar to Infarmed, the metrics used were the number of found duplicates, true positives and false

positives, and the values of precision and recall. Once again the results have shown a proportional

relation between the number of duplicates and number of false positives returned. Therefore, as the

number of copies found increases, the number of false positives also increases.

In terms of precision and recall we also concluded that as the number of duplicates increases, the

precision decreases. However, in this data source, it is possible to find high recall values even when

false positives do exist, for that to happen it is only need to find all the correct duplicates even though

the filtering rule may detect more duplicates than the expected ones.

In this dataset, it is possible to find a perfect match between the number of duplicate results and the

true quantity of duplicates in the database with only the conjunction of two properties. In the Table 5.2

some of the 30 rules are presented in order to show how we get to the conclusion mentioned before.

5.1.3 Mapping Data From Two Data Sources

Similarly to the filtering part of this work, in order to evaluate the mappings it was necessary to have

prior knowledge of how many matches there were between products from the two different sources, in

this case: Infarmed and Infomed.

For that purpose, we first analyzed which properties each source had and decided if properties with

the same name could represent a match, by looking to the values they assume. Secondly, for properties
2http://www.infarmed.pt/infomed/inicio.php

42

Rule Detected duplicates False positives Precision Recall
N (Nome do Medicamento) 202 184 0.089 0.486
NG (Nome Genérico) 381 370 0.029 0.297
D (Dosagem) 315 298 0.054 0.459
G (Genérico) 440 440 0 0
T (Titular) 341 328 0.038 0.351
N & NG 202 184 0.089 0.486
N & D 37 0 1 1
N & T 200 182 0.09 0.486
NG & D 248 219 0.117 0.784
NG & T 260 242 0.069 0.486
D & G 276 259 0.062 0.459
D & T 77 40 0.481 1
N & NG & D 37 0 1 1
N & D & G 37 0 1 1
N & D & T 37 0 1 1
N & G & T 194 176 0.093 0.486
NG & D & G 207 177 0.145 0.811
NG & D & T 63 26 0.587 1
N & NG & G & T 194 176 0.093 0.486
N & D & G & T 37 0 1 1
NG & D & G & T 63 26 0.587 1
N & NG & D & G 37 0 1 1
N & NG & D & G & T 37 0 1 1

Table 5.2: Infomed Filtering Rules

with different names we also had to base our decision on the values that those properties assume and

see if there were similarities.

As said in Section 4.1 Architecture, we assume a contribution from a human “Data Curator” user,

with cognitive thinking, who will create only mapping rules that could make sense. To better explain we

will focus on a brief example.

Source 1
Medicine Name Dosage

Aspirin 100 mg
Ben-U-Ron 500 mg

Brufen 400mg

Source 2
Med Name Generic

Brufen Yes
Aspirin No

Ibuprofen 400 Yes

Table 5.3: Example of two data sources with different properties

In Table 5.3 presents two data sources with two properties each. By looking through those properties

and the values that they assume, a human user can quickly associate the properties “Medicine Name”

and “Med Name” even though they had different names as identifiers. Furthermore, the human user

can also conclude with certainty that the remaining properties, “Dosage” and “Generic”, do not match

through the values presented in each one.

In this work, the human Data Curator realized that there were only 4 properties between the 2 sources

(Infarmed and Infomed) that actually could be equivalent and therefore, 15 rules were created and taken

into account for the system evaluation.

43

Given the properties from Infarmed (Nome do Medicamento (N1); Substância Activa (S); Dosagem

(D1); Genérico (G1)) and from Infomed (Nome do Medicamento (N2); Nome Genérico (NG); Dosagem

(D2); Genérico(G2)) we had assume the following 15 mapping rules, where the character “-” means

“map”:

• R1. N1-N2

• R2. S-NG

• R3. D1-D2

• R4. G1-G2

• R5. N1-N2 & S-NG

• R6. N1-N2 & D1-D2

• R7. N1-N2 & G1-G2

• R8. S-NG & D1-D2

• R9. S-NG & G1-G2

• R10. D1-D2 & G1-G2

• R11. N1-N2 & S-NG & D1-D2

• R12. N1-N2 & S-NG & G1-G2

• R13. S-NG & D1-D2 & G1-G2

• R14. N1-N2 & D1-D2 & G1-G2

• R15. N1-N2 & S-NG & D1-D2 & G1-G2

Each of these rules were implemented in the system with 252 products belonging to the first source

and 405 belonging to the second source, 120 of which referring to the same real world object. The above

rules were tested with the following metrics:

• Number of product matches;

• Precision;

• Recall;

• Distance to expected match number.

The first metric gives us the number of matches between products from different sources, the second

metric is obtained through the equation (5.3) and gives the information of how many of the matches done

are actually correct. The third metric gives us the rule coverage regarding the number of mappings within

the expected set and is computed using the equation (5.4). Finally, the last metric tells us how many

products could be matched at most: in our particular case we have 252 products from Infarmed and 405

from Infomed, which means that we can only match 252 products at most. Therefore, every match that

we get beyond 252 are considered as excess. Thus, to calculate the distance between the number of

matches obtained and the number of expected ones, we first compute the excess produced by the rule

with the equation (5.5), where the “Maximum number of matches” represents the number of matches

that can be made at most (252 in this particular case). Then, we compute how many possible matches

there are in our system, which is given by the formula (5.6). Finally, we normalize the distance obtained

earlier according to the equation (5.7) to show the values in a common scale.

44

Precision = Number of matches correctly detected
Number of matches detected (5.3)

Recall = Number of matches correctly detected
Number of existing matches (5.4)

Absolute Distance = Number of obtained matches – Maximum number of matches (5.5)

Possible Matches = Number of Source1 products× Number of Source2 products (5.6)

Match distance = Absolute Distance
Possible Matches (5.7)

Rule Product matches Precision Recall Distance
R1 287 0.418 1 3.43e–4
R2 2761 0.043 1 2.46e–2
R3 2542 0.047 1 2.24e–2
R4 50010 0.002 1 4.88e–1
R5 287 0.418 1 3.43e–4
R6 120 1 1 0
R7 280 0.429 1 2.74e–4
R8 854 0.141 1 5.90e–3
R9 1785 0.067 1 1.50e–2
R10 1592 0.075 1 1.31e–2
R11 120 1 1 0
R12 280 0.429 1 2.74e–4
R13 615 0.195 1 3.56e–3
R14 120 1 1 0
R15 120 1 1 0

Table 5.4: Used mapping rules and metrics evaluation

From the Table 5.4 we can conclude that when mapping “Nome do Medicamento” with

“Nome do Medicamento”, each from one of the two sources, the obtained results are better than the

ones achieved with mapping “Substância Activa” with “Nome Genérico”. This could be easily seen by

compare the R6 and R8 rules, where R6 has a precision of 1 while R8 presents a precision of only 0,14.

Similarly, mappings of properties named “Genérico” produce worse results, in terms of precision, than

mappings of properties names “Dosagem” (ex. comparison between R8 and R9). That being said, we

could then expect that the combination of R1 and R3 will produce better results than the others which is

confirmed by the comparison of, once again, R6 and R8 but also by comparing R12 with R14.

In terms of precision, it is clear that having high number of matches does not mean that the mapping

rule is better than the ones with lower numbers. The latter are the ones that should be considered closer

to the expected matches. For example, comparing the rule R4 with the rule R15 it can be seen that

45

the high number of product matches in R4 corresponds to a really low precision, while in R15 it is the

opposite. This happens because precision uses the number of true positives to compute its value and,

in this particular case, we know that only 120 matches are actually correct, so for a lower number of

matches (below or equal to 120), the precision tends to be better.

The recall value shown to be always one because it takes into account the number of correct matches

found and the number of existing correct matches. Since every rule found all the existing correct

matches, even though some may found more matches than the expected ones, the recall does not

give us useful information to draw conclusions, instead, the distance between the obtained results and

the expected ones is more valuable.

Regarding the “Distance” metric, for rules that present number of matches below the maximum num-

ber of expected matches, zero is assumed as the distance value once they do not cross the defined

boundary of maximum number of expected matches. To draw conclusion about those kind of rules, the

precision values assumed are crucial.

Overall, we can conclude that the farther from the expected is the rule, the worse it is. Therefore, if

we sort our rules by distance we will obtain the following list, ordered by ascending distance value: [R6,

R11, R14, R15, R7, R12, R1, R5, R13, R8, R10, R9, R3, R2, R4], where R6 represents the better rule

while R4 is seen as the worse one to be applied to the system.

Due to the precision computation, we had to know how many correct matches there were in the

system, therefore we have calculated the distance between the number of matches obtained in each

rule and the number of real expected matches to compare with the distances previously computed and

we can conclude that for our example the distances between the matches obtained in each rule and

both the maximum possible matches and correct matches, do not differ a lot. From the values presented

in Table 5.5, this means that if we sort the rules, once again by ascending distance, we will obtain the

same list as before: [R6, R11, R14, R15, R7, R12, R1, R5, R13, R8, R10, R9, R3, R2, R4].

Rule Distance from ideal result
R6 0
R11 0
R14 0
R15 0
R7 1.57e–3
R12 1.57e–3
R1 1.64e–3
R5 1.64e–3
R13 4.85e–3
R8 7.19e–3
R10 1.44e–2
R9 1.63e–2
R3 2.37e–2
R2 2.59e–2
R4 4.89e–1

Table 5.5: Rule distance from the ideal expected matches

Regarding this study, the metrics “Number of matches returned” and “Distance from the expected

match number” are directly proportional, i.e. whenever the number of match returned increases, the

46

distance to the expected matches also increases, which means that the rule is farther from the truth.

Thus, the main conclusion is that Curators should look for rules with the following characteristics:

• Number of matches close to the maximum expected number of matches;

• High precision values (close to 1);

• Distance values close to 0.

The Distance metric was conceived with the aim to help the curator to construct better mapping rules

by letting her/him know the distance between the new mapping rule and the expected result, being that

the lower the distance, the better the created rule.

5.2 Cinematographic Scenario

When a user wants to know all the information about a given movie, s/he has to search on the Web

and the search engine will present a list of related information, such as sites about movies, fan commu-

nities, reviews about the movie and other items like books or posters. After that, the user has to find

by her/himself which sources of information are referencing the intended product and decide in which

information s/he is going to trust, according to its source. This search approach implies a significant

workload to the user given that, most of the times, the sites returned by the search engines refer to

products similar or somehow related to the intended one. For example, if a user searches for the movie

“Frozen”, s/he will be faced with the film but also dolls, performances at Disney Land, fans Facebook

pages, reviews, games and much more.

People fond of cinematography tend to search for movies’ ranking before afford the intended movie or

to watch to it. Furthermore, they tend to search for movies with the same actors and the same producers

that made other films that they have enjoyed. Therefore, these people spend a significant amount of time

visiting the web pages that contain reviews and filtering the ones which have information about a given

actor career and biography, instead of fans communities and others.

With the developed work we want to be able to present to the user only relevant information, in this

case only in the scope of cinematography, where s/he can find more detailed information about the ac-

tors of a given movie gather in one unique place. The provided information is only about the product

(movie) that was searched for. The mapping rule will be done by a specialized user and then chosen by

a regular search user.

With this new scenario we were able to demonstrate that the system is domain independent, i.e. it is

able to perform the same actions (filter, map and search) for another context just by adding some code

lines.

Once we chose information available in repositories from the Linked Open Data community, we had to

change the way the queries were made in order to perform them against SPARQL Endpoints instead of a

local repository, which also shows its versatility since we did not contribute to the schema development.

47

5.3 User Validation

In order to infer the application utility and complexity, we decided to perform some tests with real

users.

Those tests were made to twenty users, on a quiet and study environment to avoid distractions, in

an academic context. The users were aged between 18 and 25, with few exceptions, and were at the

majority males (60%) for the Data Curator tests and females (55%) for the End-users ones.

To perform these evaluation a smaller version of the original database was used so that the users

were able to understand the results and not be overwhelmed by tables with hundreds of lines.

To each separate version, i.e. Data Curator or Search User, the test consisted of three tasks that

were increasingly difficult. The objectives of this work and the basic concepts needed to interact with

the interface were briefly explained to the users, as well as the application context.

In the end of each test (group of three tasks), the users were asked to answer a small satisfaction

questionnaire which can be found in the Appendix.

5.3.1 Data Curator Users

In our work the Data Curator role is performed by a human that has the logical reasoning to decide

which properties have to be identical to confirm that two RDF entities are referring the same real world

product and can be merged. Therefore, we have asked twenty students of Computer Science Engineer-

ing to simulate this role in our application and to give us some feedback in terms of utility and complexity

of understanding the system.

To that matter, the users were asked to perform three different task with increasingly difficulty. Those

tasks are listed and briefly explained below.

5.3.1.1 Task 1. Pair Properties

This particular task was asked with the purpose of giving them a brief idea of how the mappings

work.

In this task the users firstly had to explore the system (available sources; sources’ properties; existing

pharmaceutical products inside each source) and secondly they had to find which property from the

Infomed data source could pair with the Substância Activa property from the data source Infarmed.

In this exercise the users revealed a strong logical thinking, spending 10 seconds on average to find

the right answer.

5.3.1.2 Task 2. Filter Data Sources

Before the users get to the point of mapping the data sources, they had to filter them. As it was

explained before in this thesis, many times databases have duplicate information, for example, for the

same smartphone model there are at least two different colors available (black and white) but if we think

in terms of relevance probably the “color” feature is not relevant enough to determine that two products

48

are actually different. Instead, there would be interesting to merged the information and present the user

with only one entity that for the property “Color” assume both values combined “Black; White”.

That being said, the users had to perform three steps in this task:

• Verify the existing products in the Infomed data source;

• Create a new filtering rule named “ByName” for the source Infomed that aggregates products by

the property Nome do Medicamento;

• After creating the rule, choose that same rule to filter the Infomed dataset and the rule “None” to

filter the dataset Infarmed;

• Verify results.

With this task the users had to understand what filtering by the property Nome do Medicamento

meant and which results were expected.

After understanding that, the users were able to recognize that the rule created by them was not a

good rule since it assume that two products are the same by only verifying if they have the same name.

5.3.1.3 Task 3. Map Data Sources

In this task the users were asked to firstly filter each one of the data sources available, then to map

those data sources by name and finally to verify the obtained results.

• Choose the rule named “ByNameSubsDoseFormaGen” to filter the data source “Infarmed” and the

rule named “ByAll” to filter the “Infomed” data source;

• Create a new mapping rule which creates a match between the properties “Nome do Medicamento”

and “Nome do Medicamento” from the sources “Infarmed” and “Infomed” respectively.

• Go to the next page and choose the mapping rule you have created in the previous subheading;

• Verify results.

With this exercise the users had to create a new mapping rule, with a specific syntax, that merged

information of products from each one of the data sources that present the same value for the name

properties. Therefore, what we asked was for them to map the two sources by name of medicine.

Although this was the most time-consuming task, since the users had to do three different things

(filter, create mapping and choose that mapping), they were able to verify that the results were the ones

they were expected and also that once again, this rule was not as good as it seemed at first sight.

Table 5.6 presents the time, on average (χ̄) and the standard deviation (σ), that the users take to

perform each task.

Task χ̄ σ
T1 0.10 0.07
T2 1.20 0.06
T3 1.42 0.07

Table 5.6: Average spent time by Curator users in the tasks (in minutes)

49

After performing each task, the users were asked to answer to a brief questionnaire which revealed

that the majority of the interviewed had background knowledge in the area of databases and performs

searches on the Web almost every day.

Figure 5.1: Knowledge in databases by the Curator users

Besides that, almost all of the inquired said that the information given in the application was sufficient

to understand and interact with the system. As it was expected the users revealed that the last task was

the most complex one of the three while the first one was the easiest.

Figure 5.2: Curator users most time-consuming tasks

Overall, the users considered the application as being very useful for the daily life of a common user

and that would like to have this system available in the contexts of: technological products, online stores

and academic documents.

With respect to the interface, the users suggested some small changes to improve the usability

and understanding of the system, such as: simplify the way properties are presented and give more

information whenever there are drop-down buttons.

50

Figure 5.3: System utility in the Curators’ perspective

5.3.2 End-users

After the solution had satisfied the functional requirements of the architecture described in Section

4.1, it was given to twenty end-users to allow them to compare browsing for product information using

the traditional web search and our semantic-aware approach. Therefore, the end-users were given a

computer and a list of three tasks to perform using the developed application.

Since these type of users could be common people, without background on databases or computer

science, the tasks chosen for them were relatively easy. They only had to simulate a choice of an existing

mapping rule that better suited their needs, and then they had to perform a search, via the application,

by attributing a value to a specific property.

Each one of the “Search Users” tasks is presented below.

5.3.2.1 Task 1. Simple Search

For this tasks the user had to do the following steps:

• Explore the system (available sources; properties of each source; existing products in each source);

• Go through the system until arriving to the “Search Criteria” page and then make two consecutive

searches:

– Search on “Infomed” by “Nome do Medicamento” with the value “Betadine”;

– Seach on “Infarmed” by “Nome do Medicamento” with the value “Betadine”.

This task has served to show to the users that if they search for Betadine in Infomed they will get

too few information, while if they search for the same product in Infarmed they will get much more

information. Besides that, it was a product that was common in both databases - that was made with

the purpose of asking them if it would make sense to merge the two products and offer a more complete

and unified information.

51

After this they were introduced to the second task.

5.3.2.2 Task 2. Map Disparate Data Sources

For this task the user had to do the following two steps:

• Choose the rule “ByNameSubsDoseGen” to map the databases of the system;

• Perform a search on the “All” model by the joint property “Nome do Medicamento:Nome do Medicamento”

with the value “Betadine” and verify the obtained results.

With this task the users were able to see the problem found in the first task solved, i.e. in the end

they could see two products Betadine, one from Infomed that mapped with another from Infarmed and

also the other Betadines that still exist but that did not map with other products.

This second task revealed a further understanding about the problem stated in this thesis and a con-

firmation of the returning results.

5.3.2.3 Task 3. Complex Search

Finally the users got here and were asked to test the application to infer if it was capable of searching

by more than one property at a time.

That way, the users were asked to do the following:

• Choose the rule “ByNameSubsDoseGen” as you did in the previous task;

• Search in the system on the “All” model by “Forma Farmaceutica” with the value “Comprimido”

and by the joint “Genérico:Genérico” property with the value “Sim”.

With this task the users got to know the system better in terms of how the mapping is done and see

different features of it.

In average, the users spend more time in the first task which means that once they are comfortable

with the system they could be quicker and that the system is easy to learn and to interact with.

Below is a table with the average time spent (in minutes) by the users in each of these tasks, as well

as the standard deviation:

Task χ̄ σ
T1 1.02 0.04
T2 0.49 0.07
T3 0.50 0.05

Table 5.7: Average spent time by the Search users in the tasks (in minutes)

According to the questionnaires, most of the users said that they did not need more information to

understand which fields they have to select to perform the tasks. Also, more than half of the inquired

52

Figure 5.4: Search users most time-consuming tasks

stats that all the tasks were simple and almost all of the inquired answered that the system had great

usefulness in their lives.

Figure 5.5: System utility in the Search users’ perspective

Besides that, almost all of the users said that would like to have this application at all of the exist-

ing platforms (computer, tablet and smartphone) and the great majority in the context of technological

products.

Some improvements to the interface were also suggested.

53

Figure 5.6: Platforms where the Search users would like to have the system available

54

Chapter 6

Conclusion

Nowadays, with the increasing amount of data available on the Web it is becoming imperative to

develop new ways of searching. The existing search engines return an amount of possibilities that make

the user’s job a lot harder, because it is necessary to filter which of them are actually useful. Besides that,

the user has to match and combine the information manually because it is unstructured and presents

some redundancies, i.e. different web pages refer the same information which makes the user waste

time.

The Linked Product Data solution came to address this problem since it provides tools to structure

data about products. Therefore, the aim of this work was to facilitate the user’s searches in a way that

s/he will not has to be concerned about which sources describe the product that s/he was looking for.

Instead, all the information needed was presented in a single place rather than in a considerable number

of distinct web pages.

The work presented in this document had to deal with the problems of identity and redundant in-

formation since similar data is kept in distinct databases, which have different IDs for the same real

products. In order to overcome these obstacles, we first suggested an examination of the available data

sources by an expert user called Data Curator, with the knowledge to create rules that will aggregate

duplicated data. After testing the created rules, the Data Curator also has to decide which of those rules

are the most reliable to be applied to the system, by comparing the expected results (known “a priori”)

and the results obtained after choosing the filtering rule. Second, we suggested that the expert user

has to create mapping rules, i.e. s/he has to decide which properties of one data source map to other

properties from another data source. This is again evaluated by the comparison of the expected results

and the ones returned by applying the rule in the system.

After solving these obstacles we were able to offer common users an interface, on one specific

context at a time, where they can search in a property-value perspective and obtain the results in table

format where all the information appears unified - the one that was merged and the remaining information

from each one of the data sources.

According to the users evaluation, we were able to verify that the users workload was reduced, that

the designed interface is not too complex to be understood, although there are still some improvements

55

to be taken into account, and that it is seen as a tool of great usefulness for people who perform searches

daily.

6.1 Contributions

The major achievements of the present work was providing a way to address the Identity Problem,

a way to deal with duplicate information inside a database and the use of metrics to evaluate the rules

created to filter, a manner to map the information from different datasets and an application for users to

test.

The first problem, brought by the new Web era where lots of redundant data is kept in disparate data

sources with different data structures and different identifiers for properties and products, was solved by

the introduction of a Data Curator, an expert user, with enough cognitive ability to compare the schemas

of the available data sources and by the developed mapping tool.

To deal with duplicates it was also the Data Curator the one responsible for creating rules which will

be used to aggregate information that assumes the same values for a set of properties. Similarly, to

map different sources, the Curator user had to create rules that will make a correspondence between

properties of different sources.

To evaluate the system, false positives and true positives were used as metrics. A correlation be-

tween the number of matchings returned by the appliance of a rule and the maximum possible matches

between two sources was also used as metric.

The developed application allow users to search for pharmaceutical products (and cinematographic

works) and get all the information from two different sources in an unified way. Besides being able to

search in the mapped results, the users can also choose to search in each one of the available sets

(source 1, source 2 and mapped source) or in all of them at the same time, this way they will never lose

information even though it may not have been mapped.

6.2 Future Work

Although there were interesting results, there is still some work to be explored in this context. For

example, the last contribution can be used to evaluate mapping rules created automatically by the com-

puter. A semi-automated approach could be developed, where the Data Curator is responsible for the

evaluation of the rules created automatically by the program, which means that he only will have to

decide which rules best suits his necessities.

For an automated approach, the computer computation would be the responsible for creating the

mapping rules based on all possible combinations of existing properties and then, those rules can be

evaluated by the created metric to infer accuracy.

Finally, it would be interesting to add the Good Relations Ontology [31] or other ontologies, already

used for e-commerce, to structure the data from the beginning of the whole process using existing

classifications.

56

Bibliography

[1] S. Brin and L. Page. Reprint of: The anatomy of a large-scale hypertextual web search engine.

Computer Networks, 56:3825–3833, 2012.

[2] H. S. Pinto, A. Gómez-Pérez, and J. P. Martins. Some issues on ontology integration. Proceedings

of IJCAI99’s Workshop on Ontologies and Problem Solving Methods: Lessons Learned and Future

Trends, 1999:1–12, 1999.

[3] D. S. Wishart, C. Knox, A. C. Guo, D. Cheng, S. Shrivastava, D. Tzur, B. Gautam, and M. Hassanali.

DrugBank: A knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Research,

36, 2008.

[4] O. Hassanzadeh and M. Consens. Linked movie data base. In CEUR Workshop Proceedings,

volume 538, 2009.

[5] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives. DBpedia: A nucleus for a

Web of open data. In Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), volume 4825 LNCS, pages 722–735,

2007. ISBN 3540762973.

[6] D. Allemang and J. Hendler. Semantic Web for the Working Ontologist. 2011. ISBN

9780123859655.

[7] N. Shadbolt, W. Hall, and T. Berners-Lee. The semantic web revisited, 2006.

[8] F. Manola, E. Miller, and B. McBride. RDF primer. W3C recommendation, 10(February 2004):

1–107, 2004.

[9] G. Klyne and J. J. Carroll. Resource Description Framework (RDF): Concepts and Abstract Syntax.

W3C Recommendation, 10:1—-20, 2004.

[10] M. Bergman. Advantages and Myths of RDF, 2009.

[11] E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for RDF. W3C Recommendation,

2009:1–106, 2008.

[12] C. Bizer, T. Heath, and T. Berners-Lee. Linked data-the story so far. International journal on

Semantic Web and Information Systems, 2009.

57

[13] T. Berners-Lee. Linked Data. 2006.

[14] J. Volz, C. Bizer, M. Gaedke, and G. Kobilarov. Discovering and maintaining links on the Web

of data. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), volume 5823 LNCS, pages 650–665, 2009. ISBN

364204929X.

[15] B. Alexe, L. Chiticariu, R. J. Miller, and W. C. Tan. Muse: Mapping understanding and design by

example. In Proceedings - International Conference on Data Engineering, pages 10–19, 2008.

ISBN 9781424418374.

[16] L. L. Yan, R. J. Miller, L. M. Haas, and R. Fagin. Data-driven understanding and refinement of

schema mappings. ACM SIGMOD Record, 30:485–496, 2001.

[17] K. Belhajjame, N. W. Paton, S. M. Embury, A. A. Fernandes, and C. Hedeler. Feedback-based

annotation, selection and refinement of schema mappings for dataspaces. EDBT ’10 Proceedings

of the 13th International Conference on Extending Database Technology, pages 573–584, 2010.

[18] H. Cao, Y. Qi, K. S. Candan, and M. L. Sapino. Feedback-driven result ranking and query refinement

for exploring semi-structured data collections. In Proceedings of the 13th International Conference

on Extending Database Technology - EDBT ’10, page 3, 2010. ISBN 9781605589459.

[19] R. McCann, W. Shen, and A. Doan. Matching schemas in online communities: A Web 2.0 approach.

In Proceedings - International Conference on Data Engineering, pages 110–119, 2008. ISBN

9781424418374.

[20] A. Doan, R. Ramakrishnan, F. Chen, and P. DeRose. Community Information Management. IEEE

Data Engineering Bulletin, Special Issue on Probabilistic Databases, 29(1):64–72, 2006.

[21] K. Belhajjame, N. W. Paton, a. a. a. Fernandes, C. Hedeler, and S. M. Embury. User Feedback as

a First Class Citizen in Information Integration Systems. Conference on Innovative Data Systems

Research (CIDR ’11), pages 175–183, 2011.

[22] Y. Raimond, C. Sutton, and M. Sandler. Automatic interlinking of music datasets on the Semantic

Web. CEUR Workshop Proceedings, 369, 2008.

[23] R. Ramezani. SWApriori : A New Approach to Mining Association Rules from Semantic Web Data.

PhD thesis, Isfahan University of Technology, 2012.

[24] R. Ramezani, M. Saraee, and M. A. Nematbakhsh. Finding association rules in linked data, a

centralization approach. 2013 21st Iranian Conference on Electrical Engineering (ICEE), pages

1–6, may 2013.

[25] R. Isele and C. Bizer. Learning expressive linkage rules using genetic programming. Proceedings

of the VLDB Endowment, 5(11):1638–1649, jul 2012.

58

[26] G. Friedrich and K. Shchekotykhin. NameIt: Extraction of product names. Sixth IEEE International

Conference on Data Mining - Workshops (ICDMW’06), pages 29–33, 2006.

[27] H. Köpcke, A. Thor, S. Thomas, and E. Rahm. Tailoring entity resolution for matching product offers.

Proceedings of the 15th International Conference on Extending Database Technology - EDBT ’12,

page 545, 2012.

[28] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American, 284(5):34–43,

2001.

[29] S. Bechhofer, F. Van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F. Patel-Schneider,

and L. A. Stein. OWL Web Ontology Language Reference, 2004.

[30] T. O’Brien, J. Casey, B. Fox, B. Snyder, J. V. Zyl, and E. Redmond. Maven: The Definitive Guide.

2008. ISBN 0596517335.

[31] M. Hepp. GoodRelations: An ontology for describing products and services offers on the web. In

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), volume 5268 LNAI, pages 329–346, 2008. ISBN 3540876952.

59

60

Appendix A

Questionnaires

In this section both the questionnaires for Search and Data Curator users are presented.

61

5/7/2016 Sistema de pesquisa avançada (ASA) ­ Avaliação com Utilizadores Comuns ­ Google Forms

https://docs.google.com/forms/d/1zyf­8FpeHKw­KlJNMujHhFPQE3jxr6GOWgy_bCBMmzU/viewanalytics 1/7

Masculino 9 45%
Feminino 11 55%

20 responses
Publish analytics

Summary

Informação Pessoal

Idade

23

25

21

24

19

27

54

26

22

18

56

53

29

Sexo

Informação Aplicacional

Edit this form

55%

45%

curado.rita@gmail.comA.1 Search User Answers

62

5/7/2016 Sistema de pesquisa avançada (ASA) ­ Avaliação com Utilizadores Comuns ­ Google Forms

https://docs.google.com/forms/d/1zyf­8FpeHKw­KlJNMujHhFPQE3jxr6GOWgy_bCBMmzU/viewanalytics 2/7

Raramente: 1 0 0%
2 0 0%
3 1 5%
4 4 20%

Diariamente: 5 15 75%

Nunca: 1 13 65%
2 5 25%
3 2 10%
4 0 0%

Sempre: 5 0 0%

Com que regularidade faz pesquisas na Internet?

Com que frequência utiliza a opção de "Pesquisa Avançada" no seu motor de
busca?

Que opção de "Pesquisa Avançada" costuma utilizar?

Imagens ­ tamanho

1 2 3 4 5
0.0

3.5

7.0

10.5

14.0

1 2 3 4 5
0

3

6

9

12

63

5/7/2016 Sistema de pesquisa avançada (ASA) ­ Avaliação com Utilizadores Comuns ­ Google Forms

https://docs.google.com/forms/d/1zyf­8FpeHKw­KlJNMujHhFPQE3jxr6GOWgy_bCBMmzU/viewanalytics 3/7

Sim 19 95%
Não 1 5%

pesquisa por iumagens

imagem/tamanho grande

Imagens e Fundo Transparente

imagens tamanho; usage rights

tamanho de imagem

Avaliação da aplicação ASA

A forma como os dados lhe foram apresentados foi suficiente para a realização
das tarefas?

Se não, que informação adicional gostaria de ter tido?

Um indice para saber previamente onde está cada opção. Página informativa (a 2ª)
pouco util. Explicação do que consistem as "mapping rules" e o "search criteria".

mais informação direcional

Na sua opinião as tarefas pedidas foram difíceis?

Tarefa 1 ­ Pesquisa Simples

95%

1 2 3 4 5
0.0

2.5

5.0

7.5

10.0

64

5/7/2016 Sistema de pesquisa avançada (ASA) ­ Avaliação com Utilizadores Comuns ­ Google Forms

https://docs.google.com/forms/d/1zyf­8FpeHKw­KlJNMujHhFPQE3jxr6GOWgy_bCBMmzU/viewanalytics 4/7

Muito difícil: 1 0 0%
2 0 0%
3 1 5%
4 7 35%

Muito fácil: 5 12 60%

Muito difícil: 1 0 0%
2 1 5%
3 3 15%
4 13 65%

Muito fácil: 5 3 15%

Muito difícil: 1 0 0%
2 0 0%
3 6 30%

Tarefa 2 ­ Mapeamento

Tarefa 3 ­ Pesquisa Complexa

1 2 3 4 5
0

3

6

9

12

1 2 3 4 5
0

2

4

6

8

10

65

5/7/2016 Sistema de pesquisa avançada (ASA) ­ Avaliação com Utilizadores Comuns ­ Google Forms

https://docs.google.com/forms/d/1zyf­8FpeHKw­KlJNMujHhFPQE3jxr6GOWgy_bCBMmzU/viewanalytics 5/7

4 10 50%
Muito fácil: 5 4 20%

1 12 60%
2 5 25%
3 3 15%

Desnecessária: 1 0 0%
2 0 0%
3 1 5%
4 15 75%

Essencial: 5 4 20%

Qual foi a tarefa que demorou mais tempo a realizar?

Tendo em conta o objectivo final do sistema, o que pensa da sua utilidade?

Em que equipamentos acha que este sistema devería estar disponível?

15%

25%

60%

1 2 3 4 5
0.0

3.5

7.0

10.5

14.0

0 4 8 12 16

Computer

Tablet

Smarthphone

Other

66

5/7/2016 Sistema de pesquisa avançada (ASA) ­ Avaliação com Utilizadores Comuns ­ Google Forms

https://docs.google.com/forms/d/1zyf­8FpeHKw­KlJNMujHhFPQE3jxr6GOWgy_bCBMmzU/viewanalytics 6/7

Computer 19 95%
Tablet 18 90%

Smarthphone 19 95%
Other 1 5%

Sugestões

Na sua opinião, quais fontes de dados seríam interessantes explorar com esta
ferramenta?

Dados de produtos tecnológicos, calçado, material de desporto, carros

Lojas de material informático, escolar, etc. julgo ser uma ferramenta que se enquadra
com qualquer tipo de pesquisa.

Em qualquer produto que não seja unico

material informático. Produtos alimentares

Aplicações relacionadas com venda de produtos alimentares

Produtos de tecnologia, i.e computadores, telemoveis, tablets, etc..

Telemóveis

classificação de mercadorias, classificação de empresas

artigos académicos

Dados sobre desporto

Dados veterinários

Não só os dados dos medicamentos mas também dos médicos e doentes.

Que alterações faría na interface que lhe foi apresentada?

Mostraria um índice das páginas existentes, highlight no campo do valor da pesquisa e
apresentação da tabela final (3 tabelas ou tentar evitar colunas repetidas)

Mais explicativa, e mais apelativa visualmente.

Simplificar

No mapeamento a informação pode ser um bocado confusa. E mudar o nome das
regras

Na pesquisa complexa a opcao sources deveria explicar que se trata de 3 modos de
vista relativamente ao mapeamento realizado

Nomear mais evidentemente as várias páginas

No mapeamento, retirar o botão de confirmação.

apresentação tabelas e os nomes das propriedades mais simplicados

Em vez de um botão para a Label, um hover listener

67

5/7/2016 Sistema de pesquisa avançada (ASA) ­ Avaliação com Curadores de Dados ­ Google Forms

https://docs.google.com/forms/d/11rdO­gPU_4tADoZT­vgfKTy2ieMtckmhjYkpwdOeEWk/viewanalytics 1/7

Masculino 12 60%
Feminino 8 40%

20 responses
Publish analytics

Summary

Informação Pessoal

Idade

24

23

25

26

21

27

54

29

33

18

22

20

Sexo

Informação Técnica e Aplicacional

Edit this form

40%

60%

curado.rita@gmail.comA.2 Data Curator Answers

68

5/7/2016 Sistema de pesquisa avançada (ASA) ­ Avaliação com Curadores de Dados ­ Google Forms

https://docs.google.com/forms/d/11rdO­gPU_4tADoZT­vgfKTy2ieMtckmhjYkpwdOeEWk/viewanalytics 2/7

Sim 17 85%
Não 3 15%

Raramente: 1 0 0%
2 0 0%
3 0 0%
4 4 20%

Diariamente: 5 16 80%

Já trabalhou com algum tipo de sistema de Base de Dados?

Com que regularidade faz pesquisas na Internet?

Com que frequência utiliza a opção de "Pesquisa Avançada" no seu motor de
busca?

15%

85%

1 2 3 4 5
0

4

8

12

16

1 2 3 4 5
0

3

6

9

12

69

5/7/2016 Sistema de pesquisa avançada (ASA) ­ Avaliação com Curadores de Dados ­ Google Forms

https://docs.google.com/forms/d/11rdO­gPU_4tADoZT­vgfKTy2ieMtckmhjYkpwdOeEWk/viewanalytics 3/7

Nunca: 1 13 65%

2 4 20%
3 3 15%
4 0 0%

Sempre: 5 0 0%

Sim 19 95%
Não 1 5%

Que opção de "Pesquisa Avançada" costuma utilizar?

Imagens ­ tamanho

Pesquisa de imagens

Imagem/Tamanho grande

Imagens e Fundo Transparente

imagens tamanho e usage rights

size image

Avaliação da aplicação ASA

A forma como os dados lhe foram apresentados foi suficiente para a realização
das tarefas?

Se não, que informação adicional gostaria de ter tido?

Um indice no inicio, e explicações sobre cada uma das opções.

Na sua opinião as tarefas pedidas foram difíceis?

Tarefa 1 ­ Equivalência de propriedades

95%

70

5/7/2016 Sistema de pesquisa avançada (ASA) ­ Avaliação com Curadores de Dados ­ Google Forms

https://docs.google.com/forms/d/11rdO­gPU_4tADoZT­vgfKTy2ieMtckmhjYkpwdOeEWk/viewanalytics 4/7

Muito difícil: 1 0 0%
2 0 0%
3 1 5%
4 8 40%

Muito fácil: 5 11 55%

Muito difícil: 1 0 0%
2 0 0%
3 5 25%
4 7 35%

Muito fácil: 5 8 40%

Tarefa 2 ­ Filtragem

Tarefa 3 ­ Mapeamento

1 2 3 4 5
0.0

2.5

5.0

7.5

10.0

1 2 3 4 5
0

2

4

6

8

71

5/7/2016 Sistema de pesquisa avançada (ASA) ­ Avaliação com Curadores de Dados ­ Google Forms

https://docs.google.com/forms/d/11rdO­gPU_4tADoZT­vgfKTy2ieMtckmhjYkpwdOeEWk/viewanalytics 5/7

Muito difícil: 1 0 0%
2 1 5%
3 7 35%
4 11 55%

Muito fácil: 5 1 5%

1 6 30%
2 5 25%
3 9 45%

Desnecessária: 1 0 0%
2 0 0%
3 0 0%
4 16 80%

Essencial: 5 4 20%

Qual foi a tarefa que demorou mais tempo a realizar?

Tendo em conta o objectivo final do sistema, o que pensa da sua utilidade?

Em que equipamentos acha que este sistema devería estar disponível?

1 2 3 4 5
0.0

2.5

5.0

7.5

10.0

45%

25%
30%

1 2 3 4 5
0

4

8

12

16

72

5/7/2016 Sistema de pesquisa avançada (ASA) ­ Avaliação com Curadores de Dados ­ Google Forms

https://docs.google.com/forms/d/11rdO­gPU_4tADoZT­vgfKTy2ieMtckmhjYkpwdOeEWk/viewanalytics 6/7

Computer 16 80%
Tablet 14 70%

Smarthphone 19 95%
Other 0 0%

Sugestões

Na sua opinião, quais fontes de dados seríam interessantes explorar com esta
ferramenta?

Material tecnológico e de desporto, carros, calçado

Todas as áreas

Em qualquer produto que existam equiparados

material informático, produtos alimentares

Aplicações de produtos desportivos

Produtos de Tecnologia

Telemóveis

classificação de mercadorias e de empresas

artigos académicos

Que alterações faría na interface que lhe foi apresentada?

O botão NEXT e CREATE na página de filtragem

mais apelativa e explicativa.

Simplificar

legendas no mapeamento

Maior identificações de páginas

Na Regra de Filtragem, o botão de create devia estar abaixo da regra.

identificar automaticamente que sources estou a mapear através da regra que crio

Outras sugestões

0 4 8 12 16

Computer

Tablet

Smarthphone

Other

73

74

	Acknowledgments
	Abstract
	Resumo
	List of Tables
	List of Figures
	Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Challenges
	1.2.1 Identity Problem
	1.2.2 Mapping Problem
	1.2.3 Duplicated Data Problem

	1.3 Solution Overview
	1.4 Use Case Scenarios
	1.4.1 Pharmaceutical Products
	1.4.2 Cinematographic Works

	1.5 Contributions
	1.5.1 Document Structure

	2 Background
	2.1 The Semantic Web
	2.2 Resource Description Framework
	2.3 SPARQL Protocol And RDF Query Language
	2.4 Linked Data
	2.5 Linked Open Data Project
	2.6 Summary

	3 Related Work
	3.1 Manual Approach
	3.2 Deterministic Approach
	3.3 Heuristic Approach
	3.4 Probabilistic Approach
	3.5 Summary

	4 Solution
	4.1 Architecture
	4.2 Technologies
	4.3 Implementation
	4.3.1 Gather information
	4.3.2 Filter information to remove duplicate values
	4.3.3 Map entities based on similarity
	4.3.4 Perform searches

	5 Evaluation
	5.1 Pharmaceutical Scenario
	5.1.1 Filtering Data
	5.1.2 Filtering Data From a Second Data Source
	5.1.3 Mapping Data From Two Data Sources

	5.2 Cinematographic Scenario
	5.3 User Validation
	5.3.1 Data Curator Users
	5.3.1.1 Task 1. Pair Properties
	5.3.1.2 Task 2. Filter Data Sources
	5.3.1.3 Task 3. Map Data Sources

	5.3.2 End-users
	5.3.2.1 Task 1. Simple Search
	5.3.2.2 Task 2. Map Disparate Data Sources
	5.3.2.3 Task 3. Complex Search

	6 Conclusion
	6.1 Contributions
	6.2 Future Work

	Bibliography
	A Questionnaires
	A.1 Search User Answers
	A.2 Data Curator Answers

