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ABSTRACT 
 
Hedge funds provide an opportunity for investing with few government regulations and 
high potential returns.  Since 1980 this has lead to a dramatic 25% annual increase in the 
number of hedge funds, with nearly $700 billion managed by hedge funds in 2003.  
However, high risks associated with hedge fund strategies, competition and limited 
arbitrage opportunities contributed to an annual attrition rate of 7.10%.  In this thesis, 
models were developed and tested that describe the characteristics of fund returns, fund 
flows, optimal size and hedge fund life cycles. The TASS hedge fund database provided 
by the Tremont Company was used for analysis.   In Essay One, it was found that hedge 
fund returns are highly serially correlated compared to the returns of more traditional 
investment vehicles such as mutual funds.  Several sources of such high serial correlation 
were explored and the research illustrated that the most likely explanation of this derived 
from asset illiquidity and smoothing of returns.  Illiquid securities are not actively traded 
and market prices are not always available for them.  In the case of smoothing, brokers or 
managers have the flexibility to report partial returns.  Consequently, for portfolios of 
illiquid or smoothed securities, reported returns will tend to be smoother than true 
economic returns, thereby understating volatility and increasing risk-adjusted 
performance measures such as the Sharpe ratio.  An econometric model of illiquidity 
exposure was further proposed and estimators for the smoothing profile as well as a 
smoothing-adjusted Sharpe ratio were developed.  Estimated smoothing coefficients were 
found to vary considerably across hedge-fund style categories and may be a useful proxy 
for quantifying illiquidity exposure.  In Essay Two, the life cycles of hedge funds were 
analyzed.  The findings show that in general, investors chasing individual fund 
performance decrease the probability of an individual hedge fund liquidating. However, 
when investors pursue a category of hedge funds that has performed well, the probability 
of hedge funds liquidating within that category increases because of growing competition 
among hedge funds; and in such environment, marginal funds are more likely to be 
liquidated than funds that deliver superior risk-adjusted returns.  In the Essay, a model 
was proposed for calculating an optimal asset size by balancing out the effects of past 
returns, fund flows, market impact, competition and favorable category positioning.  
 
Thesis Co-Supervisor: John D. Sterman Thesis Co-Supervisor: Andrew W. Lo 
Title: Professor of Management Science Title: Professor of Finance 
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An Econometric Model of

Serial Correlation and Illiquidity

In Hedge Fund Returns

Mila Getmansky, Andrew W. Lo, and Igor Makarov

Abstract

The returns to hedge funds and other alternative investments are often highly serially cor-
related, in sharp contrast to the returns of more traditional investment vehicles such as
long-only equity portfolios and mutual funds. In this paper, we explore several sources of
such serial correlation and show that the most likely explanation is illiquidity exposure,
i.e., investments in securities that are not actively traded and for which market prices are
not always readily available. For portfolios of illiquid securities, reported returns will tend
to be smoother than true economic returns, which will understate volatility and increase
risk-adjusted performance measures such as the Sharpe ratio. We propose an economet-
ric model of illiquidity exposure and develop estimators for the smoothing profile as well
as a smoothing-adjusted Sharpe ratio. For a sample of 908 hedge funds drawn from the
TASS database, we show that our estimated smoothing coefficients vary considerably across
hedge-fund style categories and may be a useful proxy for quantifying illiquidity exposure.
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1 Introduction

One of the fastest growing sectors of the financial services industry is the hedge-fund or

“alternative investments” sector. Long the province of foundations, family offices, and high-

net-worth investors, hedge funds are now attracting major institutional investors such as

large state and corporate pension funds and university endowments, and efforts are underway

to make hedge-fund investments available to individual investors through more traditional

mutual-fund investment vehicles. One of the main reasons for such interest is the performance

characteristics of hedge funds—often known as “high-octane” investments, many hedge funds

have yielded double-digit returns to their investors and, in some cases, in a fashion that seems

uncorrelated with general market swings and with relatively low volatility. Most hedge

funds accomplish this by maintaining both long and short positions in securities—hence the

term “hedge” fund—which, in principle, gives investors an opportunity to profit from both

positive and negative information while, at the same time, providing some degree of “market

neutrality” because of the simultaneous long and short positions.

However, several recent empirical studies have challenged these characterizations of hedge-

fund returns, arguing that the standard methods of assessing their risks and rewards may

be misleading. For example, Asness, Krail and Liew (2001) show in some cases where hedge

funds purport to be market neutral, i.e., funds with relatively small market betas, including

both contemporaneous and lagged market returns as regressors and summing the coefficients

yields significantly higher market exposure. Moreover, in deriving statistical estimators for

Sharpe ratios of a sample of mutual and hedge funds, Lo (2002) shows that the correct

method for computing annual Sharpe ratios based on monthly means and standard devia-

tions can yield point estimates that differ from the naive Sharpe ratio estimator by as much

as 70%.

These empirical properties may have potentially significant implications for assessing the

risks and expected returns of hedge-fund investments, and can be traced to a single common

source: significant serial correlation in their returns.

This may come as some surprise because serial correlation is often (though incorrectly)

associated with market inefficiencies, implying a violation of the Random Walk Hypothe-
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sis and the presence of predictability in returns. This seems inconsistent with the popular

belief that the hedge-fund industry attracts the best and the brightest fund managers in

the financial services sector. In particular, if a fund manager’s returns are predictable, the

implication is that the manager’s investment policy is not optimal; if his returns next month

can be reliably forecasted to be positive, he should increase his positions this month to take

advantage of this forecast, and vice versa for the opposite forecast. By taking advantage of

such predictability the fund manager will eventually eliminate it, along the lines of Samuel-

son’s (1965) original “proof that properly anticipated prices fluctuate randomly”. Given

the outsize financial incentives of hedge-fund managers to produce profitable investment

strategies, the existence of significant unexploited sources of predictability seems unlikely.

In this paper, we argue that in most cases, serial correlation in hedge-fund returns is not

due to unexploited profit opportunities, but is more likely the result of illiquid securities that

are contained in the fund, i.e., securities that are not actively traded and for which market

prices are not always readily available. In such cases, the reported returns of funds con-

taining illiquid securities will appear to be smoother than “true” economic returns—returns

that fully reflect all available market information concerning those securities—and this, in

turn, will impart a downward bias on the estimated return variance and yield positive serial

return correlation. The prospect of spurious serial correlation and biased sample moments

in reported returns is not new. Such effects have been derived and empirically documented

extensively in the literature on “nonsynchronous trading”, which refers to security prices

recorded at different times but which are erroneously treated as if they were recorded simul-

taneously.1 However, this literature has focused exclusively on equity market-microstructure

1 For example, the daily prices of financial securities quoted in the Wall Street Journal are usually
“closing” prices, prices at which the last transaction in each of those securities occurred on the previous
business day. If the last transaction in security A occurs at 2:00pm and the last transaction in security B
occurs at 4:00pm, then included in B’s closing price is information not available when A’s closing price was
set. This can create spurious serial correlation in asset returns since economy-wide shocks will be reflected
first in the prices of the most frequently traded securities, with less frequently traded stocks responding with
a lag. Even when there is no statistical relation between securities A and B, their reported returns will
appear to be serially correlated and cross-correlated simply because we have mistakenly assumed that they
are measured simultaneously. One of the first to recognize the potential impact of nonsynchronous price
quotes was Fisher (1966). Since then more explicit models of non-trading have been developed by Atchison,
Butler, and Simonds (1987), Dimson (1979), Cohen, Hawawini, et al. (1983a,b), Shanken (1987), Cohen,
Maier, et al. (1978, 1979, 1986), Kadlec and Patterson (1999), Lo and MacKinlay (1988, 1990), and Scholes
and Williams (1977). See Campbell, Lo, and MacKinlay (1997, Chapter 3) for a more detailed review of this
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effects as the sources of nonsynchronicity—closing prices that are set at different times, or

prices that are “stale”—where the temporal displacement is on the order of minutes, hours,

or, in extreme cases, several days.2 In the context of hedge funds, we argue in this paper that

serial correlation is the outcome of illiquidity exposure, and while nonsynchronous trading

may be one symptom or by-product of illiquidity, it is not the only aspect of illiquidity that

affects hedge-fund returns. Even if prices were sampled synchronously, they may still yield

highly serially correlated returns if the securities are not actively traded.3 Therefore, al-

though our formal econometric model of illiquidity is similar to those in the nonsynchronous

trading literature, the motivation is considerably broader—linear extrapolation of prices for

thinly traded securities, the use of smoothed broker-dealer quotes, trading restrictions aris-

ing from control positions and other regulatory requirements, and, in some cases, deliberate

performance-smoothing behavior—and the corresponding interpretations of the parameter

estimates must be modified accordingly.

Regardless of the particular mechanism by which hedge-fund returns are smoothed and

serial correlation is induced, the common theme and underlying driver is illiquidity expo-

sure, and although we argue that the sources of serial correlation are spurious for most hedge

funds, nevertheless, the economic impact of serial correlation can be quite real. For example,

spurious serial correlation yields misleading performance statistics such as volatility, Sharpe

ratio, correlation, and market beta estimates, statistics commonly used by investors to deter-

mine whether or not they will invest in a fund, how much capital to allocate to a fund, what

kinds of risk exposures they are bearing, and when to redeem their investments. Moreover,

spurious serial correlation can lead to wealth transfers between new, existing, and departing

investors, in much the same way that using stale prices for individual securities to compute

mutual-fund net-asset-values can lead to wealth transfers between buy-and-hold investors

and day-traders (see, for example, Boudoukh et al., 2002).

In this paper, we develop an explicit econometric model of smoothed returns and derive

literature.
2For such application, Lo and MacKinlay (1988, 1990) and Kadlec and Patterson (1999) show that

nonsynchronous trading cannot explain all of the serial correlation in weekly returns of equal- and value-
weighted portfolios of US equities during the past three decades.

3In fact, for most hedge funds, returns computed on a monthly basis, hence the pricing or “mark-to-
market” of a fund’s securities typically occurs synchronously on the last day of the month.
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its implications for common performance statistics such as the mean, standard deviation,

and Sharpe ratio. We find that the induced serial correlation and impact on the Sharpe

ratio can be quite significant even for mild forms of smoothing. We estimate the model

using historical hedge-fund returns from the TASS Database, and show how to infer the true

risk exposures of a smoothed fund for a given smoothing profile. Our empirical findings are

quite intuitive: funds with the highest serial correlation tend to be the more illiquid funds,

e.g., emerging market debt, fixed income arbitrage, etc., and after correcting for the effects

of smoothed returns, some of the most successful types of funds tend to have considerably

less attractive performance characteristics.

Before describing our econometric model of smoothed returns, we provide a brief literature

review in Section 2 and then consider other potential sources of serial correlation in hedge-

fund returns in Section 3. We show that these other alternatives—time-varying expected

returns, time-varying leverage, and incentive fees with high-water marks—are unlikely to be

able to generate the magnitudes of serial correlation observed in the data. We develop a

model of smoothed returns in Section 4 and derive its implications for serial correlation in

observed returns, and we propose several methods for estimating the smoothing profile and

smoothing-adjusted Sharpe ratios in Section 5. We apply these methods to a dataset of 909

hedge funds spanning the period from November 1977 to January 2001 and summarize our

findings in Section 6, and conclude in Section 7.

2 Literature Review

Thanks to the availability of hedge-fund returns data from sources such as AltVest, Hedge

Fund Research (HFR), Managed Account Reports (MAR), and TASS, a number of empirical

studies of hedge funds have been published recently. For example, Ackermann, McEnally,

and Ravenscraft (1999), Agarwal and Naik (2000b, 2000c), Edwards and Caglayan (2001),

Fung and Hsieh (1999, 2000, 2001), Kao (2002), and Liang (1999, 2000, 2001) provide

comprehensive empirical studies of historical hedge-fund performance using various hedge-

fund databases. Agarwal and Naik (2000a), Brown and Goetzmann (2001), Brown, Goet-

zmann, and Ibbotson (1999), Brown, Goetzmann, and Park (1997, 2000, 2001), Fung and
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Hsieh (1997a, 1997b), and Lochoff (2002) present more detailed performance attribution and

“style” analysis for hedge funds. None of these empirical studies focus directly on the serial

correlation in hedge-fund returns or the sources of such correlation.

However, several authors have examined the persistence of hedge-fund performance over

various time intervals, and such persistence may be indirectly linked to serial correlation,

e.g., persistence in performance usually implies positively autocorrelated returns. Agarwal

and Naik (2000c) examine the persistence of hedge-fund performance over quarterly, half-

yearly, and yearly intervals by examining the series of wins and losses for two, three, and

more consecutive time periods. Using net-of-fee returns, they find that persistence is highest

at the quarterly horizon and decreases when moving to the yearly horizon. The authors also

find that performance persistence, whenever present, is unrelated to the type of a hedge fund

strategy. Brown, Goetzmann, Ibbotson, and Ross (1992) show that survivorship gives rise

to biases in the first and second moments and cross-moments of returns, and apparent per-

sistence in performance where there is dispersion of risk among the population of managers.

However, using annual returns of both defunct and currently operating offshore hedge funds

between 1989 and 1995, Brown, Goetzmann, and Ibbotson (1999) find virtually no evidence

of performance persistence in raw returns or risk-adjusted returns, even after breaking funds

down according to their returns-based style classifications. None of these studies considers

illiquidity and smoothed returns as a source of serial correlation in hedge-fund returns.

The findings by Asness, Krail, and Liew (2001)—that lagged market returns are often

significant explanatory variables for the returns of supposedly market-neutral hedge funds—is

closely related to serial correlation and smoothed returns, as we shall demonstrate in Section

4. In particular, we show that even simple models of smoothed returns can explain both serial

correlation in hedge-fund returns and correlation between hedge-fund returns and lagged

index returns, and our empirically estimated smoothing profiles imply lagged beta coefficients

that are consistent with the lagged beta estimates reported in Asness, Krail, and Liew

(2001). Their framework is derived from the nonsynchronous trading literature, specifically

the estimators for market beta for infrequently traded securities proposed by Dimson (1977),

Scholes and Williams (1977), and Schwert (1977) (see footnote 1 for additional references to

this literature). A similar set of issues affects real-estate prices and price indexes, and Ross
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and Zisler (1991), Gyourko and Keim (1992), Fisher, Geltner, and Webb (1994), and Fisher

et al. (2003), have proposed various econometric estimators that have much in common with

those in the nonsynchronous trading literature.

An economic implication of nonsynchronous trading that is closely related to the hedge-

fund context is the impact of stale prices on the computation of daily net-asset-values (NAVs)

of certain open-end mutual funds, e.g., Bhargava, Bose and Dubofsky (1998), Chalmers, Ede-

len, and Kadlec (2001), Goetzmann, Ivkovic, and Rouwenhorst (2001), Boudoukh et al. (2002),

Greene and Hodges (2002), and Zitzewitz (2002). In these studies, serially correlated mutual

fund returns are traced to nonsynchronous trading effects in the prices of the securities con-

tained in the funds, and although the correlation is spurious, it has real effects in the form of

wealth transfers from a fund’s buy-and-hold shareholders to those engaged in opportunistic

buying and selling of shares based on forecasts of the fund’s daily NAVs. Although few hedge

funds compute daily NAVs or provide daily liquidity, the predictability in some hedge-fund

return series far exceeds levels found among mutual funds, hence the magnitude of wealth

transfers attributable to hedge-fund NAV-timing may still be significant.

With respect to the deliberate smoothing of performance by managers, a recent study of

closed-end funds by Chandar and Bricker (2002) concludes that managers seem to use ac-

counting discretion in valuing restricted securities so as to optimize fund returns with respect

to a passive benchmark. Because mutual funds are highly regulated entities that are required

to disclose considerably more information about their holdings than hedge funds, Chandar

and Bricker (2002) were able to perform a detailed analysis of the periodic adjustments—

both discretionary and non-discretionary—that fund managers made to the valuation of their

restricted securities. Their findings suggest that performance smoothing may be even more

relevant in the hedge-fund industry which is not nearly as transparent, and that economet-

ric models of smoothed returns may be an important tool for detecting such behavior and

unraveling its effects on true economic returns.
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3 Other Sources of Serial Correlation

Before turning to our econometric model of smoothed returns in Section 4, we first consider

four other potential sources of serial correlation in asset returns: (1) market inefficiencies;

(2) time-varying expected returns; (3) time-varying leverage; and (4) incentive fees with high

water marks.

Perhaps the most common explanation (at least among industry professionals and certain

academics) for the presence of serial correlation in asset returns is a violation of the Efficient

Markets Hypothesis, one of the central pillars of modern finance theory. As with so many

of the ideas of modern economics, the origins of the Efficient Markets Hypothesis can be

traced back to Paul Samuelson (1965), whose contribution is neatly summarized by the

title of his article: “Proof that Properly Anticipated Prices Fluctuate Randomly”. In an

informationally efficient market, price changes must be unforecastable if they are properly

anticipated, i.e., if they fully incorporate the expectations and information of all market

participants. Fama (1970) operationalizes this hypothesis, which he summarizes in the well-

known epithet “prices fully reflect all available information”, by placing structure on various

information sets available to market participants. This concept of informational efficiency has

a wonderfully counter-intuitive and seemingly contradictory flavor to it: the more efficient

the market, the more random the sequence of price changes generated by such a market,

and the most efficient market of all is one in which price changes are completely random and

unpredictable. This, of course, is not an accident of Nature but is the direct result of many

active participants attempting to profit from their information. Unable to curtail their greed,

an army of investors aggressively pounce on even the smallest informational advantages at

their disposal, and in doing so, they incorporate their information into market prices and

quickly eliminate the profit opportunities that gave rise to their aggression. If this occurs

instantaneously, which it must in an idealized world of “frictionless” markets and costless

trading, then prices must always fully reflect all available information and no profits can be

garnered from information-based trading (because such profits have already been captured).

In the context of hedge-fund returns, one interpretation of the presence of serial corre-

lation is that the hedge-fund manager is not taking full advantage of the information or
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“alpha” contained in his strategy. For example, if a manager’s returns are highly positively

autocorrelated, then it should be possible for him to improve his performance by exploiting

this fact—in months where his performance is good, he should increase his bets in anticipa-

tion of continued good performance (due to positive serial correlation), and in months where

his performance is poor, he should reduce his bets accordingly. The reverse argument can be

made for the case of negative serial correlation. By taking advantage of serial correlation of

either sign in his returns, the hedge-fund manager will eventually eliminate it along the lines

of Samuelson (1965), i.e., properly anticipated hedge-fund returns should fluctuate randomly.

And if this self-correcting mechanism of the Efficient Markets Hypothesis is at work among

any group of investors in the financial community, it surely must be at work among hedge-

fund managers, which consists of a highly trained, highly motivated, and highly competitive

group of sophisticated investment professionals.

Of course, the natural counter-argument to this somewhat naive application of the Effi-

cient Markets Hypothesis is that hedge-fund managers cannot fully exploit such serial cor-

relation because of transactions costs and liquidity constraints. But once again, this leads

to the main thesis of this paper: serial correlation is a proxy for illiquidity and smoothed

returns.

There are, however, at least three additional explanations for the presence of serial cor-

relation. One of the central tenets of modern financial economics is the necessity of some

trade-off between risk and expected return, hence serial correlation may not be exploitable

in the sense that an attempt to take advantage of predictabilities in fund returns might be

offset by corresponding changes in risk, leaving the fund manager indifferent at the margin

between his current investment policy and other alternatives. Specifically, LeRoy (1973),

Rubinstein (1976), and Lucas (1978) have demonstrated conclusively that serial correlation

in asset returns need not be the result of market inefficiencies, but may be the result of

time-varying expected returns, which is perfectly consistent with the Efficient Markets Hy-

pothesis.4 If an investment strategy’s required expected return varies through time—because

4Grossman (1976) and Grossman and Stiglitz (1980) go even further. They argue that perfectly informa-
tionally efficient markets are an impossibility, for if markets are perfectly efficient, the return to gathering
information is nil, in which case there would be little reason to trade and markets would eventually col-
lapse. Alternatively, the degree of market inefficiency determines the effort investors are willing to expend
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of changes in its risk exposures, for example—then serial correlation may be induced in real-

ized returns without implying any violation of market efficiency (see Figure 1). We examine

this possibility more formally in Section 3.1.
R
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Figure 1: Time-varying expected returns can induce serial correlation in asset returns.

Another possible source of serial correlation in hedge-fund returns is time-varying lever-

age. If managers change the degree to which they leverage their investment strategies, and

if these changes occur in response to lagged market conditions, this is tantamount to time-

varying expected returns. We consider this case in Section 3.2.

Finally, we investigate one more potential explanation for serial correlation: the compen-

sation structure of the typical hedge fund. Because most hedge funds charge an incentive

fee coupled with a “high water mark” that must be surpassed before incentive fees are paid,

this path dependence in the computation for net-of-fee returns may induce serial correlation.

We develop a formal model of this phenomenon in Section 3.3.

The analysis of Sections 3.1–3.3 show that time-varying expected returns, time-varying

leverage, and incentive fees with high water marks can all generate serial correlation in

to gather and trade on information, hence a non-degenerate market equilibrium will arise only when there
are sufficient profit opportunities, i.e., inefficiencies, to compensate investors for the costs of trading and
information-gathering. The profits earned by these attentive investors may be viewed as economic rents that
accrue to those willing to engage in such activities. Who are the providers of these rents? Black (1986) gives
a provocative answer: noise traders, individuals who trade on what they think is information but is in fact
merely noise.
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hedge-fund returns, but none of these effects can plausibly generate serial correlation to the

degree observed in the data, e.g., 30% to 50% for monthly returns. Therefore, illiquidity and

smoothed returns are more likely sources of serial correlation in hedge-fund returns.

3.1 Time-Varying Expected Returns

Let Rt denote a hedge fund’s return in month t, and suppose that its dynamics are given by

the following time-series process:

Rt = µ1 It + µ0 (1− It) + εt (1)

where εt is assumed to be independently and identically distributed (IID) with mean 0 and

variance σ2
ε , and It is a two-state Markov process with transition matrix:

P ≡



It+1 =1 It+1 =0

It =1 p 1− p

It =0 1− q q


 (2)

and µ0 and µ1 are the equilibrium expected returns of fund i in states 0 and 1, respectively.

This is a particularly simple model of time-varying expected returns in which we abstract

from the underlying structure of the economy that gives rise to (1), but focus instead on

the serial correlation induced by the Markov regime-switching process (2).5 In particular,

observe that

P k =
1

2−p−q


 1−q 1−p

1−q 1−p


 +

(p + q−1)k

2−p−q


 1−p −(1−p)

−(1−q) 1−q


 (3)

5For examples of dynamic general equilibrium models that yield a Markov-switching process for asset
prices, and econometric methods to estimate such processes, see Cecchetti and Mark (1990), Goodwin
(1993), Hamilton (1989, 1990, 1996), Kandel and Stambaugh (1991), and Turner, Startz, and Nelson (1989).
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assuming that |p + q−1| < 1, hence the steady-state probabilities and moments for the

regime-switching process It are:

P∞ =


 π1

π0


 =




1−q
2−p−q

1−p
2−p−q


 (4)

E[It] =
1−q

2−p−q
(5)

Var[It] =
(1−p)(1−q)

(2−p−q)2
(6)

These, in turn, imply the following moments for Rt:

E[Rt] = µ1
1−q

2−p−q
+ µ0

1−p

2−p−q
(7)

Var[Rt] = (µ1−µ0)
2 (1−p)(1−q)

(2−p−q)2
+ σ2

εi
(8)

ρk ≡ Corr[Rt−k, Rt] =
(p+q−1)k

1 + σ2
ε /

[
(µ1−µ0)2 (1−p)(1−q)

(2−p−q)2

] (9)

By calibrating the parameters µ1, µ0, p, q, and σ2
ε to empirically plausible values, we can

compute the serial correlation induced by time-varying expected returns using (9).

Observe from (9) that the serial correlation of returns depends on the squared difference

of expected returns, (µ1−µ0)
2, not on the particular values in either regime. Moreover, the

absolute magnitudes of the autocorrelation coefficients ρk are monotonically increasing in

(µ1−µ0)
2—the larger the difference in expected returns between the two states, the more

serial correlation is induced. Therefore, we begin our calibration exercise by considering an

extreme case where |µ1−µ0| is 5% per month, or 60% per year, which yields rather dramatic

shifts in regimes. To complete the calibration exercise, we fix the unconditional variance of

returns at a particular value, say (20%)2/12 (which is comparable to the volatility of the S&P

500 over the past 30 years), vary p and q, and solve for the values of σ2
ε that are consistent

with the values of p, q, (µ1−µ0)
2, and the unconditional variance of returns.

The top panel of Table 1 reports the first-order autocorrelation coefficients for various
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values of p and q under these assumptions, and we see that even in this most extreme

case, the largest absolute magnitude of serial correlation is only 15%. The second panel

of Table 1 shows that when the unconditional variance of returns is increased from 20% to

50% per year, the correlations decline in magnitude with the largest absolute correlation

of 2.4%. And the bottom panel illustrates the kind of extreme parameter values needed to

obtain autocorrelations that are empirically relevant for hedge-fund returns—a difference in

expected returns of 20% per month or 240% per year, and probabilities p and q that are

either both 80% or higher, or both 20% or lower. Given the implausibility of these parameter

values, we conclude that time-varying expected returns—at least of this form—may not be

the most likely explanation for serial correlation in hedge-fund returns.

3.2 Time-Varying Leverage

Another possible source of serial correlation in hedge-fund returns is time-varying leverage.

Since leverage directly affects the expected return of any investment strategy, this can be

considered a special case of the time-varying expected returns model of Section 3.1. Specif-

ically, if Lt denotes a hedge fund’s leverage ratio, then the actual return Ro
t of the fund at

date t is given by:

Ro
t = Lt Rt (10)

where Rt is the fund’s unlevered return.6 For example if a fund’s unlevered strategy yields a

2% return in a given month, but 50% of the funds are borrowed from various counterparties

at fixed borrowing rates, the return to the fund’s investors is approximately 4%,7 hence the

leverage ratio is 2.

The specific mechanisms by which a hedge fund determines its leverage can be quite

complex and often depend on a number of factors including market volatility, credit risk,

6For simplicity, and with little loss in generality, we have ignored the borrowing costs associated with
leverage in our specification (10). Although including such costs will obviously reduce the net return, the
serial correlation properties will be largely unaffected because the time variation in borrowing rates is not
significant relative to Rt and Lt.

7Less the borrowing rate, of course, which we assume is 0 for simplicity.
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ρ1
q (%)

(%) 10 20 30 40 50 60 70 80 90

|µ1−µ0 | = 5% , Var[Rt] = (20%)2/12

10 −15.0 −13.1 −11.1 −9.0 −6.9 −4.8 −2.8 −1.1 0.0
20 −13.1 −11.3 −9.3 −7.3 −5.3 −3.3 −1.5 0.0 0.7
30 −11.1 −9.3 −7.5 −5.6 −3.6 −1.7 0.0 1.3 1.6
40 −9.0 −7.3 −5.6 −3.8 −1.9 0.0 1.7 2.8 2.8

p (%) 50 −6.9 −5.3 −3.6 −1.9 0.0 1.9 3.5 4.6 4.2
60 −4.8 −3.3 −1.7 0.0 1.9 3.8 5.5 6.7 6.0
70 −2.8 −1.5 0.0 1.7 3.5 5.5 7.5 9.0 8.4
80 −1.1 0.0 1.3 2.8 4.6 6.7 9.0 11.3 11.7
90 0.0 0.7 1.6 2.8 4.2 6.0 8.4 11.7 15.0

|µ1−µ0 | = 5% , Var[Rt] = (50%)2/12

10 −2.4 −2.1 −1.8 −1.4 −1.1 −0.8 −0.5 −0.2 0.0
20 −2.1 −1.8 −1.5 −1.2 −0.9 −0.5 −0.2 0.0 0.1
30 −1.8 −1.5 −1.2 −0.9 −0.6 −0.3 0.0 0.2 0.3
40 −1.4 −1.2 −0.9 −0.6 −0.3 0.0 0.3 0.5 0.4

p (%) 50 −1.1 −0.9 −0.6 −0.3 0.0 0.3 0.6 0.7 0.7
60 −0.8 −0.5 −0.3 0.0 0.3 0.6 0.9 1.1 1.0
70 −0.5 −0.2 0.0 0.3 0.6 0.9 1.2 1.4 1.4
80 −0.2 0.0 0.2 0.5 0.7 1.1 1.4 1.8 1.9
90 0.0 0.1 0.3 0.4 0.7 1.0 1.4 1.9 2.4

|µ1−µ0 | = 20% , Var[Rt] = (50%)2/12

10 −38.4 −33.5 −28.4 −23.0 −17.6−12.3 −7.2 −2.9 0.0
20 −33.5 −28.8 −23.9 −18.8 −13.6 −8.5 −3.8 0.0 1.9
30 −28.4 −23.9 −19.2 −14.3 −9.3 −4.4 0.0 3.3 4.2
40 −23.0 −18.8 −14.3 −9.6 −4.8 0.0 4.3 7.2 7.1

p (%) 50 −17.6 −13.6 −9.3 −4.8 0.0 4.7 9.0 11.8 10.7
60 −12.3 −8.5 −4.4 0.0 4.7 9.6 14.1 17.1 15.4
70 −7.2 −3.8 0.0 4.3 9.0 14.1 19.2 23.0 21.6
80 −2.9 0.0 3.3 7.2 11.8 17.1 23.0 28.8 29.9
90 0.0 1.9 4.2 7.1 10.7 15.4 21.6 29.9 38.4

Table 1: First-order autocorrelation coefficients of returns from a two-state Markov model of
time-varying expected returns, Rt = µ1 It + µ0(1− It) + εt, where p ≡ Prob(It+1 = 1|It = 1),
q ≡ Prob(It+1 = 0|It = 0), µ1 and µ0 are the monthly expected returns in states 1 and 0,
respectively, and εt ∼ N (0, σ2

ε ) and σ2
ε is calibrated to fix the unconditional variance Var[Rt]

of returns at a prespecified level.
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and various constraints imposed by investors, regulatory bodies, banks, brokers, and other

counterparties. But the basic motivation for typical leverage dynamics is the well-known

trade-off between risk and expected return: by increasing its leverage ratio, a hedge fund

boosts its expected returns proportionally, but also increases its return volatility and, even-

tually, its credit risk or risk of default. Therefore, counterparties providing credit facilities

for hedge funds will impose some ceiling on the degree of leverage they are willing to provide.

More importantly, as market prices move against a hedge fund’s portfolio, thereby reducing

the value of the fund’s collateral and increasing its leverage ratio, or as markets become more

volatile and the fund’s risk exposure increases significantly, creditors (and, in some cases,

securities regulations) will require the fund to either post additional collateral or liquidate

a portion of its portfolio to bring the leverage ratio back down to an acceptable level. As a

result, the leverage ratio of a typical hedge fund varies through time in a specific manner,

usually as a function of market prices and market volatility. Therefore we propose a simple

data-dependent mechanism through which a hedge fund determines its ideal leverage ratio.

Denote by Rt the return of a fund in the absence of any leverage, and to focus squarely

on the ability of leverage to generate serial correlation, let Rt be IID through time, hence:

Rt = µ + εt , εt IID N (0, σ2
ε ) (11)

where we have assumed that εt is normally distributed only for expositional convenience.8

Given (10), the k-th order autocorrelation coefficient of leveraged returns Ro
t is:

ρk =
1

Var[Ro
t ]

[
µ2 Cov[Lt, Lt+k] + µ Cov[Lt, Lt+kεt+k] +

µ Cov[Lt+k, Ltεt] + Cov[Ltεt, Lt+kεt+k]

]
. (12)

Now suppose that the leverage process Lt is independently distributed through time and also

independent of εt+k for all k. Then (12) implies that ρk =0 for all k 6=0, hence time-varying

8Other distributions can easily be used instead of the normal in the Monte Carlo simulation experiment
described below.
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leverage of this sort will not induce any serial correlation in returns Ro
t .

However, as discussed above, leverage is typically a function of market conditions, which

can induce serial dependence in Lt and dependence between Lt+k and εt for k ≥ 0, yielding

serially correlated observed returns Ro
t .

To see how, we propose a simple but realistic mechanism by which a hedge fund might

manage its leverage ratio. Suppose that, as part of its enterprise-wide risk management

protocol, a fund has adopted a policy of limiting the 95% Value-at-Risk of its portfolio to no

worse than δ—for example, if δ=−10%, this policy requires managing the portfolio so that

the probability of a loss greater than or equal to 10% of the fund’s assets is at most 5%. If

we assume that the only control variable available to the manager is the leverage ratio Lt

and that unleveraged returns Rt are given by (11), this implies the following constraint on

leverage:

Prob(Ro
t ≤ δ) ≤ 5% , δ ≤ 0

Prob(LtRt ≤ δ) ≤ 5%

Prob

(
Rt−µ

σ
≤ δ/Lt−µ

σ

)
≤ 5%

Φ

(
δ/Lt−µ

σ

)
≤ 5% (13)

δ/Lt ≤ σΦ−1(5%) (14)

⇒ Lt ≤ δ

σΦ−1(5%)
(15)

where, following common industry practice, we have set µ=0 in (13) to arrive at (14).9 Now

in implementing the constraint (15), the manager must estimate the portfolio volatility σ,

which is typically estimated using some rolling window of historical data, hence the manager’s

estimate is likely to be time-varying but persistent to some degree. This persistence, and

9Setting the expected return of a portfolio equal to 0 for purposes of risk management is often motivated
by a desire to be conservative. Most portfolios will tend to have positive expected return, hence setting µ
equal to 0 will generally yield larger values for VaR. However, for actively managed portfolios that contain
both long and short positions, Lo (2002) shows that the practice of setting expected returns equal to 0 need
not be conservative, but in some cases, can yield severely downward-biased estimates of VaR.
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the dependence of the volatility estimate on past returns, will both induce serial correlation

in observed returns Ro
t . Specifically, let:

σ̂2
t ≡ 1

n

n∑

k=1

(Rt−k − µ̂)2 , µ̂t ≡ 1

n

n∑

k=1

Rt−k (16)

Lt =
δ

σ̂tΦ−1(5%)
(17)

where we have assumed that the manager sets his leverage ratio Lt to the maximum allowable

level subject to the VaR constraint (15).

To derive the impact of this heuristic risk management policy on the serial correlation

of observed returns, we perform a Monte Carlo simulation experiment where we simulate

a time series of 100,000 returns {Rt} and implement the leverage policy (17) to obtain a

time series of observed returns {Ro
t}, from which we compute its autocorrelation coefficients

{ρk}. Given the large sample size, our estimate should yield an excellent approximation to

the population values of the autocorrelation coefficients. This procedure is performed for

the following combinations of parameter values:

n = 3, 6, 9, 12, 24, 36, 48, 60

12 µ = 5%
√

12 σ = 10%, 20%, 50%

δ = −25%

and the results are summarized in Table 2. Note that the autocorrelation of observed returns

(12) is homogeneous of degree 0 in δ, hence we need only simulate our return process for

one value of δ without loss of generality as far as ρk is concerned. Of course, the mean and

standard of observed returns and leverage will be affected by our choice of δ, but because

these variables are homogeneous of degree 1, we can obtain results for any arbitrary δ simply

by rescaling our results for δ=−25%.
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n
Return Ro

t Leverage Lt Return Ro
t Leverage Lt

12Mean
√

12 SD Mean SD ρ1 ρ2 ρ3 ρ1 ρ2 ρ3

(%) (%) (%) (%) (%) (%) (%) (%)

12 µ = 5% ,
√

12 σ = 10% , δ = −25%

3 50.53 191.76 9.52 15.14 0.7 0.3 0.4 17.5 2.9 0.0
6 29.71 62.61 5.73 2.45 0.1 0.4 0.3 70.6 48.5 32.1

12 24.34 51.07 4.96 1.19 0.1 0.4 −0.3 88.9 78.6 68.8
24 24.29 47.27 4.66 0.71 0.3 0.1 −0.2 95.0 90.0 85.1
36 21.46 46.20 4.57 0.57 −0.2 0.0 0.1 96.9 93.9 90.9
48 22.67 45.61 4.54 0.46 0.3 −0.5 0.3 97.6 95.3 92.9
60 22.22 45.38 4.51 0.43 −0.2 0.0 0.2 98.2 96.5 94.7

12 µ = 5% ,
√

12 σ = 20% , δ = −25%

3 26.13 183.78 4.80 8.02 0.0 −0.1 0.0 13.4 1.9 −0.6
6 14.26 62.55 2.87 1.19 0.2 0.1 0.4 70.7 48.6 32.0

12 12.95 50.99 2.48 0.59 0.2 −0.1 0.1 89.1 79.0 69.4
24 11.58 47.22 2.33 0.36 0.2 0.0 0.1 95.2 90.4 85.8
36 11.23 46.14 2.29 0.28 −0.1 0.3 −0.3 97.0 94.0 90.9
48 11.00 45.63 2.27 0.24 0.2 −0.5 −0.1 97.8 95.5 93.3
60 12.18 45.37 2.26 0.21 0.1 −0.1 0.4 98.3 96.5 94.8

12 µ = 5% ,
√

12 σ = 50% , δ = −25%

3 9.68 186.59 1.93 3.42 −1.1 0.0 −0.5 14.7 1.8 −0.1
6 6.25 62.43 1.16 0.48 −0.2 0.3 −0.2 70.9 49.4 32.9

12 5.90 50.94 0.99 0.23 −0.1 0.1 0.0 89.0 78.6 69.0
24 5.30 47.29 0.93 0.15 0.2 0.3 0.4 95.2 90.5 85.7
36 5.59 46.14 0.92 0.12 −0.1 0.3 −0.2 97.0 94.1 91.1
48 4.07 45.64 0.91 0.10 −0.4 −0.6 0.1 97.8 95.7 93.5
60 5.11 45.34 0.90 0.08 0.4 0.3 −0.3 98.2 96.5 94.7

Table 2: Monte Carlo simulation results for time-varying leverage model with a VaR con-
straint. Each row corresponds to a separate and independent simulation of 100,000 observa-
tions of independently and identically distributed N (µ, σ2) returns Rt which are multiplied
by a time-varying leverage factor Lt to generated observed returns Ro

t ≡LtRt.
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For a VaR constraint of −25% and an annual standard deviation of unlevered returns

of 10%, the mean leverage ratio ranges from 9.52 when n = 3 to 4.51 when n = 60. For

small n, there is considerably more sampling variation in the estimated standard deviation

of returns, hence the leverage ratio—which is proportional to the reciprocal of σ̂t—takes on

more extreme values as well and has a higher expectation in this case.

As n increases, the volatility estimator becomes more stable over time since each month’s

estimator has more data in common with the previous month’s estimator, leading to more

persistence in Lt as expected. For example, when n=3, the average first-order autocorrela-

tion coefficient of Lt is 43.2%, but increases to 98.2% when n=60. However, even with such

extreme levels of persistence in Lt, the autocorrelation induced in observed returns Ro
t is still

only −0.2%. In fact, the largest absolute return-autocorrelation reported in Table 2 is only

0.7%, despite the fact that leverage ratios are sometimes nearly perfectly autocorrelated from

month to month. This suggests that time-varying leverage, at least of the form described

by the VaR constraint (15), cannot fully account for the magnitudes of serial correlation in

historical hedge-fund returns.

3.3 Incentive Fees with High-Water Marks

Yet another source of serial correlation in hedge-fund returns is an aspect of the fee structure

that is commonly used in the hedge-fund industry: an incentive fee—typically 20% of excess

returns above a benchmark—which is subject to a “high-water mark”, meaning that incentive

fees are paid only if the cumulative returns of the fund are “above water”, i.e., if they exceed

the cumulative return of the benchmark since inception.10 This type of nonlinearity can

induce serial correlation in net-of-fee returns because of the path dependence inherent in

the definition of the high-water mark—when the fund is “below water” the incentive fee is

not charged, but over time, as the fund’s cumulative performance rises “above water”, the

incentive fee is reinstated and the net-of-fee returns is reduced accordingly.

Specifically, denote by Ft the incentive fee paid to the manager in period t and for

10For more detailed analyses of high water marks and other incentive-fee arrangements in the context of
delegated portfolio management, see Bhattacharya and Pfleiderer (1985), Brown, Goetzmann, and Liang
(2002), Carpenter (2000), Carpenter, Dybvig, and Farnsworth (2001), Elton and Gruber (2002), and Goet-
zmann, Ingersoll, and Ross (1997).
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simplicity, set the benchmark to 0. Then:

Ft ≡ Max [ 0 , γ(Xt−1 + Rt) ] , γ > 0 (18a)

Xt ≡ Min [ 0 , Xt−1 + Rt ] (18b)

where Xt is a state variable that is non-zero only when the manager is “under water”, in

which case it measures the cumulative losses that must be recovered before an incentive fee

is paid. The net-of-fee returns Ro
t are then given by:

Ro
t = Rt − Ft = (1−γ)Rt + γ(Xt−Xt−1) (19)

which is clearly serially correlated due to the presence of the lagged state variable Xt−1.
11

Because the high-water mark variable Xt is a nonlinear recursive function of Xt−1 and Rt,

its statistical properties are quite complex and difficult to derive in closed form. Therefore,

we perform a Monte Carlo simulation experiment in which we simulate a time series of

returns {Rt} of length T =100,000 where Rt is given by (11), compute the net-of-fee returns

{Ro
t}, and estimate the first-order autocorrelation coefficient ρ1. We follow this procedure

for each of the combinations of the following parameter values:

12 µ = 5%, 10%, 15%, . . . , 50%
√

12 σ = 10%, 20%, . . . , 50%

γ = 20% .

Table 3 summarizes the results of the simulations which show that although incentive fees

11This is a simplified model of how a typical hedge fund’s incentive fee is structured. In particular, (18)
ignores the fact that incentive fees are usually paid on an annual or quarterly basis whereas high-water marks
are tracked on a monthly basis. Using the more realistic fee cycle did not have significant impact on our
simulation results, hence we use (18) for expositional simplicity. Also, some funds do pay their employees and
partners monthly incentive compensation, in which case (18) is the exact specification of their fee structure.
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with high-water marks do induce some serial correlation in net-of-fee returns, they are gen-

erally quite small in absolute value. For example, the largest absolute value of all the entries

in Table 3 is only 4.4%. Moreover, all of the averages are negative, a result of the fact that

all of the serial correlation in Ro
t is due to the first difference of Xt in (19). This implies

that incentive fees with high-water marks are even less likely to be able to explain the large

positive serial correlation in historical hedge-fund returns.

ρ1
12 µ (%)

(%) 5 10 15 20 25 30 35 40 45 50

10 −1.4 −2.5 −3.2 −3.4 −3.4 −3.2 −2.9 −2.4 −2.0 −1.5

20 −1.6 −2.3 −2.9 −3.4 −3.8 −4.1 −4.3 −4.4 −4.4 −4.3

σ ×√12 (%) 30 −0.6 −1.1 −1.6 −2.1 −2.4 −2.8 −3.0 −3.3 −3.5 −3.6

40 −0.2 −0.7 −1.1 −1.4 −1.8 −2.1 −2.3 −2.6 −2.8 −3.0

50 0.0 −0.3 −0.6 −0.9 −1.2 −1.5 −1.7 −1.9 −2.1 −2.3

Table 3: First-order autocorrelation coefficients for Monte Carlo simulation of net-of-fee re-
turns under an incentive fee with a high-water mark. Each entry corresponds to a separate
and independent simulation of 100,000 observations of independently and identically dis-
tributed N (µ, σ2) returns Rt, from which a 20% incentive fee Ft ≡ Max[0, 0.2×(Xt−1+Rt)] is
subtracted each period to yield net-of-fee returns Ro

t ≡ Rt−Ft, where Xt ≡ Min[0, Xt−1+Rt]
is a state variable that is non-zero only when the fund is “under water”, in which case it
measures the cumulative losses that must be recovered before an incentive fee is paid.

4 An Econometric Model of Smoothed Returns

Having shown in Section 3 that other possible sources of serial correlation in hedge-fund

returns are hard-pressed to yield empirically plausible levels of autocorrelation, we now turn

to the main focus of this study: illiquidity and smoothed returns. Although illiquidity and

smoothed returns are two distinct phenomena, it is important to consider them in tandem

because one facilitates the other—for actively traded securities, both theory and empirical

evidence suggest that in the absence of transactions costs and other market frictions, returns

are unlikely to be very smooth.

As we argued in Section 1, nonsynchronous trading is a plausible source of serial corre-

lation in hedge-fund returns. In contrast to the studies by Lo and MacKinlay (1988, 1990)

and Kadlec and Patterson (1999) in which they conclude that it is difficult to generate serial
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correlations in weekly US equity portfolio returns much greater than 10% to 15% through

nonsynchronous trading effects alone, we argue that in the context of hedge funds, signifi-

cantly higher levels of serial correlation can be explained by the combination of illiquidity

and smoothed returns, of which nonsynchronous trading is a special case. To see why, note

that the empirical analysis in the nonsynchronous-trading literature is devoted exclusively to

exchange-traded equity returns, not hedge-fund returns, hence their conclusions may not be

relevant in our context. For example, Lo and MacKinlay (1990) argue that securities would

have to go without trading for several days on average to induce serial correlations of 30%,

and they dismiss such nontrading intervals as unrealistic for most exchange-traded US eq-

uity issues. However, such nontrading intervals are considerably more realistic for the types

of securities held by many hedge funds, e.g., emerging-market debt, real estate, restricted

securities, control positions in publicly traded companies, asset-backed securities, and other

exotic OTC derivatives. Therefore, nonsynchronous trading of this magnitude is likely to be

an explanation for the serial correlation observed in hedge-fund returns.

But even when prices are synchronously measured—as they are for many funds that mark

their portfolios to market at the end of the month to strike a net-asset-value at which investors

can buy into or cash out of the fund—there are several other channels by which illiquidity

exposure can induce serial correlation in the reported returns of hedge funds. Apart from

the nonsynchronous-trading effect, naive methods for determining the fair market value or

“marks” for illiquid securities can yield serially correlated returns. For example, one approach

to valuing illiquid securities is to extrapolate linearly from the most recent transaction price

(which, in the case of emerging-market debt, might be several months ago), which yields

a price path that is a straight line, or at best a series of straight lines. Returns computed

from such marks will be smoother, exhibiting lower volatility and higher serial correlation

than true economic returns, i.e., returns computed from mark-to-market prices where the

market is sufficiently active to allow all available information to be impounded in the price of

the security. Of course, for securities that are more easily traded and with deeper markets,

mark-to-market prices are more readily available, extrapolated marks are not necessary, and

serial correlation is therefore less of an issue. But for securities that are thinly traded, or not

traded at all for extended periods of time, marking them to market is often an expensive and
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time-consuming procedure that cannot easily be performed frequently. Therefore, we argue

in this paper that serial correlation may serve as a proxy for a fund’s liquidity exposure.

Even if a hedge-fund manager does not make use of any form of linear extrapolation to

mark the securities in his portfolio, he may still be subject to smoothed returns if he obtains

marks from broker-dealers that engage in such extrapolation. For example, consider the

case of a conscientious hedge-fund manager attempting to obtain the most accurate mark

for his portfolio at month end by getting bid/offer quotes from three independent broker-

dealers for every security in his portfolio, and then marking each security at the average of

the three quote midpoints. By averaging the quote midpoints, the manager is inadvertently

downward-biasing price volatility, and if any of the broker-dealers employ linear extrapolation

in formulating their quotes (and many do, through sheer necessity because they have little

else to go on for the most illiquid securities), or if they fail to update their quotes because

of light volume, serial correlation will also be induced in reported returns.

Finally, a more prosaic channel by which serial correlation may arise in the reported re-

turns of hedge funds is through “performance smoothing”, the unsavory practice of reporting

only part of the gains in months when a fund has positive returns so as to partially offset

potential future losses and thereby reduce volatility and improve risk-adjusted performance

measures such as the Sharpe ratio. For funds containing liquid securities that can be easily

marked to market, performance smoothing is more difficult and, as a result, less of a con-

cern. Indeed, it is only for portfolios of illiquid securities that managers and brokers have

any discretion in marking their positions. Such practices are generally prohibited by various

securities laws and accounting principles, and great care must be exercised in interpreting

smoothed returns as deliberate attempts to manipulate performance statistics. After all, as

we have discussed above, there are many other sources of serial correlation in the presence

of illiquidity, none of which is motivated by deceit. Nevertheless, managers do have certain

degrees of freedom in valuing illiquid securities—for example, discretionary accruals for un-

registered private placements and venture capital investments—and Chandar and Bricker

(2002) conclude that managers of certain closed-end mutual funds do use accounting dis-

cretion to manage fund returns around a passive benchmark. Therefore, the possibility of

deliberate performance smoothing in the less regulated hedge-fund industry must be kept in
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mind in interpreting our empirical analysis of smoothed returns.

To quantify the impact of all of these possible sources of serial correlation, denote by Rt

the true economic return of a hedge fund in period t, and let Rt satisfy the following linear

single-factor model:

Rt = µ + βΛt + εt , E[Λt] = E[εt] = 0 , εt , Λt ∼ IID (20a)

Var[Rt] ≡ σ2 . (20b)

True returns represent the flow of information that would determine the equilibrium value

of the fund’s securities in a frictionless market. However, true economic returns are not

observed. Instead, Ro
t denotes the reported or observed return in period t, and let

Ro
t = θ0 Rt + θ1 Rt−1 + · · · + θk Rt−k (21)

θj ∈ [0, 1] , j = 0, . . . , k (22)

1 = θ0 + θ1 + · · · + θk (23)

which is a weighted average of the fund’s true returns over the most recent k+1 periods,

including the current period.

This averaging process captures the essence of smoothed returns in several respects. From

the perspective of illiquidity-driven smoothing, (21) is consistent with several models in the

nonsynchronous trading literature. For example, Cohen, Maier et al. (1986, Chapter 6.1)

propose a similar weighted-average model for observed returns.12 Alternatively, (21) can be

12In particular, their specification for observed returns is:

ro
j,t =

N∑

l=0

(γj,t−l,lrj,t−l + θj,t−l)

where rj,t−l is the true but unobserved return for security j in period t− l, the coefficients {γj,t−l,l} are
assumed to sum to 1, and θj,t−l are random variables meant to capture “bid/ask bounce”. The authors
motivate their specification of nonsynchronous trading in the following way (p. 116): “Alternatively stated,
the γj,t,0, γj,t,1, . . . , γj,t,N comprise a delay distribution that shows how the true return generated in period
t impacts on the returns actually observed during t and the next N periods”. In other words, the essential
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viewed as the outcome of marking portfolios to simple linear extrapolations of acquisition

prices when market prices are unavailable, or “mark-to-model” returns where the pricing

model is slowly varying through time. And of course, (21) also captures the intentional

smoothing of performance.

The constraint (23) that the weights sum to 1 implies that the information driving the

fund’s performance in period t will eventually be fully reflected in observed returns, but this

process could take up to k+1 periods from the time the information is generated.13 This

is a sensible restriction in the current context of hedge funds for several reasons. Even the

most illiquid securities will trade eventually, and when that occurs, all of the cumulative

information affecting that security will be fully impounded into its transaction price. There-

fore the parameter k should be selected to match the kind of illiquidity of the fund—a fund

comprised mostly of exchange-traded US equities would require a much lower value of k than

a private equity fund. Alternatively, in the case of intentional smoothing of performance,

the necessity of periodic external audits of fund performance imposes a finite limit on the

extent to which deliberate smoothing can persist.14

4.1 Implications For Performance Statistics

Given the smoothing mechanism outlined above, we have the following implications for the

statistical properties of observed returns:

feature of nonsynchronous trading is the fact that information generated at date t may not be fully impounded
into prices until several periods later.

13In Lo and MacKinlay’s (1990) model of nonsynchronous trading, they propose a stochastic non-trading
horizon so that observed returns are an infinite-order moving average of past true returns, where the coeffi-
cients are stochastic. In that framework, the waiting time for information to become fully impounded into
future returns may be arbitrarily long (but with increasingly remote probability).

14In fact, if a fund allows investors to invest and withdraw capital only at pre-specified intervals, imposing
lock-ups in between, and external audits are conducted at these same pre-specified intervals, then it may
be argued that performance smoothing is irrelevant. For example, no investor should be disadvantaged
by investing in a fund that offers annual liquidity and engages in annual external audits with which the
fund’s net-asset-value is determined by a disinterested third party for purposes of redemptions and new
investments. However, there are at least two additional concerns that remain—historical track records are
still affected by smoothed returns, and estimates of a fund’s liquidity exposure are also affected—both of
which are important factors in the typical hedge-fund investor’s overall investment process. Moreover, given
the apparently unscrupulous role that the auditors at Arthur Andersen played in the Enron affair, there is
the further concern of whether third-party auditors are truly objective and free of all conflicts of interest.
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Proposition 1 Under (21)–(23), the statistical properties of observed returns are charac-

terized by:

E[Ro
t ] = µ (24)

Var[Ro
t ] = c2

σ σ2 ≤ σ2 (25)

SRo ≡ E[Ro
t ]√

Var[Ro
t ]

= cs SR ≥ SR ≡ E[Rt]√
Var[Rt]

(26)

βo
m ≡ Cov[Ro

t , Λt−m]

Var[Λt−m]
=





cβ,m β if 0 ≤ m ≤ k

0 if m > k

(27)

Cov[Ro
t , R

o
t−m] =





(∑k−m
j=0 θjθj+m

)
σ2 if 0 ≤ m ≤ k

0 if m > k

(28)

Corr[Ro
t , R

o
t−m] =

Cov[Ro
t , R

o
t−m]

Var[Ro
t ]

=





Pk−m
j=0 θjθj+mPk

j=0 θ2
j

if 0 ≤ m ≤ k

0 if m > k

(29)

where:

cµ ≡ θ0 + θ1 + · · · + θk (30)

c2
σ ≡ θ2

0 + θ2
1 + · · · + θ2

k (31)

cs ≡ 1/
√

θ2
0 + · · ·+ θ2

k (32)

cβ,m ≡ θm (33)

Proposition 1 shows that smoothed returns of the form (21)–(23) do not affect the expected

value of Ro
t but reduce its variance, hence boosting the Sharpe ratio of observed returns

by a factor of cs. From (27), we see that smoothing also affects βo
0 , the contemporaneous
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market beta of observed returns, biasing it towards 0 or “market neutrality”, and induces

correlation between current observed returns and lagged market returns up to lag k. This

provides a formal interpretation of the empirical analysis of Asness, Krail, and Liew (2001)

in which many hedge funds were found to have significant lagged market exposure despite

relatively low contemporaneous market betas.

Smoothed returns also exhibit positive serial correlation up to order k according to (29),

and the magnitude of the effect is determined by the pattern of weights {θj}. If, for example,

the weights are disproportionately centered on a small number of lags, relatively little serial

correlation will be induced. However, if the weights are evenly distributed among many lags,

this will result in higher serial correlation. A useful summary statistic for measuring the

concentration of weights is

ξ ≡
k∑

j=0

θ2
j ∈ [0, 1] (34)

which is simply the denominator of (29). This measure is well known in the industrial

organization literature as the Herfindahl index, a measure of the concentration of firms in a

given industry where θj represents the market share of firm j. Because θj ∈ [0, 1], ξ is also

confined to the unit interval, and is minimized when all the θj’s are identical, which implies

a value of 1/(k+1) for ξ, and is maximized when one coefficient is 1 and the rest are 0,

in which case ξ = 1. In the context of smoothed returns, a lower value of ξ implies more

smoothing, and the upper bound of 1 implies no smoothing, hence we shall refer to ξ as a

“smoothing index”.

In the special case of equal weights, θj = 1/(k+1) for j =0, . . . , k, the serial correlation

of observed returns takes on a particularly simple form:

Corr[Ro
t , R

o
t−m] = 1 − m

k + 1
, 1 ≤ m ≤ k (35)
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which declines linearly in the lag m. This can yield substantial correlations even when k

is small—for example, if k = 2 so that smoothing takes place only over a current quarter

(i.e. this month and the previous two months), the first-order autocorrelation of monthly

observed returns is 66.7%.

To develop a sense for just how much observed returns can differ from true returns

under the smoothed-return mechanism (21)–(23), denote by ∆(T ) the difference between

the cumulative observed and true returns over T holding periods, where we assume that

T >k:

∆(T ) ≡ (Ro
1 + Ro

2 + · · ·+ Ro
T ) − (R1 + R2 + · · ·+ RT ) (36)

=
k−1∑
j=0

(R−j −RT−j)(1−
j∑

i=0

θi) (37)

Then we have:

Proposition 2 Under (21)–(23) and for T > k,

E[∆(T )] = 0 (38)

Var[∆(T )] = 2σ2

k−1∑
j=0

(
1−

j∑

l=0

θl

)2

= 2σ2 ζ (39)

ζ ≡
k−1∑
j=0

(
1−

j∑

l=0

θl

)2

≤ k (40)

Proposition 2 shows that the cumulative difference between observed and true returns has 0

expected value, and its variance is bounded above by 2kσ2.
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4.2 Examples of Smoothing Profiles

To develop further intuition for the impact of smoothed returns on observed returns, we

consider the following three specific sets of weights {θj} or “smoothing profiles”:15

θj =
1

k + 1
(Straightline) (41)

θj =
k + 1− j

(k + 1)(k + 2)/2
(Sum-of-Years) (42)

θj =
δj(1− δ)

1− δk+1
, δ ∈ (0, 1) (Geometric) . (43)

The straightline profile weights each return equally. In contrast, the sum-of-years and ge-

ometric profiles weight the current return the most heavily, and then has monotonically

declining weights for lagged returns, with the sum-of-years weights declining linearly and

the geometric weights declining more rapidly (see Figure 2).

More detailed information about the three smoothing profiles is contained in Table 4. The

first panel reports the smoothing coefficients {θj}, constants cβ,0, cσ, cs, ζ, and the first three

autocorrelations of observed returns for the straightline profile for k = 0, 1, . . . , 5. Consider

the case where k = 2. Despite the relatively short smoothing period of three months, the

effects are dramatic: smoothing reduces the market beta by 67%, increases the Sharpe ratio

by 73%, and induces first- and second-order serial correlation of 67% and 33%, respectively,

in observed returns. Moreover, the variance of the cumulative discrepancy between observed

and true returns, 2σ2ζ, is only slightly larger than the variance of monthly true returns σ2,

suggesting that it may be difficult to detect this type of smoothed returns even over time.

As k increases, the effects become more pronounced—for k=5, the market beta is reduced

by 83%, the Sharpe ratio is increased by 145%, and first three autocorrelation coefficients

are 83%, 67%, and 50%, respectively. However, in this extreme case, the variance of the

discrepancy between true and observed returns is approximately three times the monthly

variance of true returns, in which case it may be easier to identify smoothing from realized

15Students of accounting will recognize these profiles as commonly used methods for computing deprecia-
tion. The motivation for these depreciation schedules is not entirely without relevance in the smoothed-return
context.
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Figure 2: Straightline, sum-of-years, and geometric smoothing profiles for k=10.
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returns.

The sum-of-years profile is similar to, although somewhat less extreme than, the straight-

line profile for the same values of k because more weight is being placed on the current return.

For example, even in the extreme case of k=5, the sum-of-years profile reduces the market

beta by 71%, increases the Sharpe ratio by 120%, induces autocorrelations of 77%, 55%, and

35%, respectively, in the first three lags, and has a discrepancy variance that is approximately

1.6 times the monthly variance of true returns.

The last two panels of Table 4 contain results for the geometric smoothing profile for

two values of δ, 0.25 and 0.50. For δ=0.25, the geometric profile places more weight on the

current return than the other two smoothing profiles for all values of k, hence the effects

tend to be less dramatic. Even in the extreme case of k=5, 75% of current true returns are

incorporated into observed returns, the market beta is reduced by only 25%, the Sharpe ratio

is increased by only 29%, the first three autocorrelations are 25%, 6%, and 1% respectively,

and the discrepancy variance is approximately 13% of the monthly variance of true returns.

As δ increases, less weight is placed on the current observation and the effects on performance

statistics become more significant. When δ = 0.50 and k = 5, geometric smoothing reduces

the market beta by 49%, increases the Sharpe ratio by 71%, induces autocorrelations of 50%,

25%, and 12%, respectively, for the first three lags, and yields a discrepancy variance that

is approximately 63% of the monthly variance of true returns.

The three smoothing profiles have very different values for ζ in (40):

ζ =
k(2k + 1)

6(k + 1)
(44)

ζ =
k(3k2 + 6k + 1)

15(k + 1)(k + 2)
(45)

ζ =
δ2(−1 + δk(2 + 2δ + δk(−1− 2δ + k(δ2 − 1))))

(δ2 − 1)(δk+1 − 1)2
(46)

with the straightline and sum-of-years profiles implying variances for ∆(T ) that grow approx-

imately linearly in k, and the geometric profile implying a variance for ∆(T ) that asymptotes

to a finite limit (see Figure 3).
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k
θ0 θ1 θ2 θ3 θ4 θ5 cβ cσ cs

ρo
1 ρo

2 ρo
3 ρo

4 ρo
5 ζ

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

Straightline Smoothing

0 100.0 — — — — — 1.00 1.00 1.00 0.0 0.0 0.0 0.0 0.0 —
1 50.0 50.0 — — — — 0.50 0.71 1.41 50.0 0.0 0.0 0.0 0.0 25.0
2 33.3 33.3 33.3 — — — 0.33 0.58 1.73 66.7 33.3 0.0 0.0 0.0 55.6
3 25.0 25.0 25.0 25.0 — — 0.25 0.50 2.00 75.0 50.0 25.0 0.0 0.0 87.5
4 20.0 20.0 20.0 20.0 20.0 — 0.20 0.45 2.24 80.0 60.0 40.0 20.0 0.0 120.0
5 16.7 16.7 16.7 16.7 16.7 16.7 0.17 0.41 2.45 83.3 66.7 50.0 33.3 16.7 152.8

Sum-of-Years Smoothing

0 100.0 — — — — — 1.00 1.00 1.00 0.0 0.0 0.0 0.0 0.0 —
1 66.7 33.3 — — — — 0.67 0.75 1.34 40.0 0.0 0.0 0.0 0.0 11.1
2 50.0 33.3 16.7 — — — 0.50 0.62 1.60 57.1 21.4 0.0 0.0 0.0 27.8
3 40.0 30.0 20.0 10.0 — — 0.40 0.55 1.83 66.7 36.7 13.3 0.0 0.0 46.0
4 33.3 26.7 20.0 13.3 6.7 — 0.33 0.49 2.02 72.7 47.3 25.5 9.1 0.0 64.9
5 28.6 23.8 19.0 14.3 9.5 4.8 0.29 0.45 2.20 76.9 54.9 35.2 18.7 6.6 84.1

Geometric Smoothing (δ = 0.25)

0 100.0 — — — — — 1.00 1.00 1.00 0.0 0.0 0.0 0.0 0.0 —
1 80.0 20.0 — — — — 0.80 0.82 1.21 23.5 0.0 0.0 0.0 0.0 4.0
2 76.2 19.0 4.8 — — — 0.76 0.79 1.27 24.9 5.9 0.0 0.0 0.0 5.9
3 75.3 18.8 4.7 1.2 — — 0.75 0.78 1.29 25.0 6.2 1.5 0.0 0.0 6.5
4 75.1 18.8 4.7 1.2 0.3 — 0.75 0.78 1.29 25.0 6.2 1.6 0.4 0.0 6.6
5 75.0 18.8 4.7 1.2 0.3 0.1 0.75 0.77 1.29 25.0 6.2 1.6 0.4 0.1 6.7

Geometric Smoothing (δ = 0.50)

0 100.0 — — — — — 1.00 1.00 1.00 0.0 0.0 0.0 0.0 0.0 —
1 66.7 33.3 — — — — 0.67 0.75 1.34 40.0 0.0 0.0 0.0 0.0 11.1
2 57.1 28.6 14.3 — — — 0.57 0.65 1.53 47.6 19.0 0.0 0.0 0.0 20.4
3 53.3 26.7 13.3 6.7 — — 0.53 0.61 1.63 49.4 23.5 9.4 0.0 0.0 26.2
4 51.6 25.8 12.9 6.5 3.2 — 0.52 0.60 1.68 49.9 24.6 11.7 4.7 0.0 29.6
5 50.8 25.4 12.7 6.3 3.2 1.6 0.51 0.59 1.71 50.0 24.9 12.3 5.9 2.3 31.4

Table 4: Implications of three different smoothing profiles for observed betas, standard
deviations, Sharpe ratios, and serial correlation coefficients for a fund with IID true returns.
Straightline smoothing is given by θj = 1/(k+1); sum-of-years smoothing is given by θj =
(k+1−j)/[(k+1)(k+2)/2]; geometric smooothing is given by θj = δj(1−δ)/(1−δk+1). cβ,
cσ, and cs denote multipliers associated with the beta, standard deviation, and Sharpe ratio
of observed returns, respectively, ρo

j denotes the j-th autocorrelation coefficient of observed
returns, and ζ is proportional to the variance of the discrepancy between true and observed
multi-period returns.
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Figure 3: Straightline, sum-of-years, and geometric smoothing profiles for k=10.
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The results in Table 4 and Figure 3 show that a rich set of biases can be generated by

even simple smoothing profiles, and even the most casual empirical observation suggests that

smoothed returns may be an important source of serial correlation in hedge-fund returns.

To address this issue directly, we propose methods for estimating the smoothing profile in

Section 5 and apply these methods to the data in Section 6.

5 Estimation of Smoothing Profiles and Sharpe Ratios

Although the smoothing profiles described in Section 4.2 can all be easily estimated from the

sample moments of fund returns, e.g., means, variances, and autocorrelations, we wish to

be able to estimate more general forms of smoothing. Therefore, in this section we propose

two estimation procedures—maximum likelihood and linear regression—that place fewer

restrictions on a fund’s smoothing profile than the three examples in Section 4.2. In Section

5.1 we review the steps for maximum likelihood estimation of an MA(k) process, slightly

modified to accommodate our context and constraints, and in Section 5.2 we consider a

simpler alternative based on linear regression under the assumption that true returns are

generated by the linear single-factor model (20). We propose several specification checks to

evaluate the robustness of our smoothing model in Section 5.3, and in Section 5.4 we show

how to adjust Sharpe ratios to take smoothed returns into account.

5.1 Maximum Likelihood Estimation

Given the specification of the smoothing process in (21)–(23), we can estimate the smoothing

profile using maximum likelihood estimation in a fashion similar to the estimation of standard

moving-average time series models (see, for example, Brockwell and Davis, 1991, Chapter

8). We begin by defining the de-meaned observed returns process Xt:

Xt = Ro
t − µ (47)
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and observing that (21)–(23) implies the following properties for Xt:

Xt = θ0ηt + θ1ηt−1 + · · · + θkηt−k (48)

1 = θ0 + θ1 + · · · + θk (49)

ηk ∼ N (0, σ2
η) (50)

where, for purposes of estimation, we have added the parametric assumption (50) that ηk

is normally distributed. From (48), it is apparent that Xt is a moving-average process of

order k, or an “MA(k)”. For a given set of observations X ≡ [ X1 · · · XT ]′, the likelihood

function is well known to be:

L(θ, ση) = (2π)−T/2(detΓ)−1/2 exp(−1
2
X′Γ−1X) , Γ ≡ E[XX′] (51)

where θ ≡ [ θ0 · · · θk ]′ and the covariance matrix Γ is a function of the parameters θ and

ση. It can be shown that for any constant κ,

L(κθ, ση/κ) = L(θ, ση) , (52)

therefore, an additional identification condition is required. The most common identification

condition imposed in the time-series literature is the normalization θ0 ≡ 1. However, in our

context, we impose the condition (49) that the MA coefficients sum to 1—an economic

restriction that smoothing takes place over only the most recent k+1 periods—and this is

sufficient to identify the parameters θ and ση. The likelihood function (51) may be then

evaluated and maximized via the “innovations algorithm” of Brockwell and Davis (1991,
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Chapter 8.3),16 and the properties of the estimator are given by:

Proposition 3 Under the specification (48)–(50), Xt is invertible on the set {θ : θ0 + θ1 +

θ2 = 1 , θ1 < 1/2 , θ1 < 1 − 2θ2 }, and the maximum likelihood estimator θ̂ satisfies the

following properties:

1 = θ̂0 + θ̂1 + θ̂2 (56)

√
T





 θ̂1

θ̂2


 −


 θ1

θ2





 a∼ N ( 0 , Vθ ) (57)

Vθ =


 −(−1 + θ1)(−1 + 2θ1)(−1 + θ1 + 2θ2) −θ2(−1 + 2θ1)(−1 + θ1 + 2θ2)

−θ2(−1 + 2θ1)(−1 + θ1 + 2θ2) (−1 + θ1 − 2(−1 + θ2)θ2)(−1 + θ1 + 2θ2)


 .

(58)

16Specifically, let X̂ = [ X̂1 · · · X̂T ]′ where X̂1 = 0 and X̂j = E[Xj |X1, . . . , Xj−1], j ≥ 2. Let rt =
E[(Xt+1 − X̂t+1)2]/σ2

η. Brockwell and Davis (1991) show that (51) can be rewritten as:

L(θ, σ2
η) = (2πσ2

η)−T/2(r0 · · · rT−1)−1/2 exp

[
−1

2
σ2

η

T∑
t=1

(Xt − X̂t)2/rt−1

]
(53)

where the one-step-ahead predictors X̂t and their normalized mean-squared errors rt−1, t = 1, . . . , T are
calculated recursively according to the formulas given in Brockwell and Davis (1991, Proposition 5.2.2).
Taking the derivative of (53) with respect to σ2

η, see that the maximum likelihood estimator σ̂2
η is given by:

σ̂2
η = S(θ) = T−1

T∑
t=1

(Xt − X̂t)2/rt−1 (54)

hence we can “concentrate” the likelihood function by substituting (54) into (53) to obtain:

Lo(θ) = log S(θ) + T−1
T∑

t=1

log rt−1 (55)

which can be minimized in θ subject to the constraint (49) using standard numerical optimization packages
(we use Matlab’s Optimization Toolbox in our empirical analysis). Maximum likelihood estimates obtained
in this fashion need not yield an invertible MA(k) process, but it is well known that any non-invertible
process can always be transformed into an invertible one simply by adjusting the parameters σ2

η and θ. To
address this identification problem, we impose the additional restriction that the estimated MA(k) process
be invertible.
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By applying the above procedure to observed de-meaned returns, we may obtain estimates

of the smoothing profile θ̂ for each fund.17 Because of the scaling property (52) of the MA(k)

likelihood function, a simple procedure for obtaining estimates of our smoothing model with

the normalization (49) is to transform estimates (θ̌, σ̌) from standard MA(k) estimation

packages such as SAS or RATS by dividing each θ̌i by 1+θ̌1+· · ·+ θ̌k and multiplying σ̌ by

the same factor. The likelihood function remains unchanged but the transformed smoothing

coefficients will now satisfy (49).

5.2 Linear Regression Analysis

Although we proposed a linear single-factor model (20) in Section 4 for true returns so as

to derive the implications of smoothed returns for the market beta of observed returns,

the maximum likelihood procedure outlined in Section 5.1 is designed to estimate the more

general specification of IID Gaussian returns, regardless of any factor structure. However,

if we are willing to impose (20), a simpler method for estimating the smoothing profile is

available. By substituting (20) into (21), we can re-express observed returns as:

Ro
t = µ + β (θ0Λt + θ1Λt−1 + · · · + θkΛt−k) + ut (59)

ut = θ0εt + θ1εt−1 + · · · + θkεt−k . (60)

Suppose we estimate the following linear regression of observed returns on contemporaneous

and lagged market returns:

Ro
t = µ + γ0Λt + γ1Λt−1 + · · · + γkΛt−k + ut (61)

17Recall from Proposition 1 that the smoothing process (21)–(23) does not affect the expected return, i.e.,
the sample mean of observed returns is a consistent estimator of the true expected return. Therefore, we
may use Ro

t − µ̂ in place of Xt in the estimation process without altering any of the asymptotic properties
of the maximum likelihood estimator.
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as in Asness, Krail and Liew (2001). Using the normalization (23) from our smoothing

model, we can obtain estimators for β and {θj} readily:

β̂ = γ̂0 + γ̂1 + · · · + γ̂k , θ̂j = γ̂j/β̂ . (62)

Moreover, a specification check for (59)–(60) can be performed by testing the following set

of equalities:

β =
γ0

θ0

=
γ1

θ1

= · · · =
γk

θk

. (63)

Because of serial correlation in ut, ordinary least squares estimates (62) will not be efficient

and the usual standard errors are incorrect, but the estimates are still consistent and may

be a useful first approximation for identifying smoothing in hedge-fund returns.18

There is yet another variation of the linear single-factor model that may help to disentan-

gle the effects of illiquidity from return smoothing.19 Suppose that a fund’s true economic

returns Rt satisfies:

Rt = µ + βΛt + εt , εt ∼ IID(0, σ2
ε ) (64)

but instead of assuming that the common factor Λt is IID as in (20), let Λt be serially

correlated. While this alternative may seem to be a minor variation of the smoothing model

(21)–(23), the difference in interpretation is significant. A serially correlated Λt captures

the fact that a fund’s returns may be autocorrelated because of an illiquid common factor,

even in the absence of any smoothing process such as (21)–(23). Of course, this still begs the

question of what the ultimate source of serial correlation in the common factor might be, but

by combining (64) with the smoothing process (21)–(23), it may be possible to distinguish

18To obtain efficient estimates of the smoothing coefficients, a procedure like the maximum likelihood
estimator of Section 5.1 must be used.

19We thank the referee for encouraging us to explore this alternative.

51



between “systematic” versus “idiosyncratic” smoothing, the former attributable to the asset

class and the latter resulting from fund-specific characteristics.

To see why the combination of (64) and (21)–(23) may have different implications for

observed returns, suppose for the moment that there is no smoothing, i.e., θ0 = 1 and θk = 0

for k > 0 in (21)–(23). Then observed returns are simply given by:

Ro
t = µ + βΛt + εt , εt ∼ IID(0, σ2

ε ) (65)

where Ro
t is now serially correlated solely through Λt. This specification implies that the

ratios of observed-return autocovariances will be identical across all funds with the same

common factor:

Cov[Ro
t , R

o
t−k]

Cov[Ro
t , R

o
t−l]

=
β Cov[Λt, Λt−k]

β Cov[Λt, Λt−l]
=

Cov[Λt, Λt−k]

Cov[Λt, Λt−l]
. (66)

Moreover, (64) implies that in the regression equation (61), the coefficients of the lagged

factor returns are zero and the error term is not serially correlated.

More generally, consider the combination of a serially correlated common factor (64)

and smoothed returns (21)–(23). This more general econometric model of observed returns

implies that the appropriate specification of the regression equation is:

Ro
t = µ + γ0Λt + γ1Λt−1 + · · · + γkΛt−k + ut (67)

ut = θ0εt + θ1εt−1 + · · · + θkεt−k , εt ∼ IID(0, σ2
ε ) (68)

1 = θ0 + θ1 + · · · + θk . (69)

To the extent that serial correlation in Ro
t can be explained mainly by the common factor,

the lagged coefficient estimates of (67) will be statistically insignificant, the residuals will be

serially uncorrelated, and the ratios of autocovariance coefficients will be roughly constant

across funds with the same common factor. To the extent that the smoothing process (21)–
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(23) is responsible for serial correlation in Ro
t , the lagged coefficient estimates of (67) will

be significant, the residuals will be serially correlated, and the ratios γ̂j/θ̂j will be roughly

the same for all j ≥ 0 and will be a consistent estimate of the factor loading or beta of the

fund’s true economic returns with respect to the factor Λt.

Perhaps the most difficult challenge in estimating (67)–(69) is to correctly identify the

common factor Λt. Unlike a simple market-model regression that is meant to estimate

the sensitivity of a fund’s returns to a broad-based market index, the ability to distinguish

between the effects of systematic illiquidity and idiosyncratic return smoothing via (67) relies

heavily on the correct specification of the common factor. Using a common factor in (67)

that is highly serially correlated but not exactly the right factor for a given fund may yield

misleading estimates for the degree of smoothing in that fund’s observed returns. Therefore,

the common factor Λt must be selected or constructed carefully to match the specific risk

exposures of the fund, and the parameter estimates of (67) must be interpreted cautiously and

with several specific alternative hypotheses at hand. In Section 6.4, we provide an empirical

example that highlights the pitfalls and opportunities of the common factor specification

(67)–(69).

5.3 Specification Checks

Although the maximum likelihood estimator proposed in Section 5.1 has some attractive

properties—it is consistent and asymptotically efficient under certain regularity conditions—

it may not perform well in small samples or when the underlying distribution of true returns

is not normal as hypothesized.20 Moreover, even if normality is satisfied and a sufficient

sample size is available, our proposed smoothing model (21)–(23) may simply not apply to

some of the funds in our sample. Therefore, it is important to have certain specification

checks in mind when interpreting the empirical results.

The most obvious specification check is whether or not the maximum likelihood estima-

tion procedure, which involves numerical optimization, converges. If not, this is one sign

20There is substantial evidence that financial asset returns are not normally distributed, but characterized
by skewness, leptokurtosis, and other non-gaussian properties (see, for example, Lo and MacKinlay, 1999).
Given the dynamic nature of hedge-fund strategies, it would be even less plausible for their returns to be
normally distributed.
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that our model is misspecified, either because of non-normality or because the smoothing

process is inappropriate.

A second specification check is whether or not the estimated smoothing coefficients are

all positive in sign (we do not impose non-negative restrictions in our estimation procedure,

despite the fact that the specification does assume non-negativity). Estimated coefficients

that are negative and significant may be a sign that the constraint (49) is violated, which

suggests that a somewhat different smoothing model may apply.

A third specification check is to compare the smoothing-parameter estimates from the

maximum likelihood approach of Section 5.1 with the linear regression approach of Section

5.2. If the linear single-factor model (20) holds, the two sets of smoothing-parameter esti-

mates should be close. Of course, omitted factors could be a source of discrepancies between

the two sets of estimates, so this specification check must be interpreted cautiously and with

some auxiliary information about the economic motivation for the common factor Λt.

Finally, a more direct approach to testing the specification of (21)–(23) is to impose a

different identification condition than (49). Suppose that the standard deviation ση of true

returns was observable; then the smoothing parameters θ are identified, and a simple check

of the specification (21)–(23) is to see whether the estimated parameters θ̂ sum to 1. Of

course, ση is not observable, but if we had an alternative estimator σ̃η for ση, we can achieve

identification of the MA(k) process by imposing the restriction:

ση = σ̃η (70)

instead of (49). If, under this normalization, the smoothing parameter estimates are signifi-

cantly different, this may be a sign of misspecification.

The efficacy of this specification check depends on the quality of σ̃η. We propose to

construct such an estimator by exploiting the fact that the discrepancy between observed

and true returns becomes “small” for multiperiod returns as the number of periods grows.
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Specifically, recall from (37) that:

(Ro
1 + Ro

2 + · · ·+ Ro
T ) = (R1 + R2 + · · ·+ RT ) +

k−1∑
j=0

(R−j −RT−j)(1−
j∑

i=0

θi) (71)

1

T
Var

[
T∑

t=1

Ro
t

]
= σ2

η +
σ2

η

T

k−1∑
j=0

(
1−

j∑
i=0

θi

)(
1− 2

j∑
i=0

θi

)
(72)

and under the specification (21)–(23), it is easy to show that the second term on the right

side of (72) vanishes as T increases without bound, hence:

lim
T→∞

1

T
Var

[
T∑

t=1

Ro
t

]
= σ2

η . (73)

To estimate this normalized variance of multiperiod observed returns, we can apply Newey

and West’s (1987) estimator:

σ̃2
η ≡ 1

T

T∑
1

(Ro
t − µ̂)2 +

2

T

m∑
j=1

(
1− j

m + 1

) (
T∑

t=j+1

(Ro
t − µ̂)(Ro

t−j − µ̂)

)
(74)

where µ̂ is the sample mean of {Ro
t} and m is a truncation lag that must increase with T

but at a slower rate to ensure consistency and asymptotic normality of the estimator. By

imposing the identification restriction

ση = σ̃η (75)

in estimating the smoothing profile of observed returns, we obtain another estimator of θ

which can be compared against the first. As in the case of the normalization (49), the

alternate normalization (75) can be imposed by rescaling estimates (θ̌, σ̌) from standard

MA(k) estimation packages, in this case by dividing each θ̌i by σ̃η/σ̌ and multiplying σ̌ by
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the same factor.

5.4 Smoothing-Adjusted Sharpe Ratios

One of the main implications of smoothed returns is that Sharpe ratios are biased upward, in

some cases substantially (see Proposition 1).21 The mechanism by which this bias occurs is

through the reduction in volatility because of the smoothing, but there is an additional bias

that occurs when monthly Sharpe ratios are annualized by multiplying by
√

12. If monthly

returns are independently and identically distributed, this is the correct procedure, but Lo

(2002) shows that for non-IID returns, an alternative procedure must be used, one that

accounts for serial correlation in returns in a very specific manner.22 Specifically, denote by

Rt(q) the following q-period return:

Rt(q) ≡ Rt + Rt−1 + · · · + Rt−q+1 (76)

where we ignore the effects of compounding for computational convenience.23 For IID re-

turns, the variance of Rt(q) is directly proportional to q, hence the Sharpe ratio satisfies the

simple relation:

SR(q) =
E[Rt(q)]−Rf (q)√

Var[Rt(q)]
=

q(µ−Rf )√
q σ

=
√

q SR . (77)

21There are a number of other concerns regarding the use and interpretation of Sharpe ratios in the context
of hedge funds. See Agarwal and Naik (2000a, 2002), Goetzmann et al. (2002), Lo (2001), Sharpe (1994),
Spurgin (2001), and Weisman (2002) for examples where Sharpe ratios can be misleading indicators of the
true risk-adjusted performance of hedge-fund strategies, and for alternate methods of constructing optimal
portfolios of hedge funds.

22See also Jobson and Korkie (1981), who were perhaps the first to derive rigorous statistical properties
of performance measures such as the Sharpe ratio and the Treynor measure.

23The exact expression is, of course:

Rt(q) ≡
q−1∏

j=0

(1 + Rt−j) − 1 .

For most (but not all) applications, (76) is an excellent approximation. Alternatively, if Rt is defined to be
the continuously compounded return, i.e., Rt ≡ log(Pt/Pt−1) where Pt is the price or net asset value at time
t, then (76) is exact.
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Using Hansen’s (1982) GMM estimator, Lo (2002) derives the asymptotic distribution of

ŜR(q) as:

√
T (ŜR(q)−√q SR)

a∼ N
(

0 , VIID(q)

)
, VIID(q) = q VIID = q (1 + 1

2
SR2) . (78)

For non-IID returns, the relation between SR and SR(q) is somewhat more involved

because the variance of Rt(q) is not just the sum of the variances of component returns, but

also includes all the covariances. Specifically, under the assumption that returns {Rt} are

stationary,

Var[Rt(q)] =

q−1∑
i=0

q−1∑
j=0

Cov[Rt−i, Rt−j] = qσ2 + 2σ2

q−1∑

k=1

(q−k)ρk (79)

where ρk≡Cov[Rt, Rt−k]/Var[Rt]. This yields the following relation between SR and SR(q):

SR(q) = η(q) SR , η(q) ≡ q√
q + 2

∑q−1
k=1(q−k)ρk

. (80)

Note that (80) reduces to (77) if the autocorrelations {ρk} are zero, as in the case of IID

returns. However, for non-IID returns, the adjustment factor for time-aggregated Sharpe

ratios is generally not
√

q but a function of the first q−1 autocorrelations of returns, which

is readily estimated from the sample autocorrelations of returns, hence:

ŜR(q) = η̂(q) ŜR , η̂(q) ≡ q√
q + 2

∑q−1
k=1(q−k)ρ̂k

(81)

where ρ̂k is the sample k-th order autocorrelation coefficient.

Lo (2002) also derives the asymptotic distribution of (81) under fairly general assumptions

for the returns process (stationarity and ergodicity) using generalized method of moments.
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However, in the context of hedge-fund returns, the usual asymptotic approximations may not

be satisfactory because of the small sample sizes that characterize hedge-fund data—a five-

year track record, which amounts to only 60 monthly observations, is considered quite a long

history in this fast-paced industry. Therefore, we derive an alternate asymptotic distribution

using the continuous-record asymptotics of Richardson and Stock (1989). Specifically, as the

sample size T increases without bound, let q grow as well so that the ratio converges to some

finite limit between 0 and 1:

lim
q,T→∞

q/T = τ ∈ (0, 1) . (82)

This condition is meant to provide an asymptotic approximation that may be more accurate

for small-sample situations, i.e., situations where q is a significant fraction of T . For example,

in the case of a fund with a five-year track record, computing an annual Sharpe ratio with

monthly data corresponds to a value of 0.20 for the ratio q/T .

Now as q increases without bound, SR(q) also tends to infinity, hence we must renormalize

it to obtain a well-defined asymptotic sampling theory. In particular, observe that:

SR(q) =
E[Rt(q)]−Rf (q)√

Var[Rt(q)]
=

q(µ−Rf )√
Var[Rt(q)]

(83)

SR(q)/
√

q =
µ−Rf√

Var[Rt(q)]/q
(84)

lim
q→∞

SR(q)/
√

q =
µ−Rf

σ
(85)

where σ can be viewed as a kind of long-run average return standard deviation, which is

generally not identical to the unconditional standard deviation σ of monthly returns except in

the IID case. To estimate σ, we can either follow Lo (2002) and use sample autocorrelations

as in (81), or estimate σ directly accordingly to Newey and West (1987):

σ̂
2

NW ≡ 1

T

T∑
1

(Rt − µ̂)2 +
2

T

m∑
j=1

(1− j

m + 1
)

T∑
t=j+1

(Rt − µ̂)(Rt−j − µ̂) (86)

58



where µ̂ is the sample mean of {Rt}. For this estimator of σ, we have the following asymptotic

result:

Proposition 4 As m and T increase without bound so that m/T → λ ∈ (0, 1), σ̂
2

NW con-

verges weakly to the following functional f(W ) of standard Brownian motion on [0, 1]:24

f(W ) ≡ 2σ2

λ

(∫ 1

0

W (r)
[
W (r)−W (min(r + λ, 1))

]
dr −

W (1)

∫ λ

0

(λ− r)
(
W (1− r)−W (r)

)
dr +

λ(1− λ2

3
)

2
W 2(1)

)
. (87)

From (87), a straightforward computation yields the following expectations:

E[σ̂
2

NW] = 1 − λ +
λ2

3
, E[1/σ̂NW] ≈

√
1 + λ

1− λ + λ2/3
(88)

hence we propose the following bias-corrected estimator for the Sharpe ratio for small sam-

ples:

ŜR(q) =

√
q(µ̂−Rf )

σ̂NW

√
1− λ + λ3/2

1 + λ
(89)

and its asymptotic distribution is given by the following proposition:

Proposition 5 As m, q, and T increase without bound so that m/T → λ ∈ (0, 1) and

q/T → τ ∈ (0, 1), the Sharpe ratio estimator ŜR(q) converges weakly to the following random

variable:

ŜR(q) ⇒
(

SR(q)

f(W )
+

√
τW (1)

f(W )

) √
1− λ + λ3/2

1 + λ
(90)

where f(W ) is given by (87), SR(q) is given by (83) and W (·) is standard Brownian motion

24See Billingsley (1968) for the definition of weak convergence and related results.
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defined on [0, 1].

Monte Carlo simulations show that the second term of (90) does not account for much bias

when τ ∈ (0, 1
2
], and that (90) is an excellent approximation to the small-sample distributions

of Sharpe ratios for non-IID returns.25

6 Empirical Analysis

For our empirical analysis, we use the TASS database of hedge funds which consists of

monthly returns and accompanying information for 2,439 hedge funds (as of January 2001)

from November 1977 to January 2001.26 The database is divided into two parts: “Live”

and “Graveyard” funds. Hedge funds that belong to the Live database are considered to

be active as of January 1, 2001; once a hedge fund decides not to report its performance,

is liquidated, restructured, or merged with other hedge funds, the fund is transferred into

the Graveyard database. A hedge fund can only be listed in the Graveyard database after

being listed in the Live database, but the TASS database is subject to backfill bias—when

a fund decides to be included in the database, TASS adds the fund to the Live database

and includes available prior performance of the fund(hedge funds do not need to meet any

specific requirements to be included in the TASS database). Due to reporting delays and

time lags in contacting hedge funds, some Graveyard funds can be incorrectly listed in the

Live database for a period of time. However, TASS has adopted a policy of transferring funds

from the Live to the Graveyard database if they do not report over a 6–8 month period.

As of January 1, 2001, the combined data set of both live and dead hedge funds contained

2,439 funds with at least one monthly net return observation. Out of these 2,439 funds, 1,512

are in the Live database and 927 are in the Graveyard database. The earliest data available

for a fund in either database is November 1, 1977. The Graveyard database became active

only in 1994, i.e., funds that were dropped from the Live database prior to 1994 are not

included in the Graveyard database, which may yield a certain degree of survivorship bias.27

25We have tabulated the percentiles of the distribution of (90) by Monte Carlo simulation for an extensive
combination of values of q, τ , and λ and would be happy to provide them to interested readers upon request.

26For further information about the database and TASS, see http://www.tassresearch.com.
27 For studies attempting to quantify the degree and impact of survivorship bias, see Baquero, Horst, and
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A majority of the 2,439 funds reported returns net of various fees on a monthly basis.28

We eliminated 30 funds that reported only gross returns and/or quarterly returns (15 from

each of the Live and Graveyard databases, respectively), leaving 2,409 funds in our sample.

We imposed an additional filter of including only those funds with at least five years of data,

leaving 651 funds in the Live database and 258 in the Graveyard database for a combined

total of 909 funds. This obviously creates additional survivorship bias in our sample, but

since our main objective is to estimate smoothing profiles and not to make inferences about

overall performance, our filter may not be as problematic.29

TASS also attempts to classify funds according to one of 17 different investment styles,

listed in Table 5 and described in Appendix A.4; funds that TASS are not able to categorize

are assigned a category code of ‘0’.30 Table 5 also reports the number of funds in each category

for the Live, Graveyard, and Combined databases, and it is apparent from these figures that

the representation of investment styles is not evenly distributed, but is concentrated among

six categories: US Equity Hedge (162), Event Driven (109), Non-Directional/Relative Value

(85), Pure Managed Futures (93), Pure Emerging Market (72), and Fund of Funds (132).

Together, these six categories account for 72% of the funds in the Combined database.

To develop a sense of the dynamics of the TASS database and the impact of our minimum

return-history filter, in Table 6 we report annual frequency counts of the funds in the database

at the start of each year, funds entering during the year, funds exiting during the year, and

funds entering and exiting within the year. The left panel contains counts for the entire

TASS database, and the right panel contains counts for our sample of 909 funds with at

least five years of returns. The left panel shows that despite the start date of November

Verbeek (2002), Brown, Goetzmann, Ibbotson, and Ross (1992), Brown, Goetzmann, and Ibbotson (1999),
Brown, Goetzmann, and Park (1997), Carpenter and Lynch (1999), Fung and Hsieh (1997b, 2000), Horst,
Nijman, T. and M. Verbeek (2001), Hendricks, Patel, and Zeckhauser (1997), and Schneeweis and Spurgin
(1996).

28TASS defines returns as the change in net asset value during the month (assuming the reinvestment of any
distributions on the reinvestment date used by the fund) divided by the net asset value at the beginning of the
month, net of management fees, incentive fees, and other fund expenses. Therefore, these reported returns
should approximate the returns realized by investors. TASS also converts all foreign-currency denominated
returns to US-dollar returns using the appropriate exchange rates.

29See the references in footnote 27.
30A hedge fund can have at most 2 different categories (CAT1 and CAT2) in the TASS database. For all

hedge funds in the TASS database, the second category (CAT2) is always 17, ‘Fund of Funds’.
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Code Category
Number of Funds In:

Combined Live Graveyard

0 Not Categorized 111 44 67
1 US Equity Hedge 162 139 23
2 European Equity Hedge 22 19 3
3 Asian Equity Hedge 5 5 0
4 Global Equity Hedge 27 24 3
5 Dedicated Shortseller 7 6 1
6 Fixed-Income Directional 13 12 1
7 Convertible Fund (Long Only) 15 12 3
8 Event Driven 109 97 12
9 Non-Directional/Relative Value 85 63 22

10 Global Macro 25 15 10
11 Global Opportunity 1 1 0
12 Natural Resources 3 1 2
13 Pure Leveraged Currency 26 15 11
14 Pure Managed Futures 93 28 65
15 Pure Emerging Market 72 54 18
16 Pure Property 1 1 0
17 Fund of Funds 132 115 17

All 909 651 258

Table 5: Number of funds in the TASS Hedge Fund Live and Graveyard databases with at
least five years of returns history during the period from November 1977 to January 2001.
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1977, the database is relatively sparsely populated until the 1990’s, with the largest increase

in new funds in 1998 and, in the aftermath of the collapse of LTCM, the largest number

of funds exiting the database in 1999 and 2000. The right panel of Table 6 illustrates the

impact of our five-year filter—the number of funds is considerably smaller, and although the

impact of survivorship bias can be ameliorated by the use of Live and Graveyard funds, our

sample of 909 funds will not include any of the funds started in 1997 and later which is a

substantial proportion of the TASS database.

The attrition rates reported in Table 6 are defined as the ratio of funds exiting in a given

year to the number of existing funds at the start of the year. TASS began tracking the exits

of funds starting only in 1994 hence attrition rates could not be computed in prior years. For

the unfiltered sample of all funds, the average attrition rate from 1994–1999 is 9.11%, which

is very similar to the 8.54% attrition rate obtained by Liang (2001) for the same period. As

observed above, the attrition rate skyrocketed in 2000 in the wake of LTCM’s demise. In

the right panel of Table 6, we see smaller attrition rates—the average over the 1994–1999

period is only 3.81%—because of our five-year minimum return history filter; since many

hedge funds fail in their first three years, our filtered sample is likely to have a much lower

attrition rate by construction.

Figure 4 contains a visual depiction of the variation in sample sizes of our 909 funds.

The start and end dates of the return history for each fund are connected by a vertical line

and plotted in Figure 4 according to the primary category of the fund—Categories 0–7 in

the top panel and Categories 8–17 in the bottom panel. It is apparent from the increasing

density of the graphs as we move from the bottom to the top that the majority of funds in

our sample are relatively new.

In Section 6.1 we present summary statistics for the sample of hedge funds included

in our analysis. We implement the smoothing profile estimation procedures outlined in

Section 5 for each of the funds, and in Section 6.2 we summarize the results of the maximum

likelihood and linear regression estimation procedures for the entire sample of funds and

for each style category. Section 6.3 reports the results of cross-sectional regressions of the

estimated smoothing coefficients, and in Section 6.4 we consider idiosyncratic and systematic

effects of illiquidity and smoothing by estimating a linear factor model with smoothing for

63



Y
ea

r

A
ll

Fu
nd

s
Fu

nd
s

w
it

h
A

t
L
ea

st
5

Y
ea

rs
’
H

is
to

ry

E
xi

st
in

g
N

ew
N

ew
In

tr
ay

ea
r

T
ot

al
A

tt
ri

ti
on

E
xi

st
in

g
N

ew
N

ew
In

tr
ay

ea
r

T
ot

al
A

tt
ri

ti
on

Fu
nd

s
E

nt
ri

es
E

xi
ts

E
nt

ry
/E

xi
t

Fu
nd

s
R

at
e

(%
)

Fu
nd

s
E

nt
ri

es
E

xi
ts

E
nt

ry
/E

xi
t

Fu
nd

s
R

at
e

(%
)

19
77

0
1

0
0

1
—

0
1

0
0

1
—

19
78

1
2

0
0

3
0.

0
1

2
0

0
3

0.
0

19
79

3
1

0
0

4
0.

0
3

1
0

0
4

0.
0

19
80

4
1

0
0

5
0.

0
4

1
0

0
5

0.
0

19
81

5
3

0
0

8
0.

0
5

3
0

0
8

0.
0

19
82

8
4

0
0

12
0.

0
8

4
0

0
12

0.
0

19
83

12
6

0
0

18
0.

0
12

6
0

0
18

0.
0

19
84

18
14

0
0

32
0.

0
18

14
0

0
32

0.
0

19
85

32
8

0
0

40
0.

0
32

8
0

0
40

0.
0

19
86

40
19

0
0

59
0.

0
40

19
0

0
59

0.
0

19
87

59
32

0
0

91
0.

0
59

32
0

0
91

0.
0

19
88

91
28

0
0

11
9

0.
0

91
28

0
0

11
9

0.
0

19
89

11
9

39
0

0
15

8
0.

0
11

9
39

0
0

15
8

0.
0

19
90

15
8

99
0

0
25

7
0.

0
15

8
93

0
0

25
1

0.
0

19
91

25
7

87
0

0
34

4
0.

0
25

1
78

0
0

32
9

0.
0

19
92

34
4

15
6

0
0

50
0

0.
0

32
9

11
8

0
0

44
7

0.
0

19
93

50
0

23
3

0
0

73
3

0.
0

44
7

13
5

0
0

58
2

0.
0

19
94

73
3

24
5

28
2

95
0

3.
8

58
2

15
3

3
0

73
2

0.
5

19
95

95
0

25
6

71
1

11
35

7.
5

73
2

14
2

15
0

85
9

2.
0

19
96

11
35

26
3

12
7

9
12

71
11

.2
85

9
32

30
0

86
1

3.
5

19
97

12
71

29
0

10
5

7
14

56
8.

3
86

1
0

14
0

84
7

1.
6

19
98

14
56

25
5

16
6

10
15

45
11

.4
84

7
0

51
0

79
6

6.
0

19
99

15
45

22
2

19
3

7
15

74
12

.5
79

6
0

73
0

72
3

9.
2

20
00

15
74

90
42

1
19

12
43

26
.7

72
3

0
18

2
0

54
1

25
.2

T
ab

le
6:

A
n
n
u
al

fr
eq

u
en

cy
co

u
n
ts

of
en

tr
ie

s
in

to
an

d
ex

it
s

ou
t

of
th

e
T
A

S
S

H
ed

ge
F
u
n
d

D
at

ab
as

e
fr

om
N

ov
em

b
er

19
77

to
J
an

u
ar

y
20

01
.

64



all funds in one particular style category using a common factor appropriate for that style.

And in Section 6.5 we summarize the properties of smoothing-adjusted Sharpe ratios for all

the funds in our sample and compare them to their unadjusted counterparts.

6.1 Summary Statistics

Table 7 contains basic summary statistics for the 909 funds in our combined extract from

the TASS Live and Graveyard databases. Not surprisingly, there is a great deal of varia-

tion in mean returns and volatilities both across and within categories. For example, the

162 US Equity Hedge funds in our sample exhibited a mean return of 22.53%, but with a

standard deviation of 10.80% in the cross section, and a mean volatility of 21.69% with a

cross-sectional standard deviation of 11.63%. Average serial correlations also vary consider-

ably across categories, but five categories stand out as having the highest averages:31 Fixed

Income Directional (21.6%), Convertible Fund (Long Only) (22.5%), Event Driven (20.8%),

Non-Directional/Relative Value (18.2%), and Pure Emerging Market (18.8%). Given the

descriptions of these categories provided by TASS (see Appendix A.4) and common wisdom

about the nature of the strategies involved—these categories include some of the most illiq-

uid securities traded—serial correlation seems to be a reasonable proxy for illiquidity and

smoothed returns. Alternatively, equities and futures are among the most liquid securities in

which hedge funds invest, and not surprising, the average first-order serial correlation for US

Equity Hedge funds and Pure Managed Futures is 7.8% and −0.1%, respectively. In fact, all

of the equity funds have average serial correlations that are much smaller than those of the

top five categories. Dedicated Shortseller funds also have a low average first-order autocor-

relation, 4.4%, which is consistent with the high degree of liquidity that often characterize

shortsellers (since, by definition, the ability to short a security implies a certain degree of

liquidity).

These summary statistics suggest that illiquidity and smoothed returns may be important

attributes for hedge-fund returns which can be captured to some degree by serial correlation

31At 23.1% and −23.1%, respectively, Global Opportunity and Pure Property have higher first-order
autocorrelation coefficients in absolute value than the other categories, but since these two categories contain
only a single fund each, we set them aside in our discussions.
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Figure 4: Length of return histories, depicted by vertical solid lines, for all funds in the TASS
Hedge Fund database with at least five years of returns during the period from November
1977 to January 2001, ordered by categories 0 to 7 in the top panel and categories 8 to 17
in the bottom panel. Each fund is represented by a single solid vertical line that spans the
start and end dates of the fund’s return history.
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and our time-series model of smoothing.

6.2 Smoothing Profile Estimates

Using the methods outlined in Section 5, we estimate the smoothing model (21)–(23) and

summarize the results in Tables 8–9. Our maximum likelihood procedure—programmed in

Matlab using the Optimization Toolbox and replicated in Stata using its MA(k) estimation

routine—converged without difficulty for all but one of the 909 funds:32 fund 1055, a Global

Macro fund with returns from June 1994 to January 2001 for which the maximum likelihood

estimation procedure yielded the following parameter estimates:

θ̂0 = 490.47 , θ̂1 = −352.63 , θ̂2 = −136.83

which suggests that our MA(2) model is severely misspecified for this fund. Therefore, we

drop this fund from our sample and for the remainder of our analysis, we focus on the

smoothing profile estimates for the remaining 908 funds in our sample.33

Table 8 contains summary statistics for maximum likelihood estimate of the smoothing

parameters (θ0, θ1, θ2) and smoothing index ξ, Table 12 reports comparable statistics for

the regression estimates of the smoothing parameters under the assumption of a linear one-

factor model for true returns, and Table 9 presents the maximum likelihood estimates of the

smoothing model for the 50 most illiquid funds of the 908 funds, as ranked by θ̂0.

The left panel of Table 8 reports summary statistics for the maximum likelihood estimates

under the normalization (49) where the smoothing coefficients sum to 1, and the right panel

32We also constrain our maximum likelihood estimators to yield invertible MA(2) processes, and this
constraint was binding for only two funds: 1711 and 4298.

33The apparent source of the problem in this case is two consecutive outliers, 39.4% in December 1999
followed by −27.6% in January 2000 (these are monthly returns, not annualized). The effect of two outliers
on the parameter estimates of the MA(2) model (21)–(23) is to pull the values of the coefficients in opposite
directions so as to fit the extreme reversals. We contacted TASS to investigate these outliers and were
informed that they were data errors. We also checked the remaining 908 funds in our sample for similar
outliers, i.e., consecutive extreme returns of opposite sign, and found none. We also computed the maximum
and minimum monthly returns for each fund in our sample, ranked the 908 funds according to these maxima
and minima, and checked the parameter estimates of the top and bottom 10 funds, and none exhibited the
extreme behavior of fund 1055’s parameter estimates.
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reports the same statistics for the maximum likelihood estimates under the normalization

(75) where the variance σ2
η is set equal to a nonparametric estimate σ̃2

η given by (74). A

comparison of the right and left panels reveals roughly similar characteristics, indicating the

general equivalence of these two normalization methods and the fact that the smoothing

model (21)–(23) may be a reasonable specification for hedge-fund returns.34

Table 8 shows that seven categories seem to exhibit smaller average values of θ̂0 than

the rest—European Equity Hedge (0.82), Fixed-Income Directional (0.76), Convertible Fund

(Long Only) (0.84), Event Driven (0.81), Non-Directional/Relative Value (0.82), Pure Emerg-

ing Market (0.83), and Fund of Funds (0.85).35 Consider, in particular, the Fixed-Income

Directional category, which has a mean of 0.76 for θ̂0. This is, of course, the average across all

13 funds in this category, but if it were the point estimate of a given fund, it would imply that

only 76% of that fund’s true current monthly return would be reported, with the remaining

24% distributed over the next two months (recall the constraint that θ̂0 + θ̂1 + θ̂2 = 1). The

estimates 0.15 and 0.08 for θ̂1 and θ̂2 imply that on average, the current reported return also

includes 15% of last month’s true return and 8% of the true return two months ago.36 These

averages suggest a significant amount of smoothing and illiquidity in this category, and are

approximated by the geometric smoothing model of Section 4.2 with δ=0.25 (see Table 4).

Recall from Table 4 that in this case, with k =2, the impact of geometric smoothing was a

24% decrease in the market beta and a 27% increase in the Sharpe ratio of observed returns.

Overall, the summary statistics in Table 8 are broadly consistent with common intuition

about the nature of the strategies and securities involved in these fund categories, which

contain the most illiquid securities and, therefore, have the most potential for smoothed

returns.

Table 9 contains the smoothing parameter estimates for the top 50 funds ranked by θ̂0,

which provides a more direct view of illiquidity and smoothed returns. In contrast to the

34However, Table 8 contains only summary statistics, not the maximum likelihood estimators of individual
funds, hence differences in the two normalizations for given funds may not be apparent from this table. In
particular, side-by-side comparisons of maximum likelihood estimates for an individual under these two nor-
malizations may still be a useful specification check despite the broad similarities that these two approaches
seem to exhibit in Table 8.

35We omit the Global Opportunity category from our discussions because it consists of only a single fund.
36The averages do not sum to 1 exactly because of rounding errors.
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Code Category Period T Status θ̂0 SE(θ̂0) θ̂1 SE(θ̂1) θ̂2 SE(θ̂2) ξ̂

1201 Non-Directional/Relative Value 199409–200101 77 1 0.464 0.040 0.365 0.025 0.171 0.047 0.378
4346 Event Driven 199412–200011 71 1 0.471 0.041 0.335 0.029 0.195 0.048 0.371
180 Not Categorized 198906–199608 87 0 0.485 0.041 0.342 0.027 0.173 0.046 0.382

1204 Non-Directional/Relative Value 199510–200101 64 1 0.492 0.049 0.339 0.033 0.169 0.055 0.386
1584 Fund of Funds 199601–200101 61 1 0.504 0.046 0.245 0.040 0.251 0.051 0.377
518 Non-Directional/Relative Value 199312–200005 78 0 0.514 0.034 0.142 0.037 0.343 0.037 0.403
971 Non-Directional/Relative Value 199409–200012 76 1 0.515 0.038 0.176 0.038 0.309 0.041 0.392

1234 Fund of Funds 199410–200012 75 1 0.527 0.061 0.446 0.020 0.027 0.061 0.477
2185 Fixed Income Directional 199108–200101 114 1 0.532 0.040 0.265 0.032 0.202 0.043 0.395

26 Non-Directional/Relative Value 199303–200101 95 1 0.533 0.047 0.305 0.033 0.162 0.050 0.403
171 Non-Directional/Relative Value 199304–200101 94 1 0.536 0.040 0.193 0.037 0.271 0.043 0.398

1696 Fund of Funds 199501–200001 61 0 0.536 0.067 0.406 0.030 0.058 0.068 0.456
120 Non-Directional/Relative Value 198207–199810 196 0 0.546 0.032 0.238 0.026 0.215 0.034 0.402

1396 Non-Directional/Relative Value 199507–200101 67 1 0.548 0.056 0.255 0.044 0.197 0.059 0.404
2774 Non-Directional/Relative Value 199501–200006 66 0 0.553 0.058 0.262 0.044 0.185 0.061 0.409
1397 Non-Directional/Relative Value 199410–200101 76 1 0.556 0.055 0.260 0.042 0.184 0.057 0.410

57 Non-Directional/Relative Value 199210–200101 100 1 0.561 0.052 0.311 0.034 0.127 0.053 0.428
4158 Event Driven 199510–200101 64 1 0.565 0.062 0.261 0.046 0.174 0.064 0.417
1773 Fund of Funds 199506–200101 68 1 0.569 0.056 0.194 0.049 0.238 0.058 0.417
415 Not Categorized 198807–199608 98 0 0.570 0.054 0.306 0.035 0.124 0.055 0.434

1713 Fixed Income Directional 199601–200101 61 1 0.573 0.067 0.269 0.048 0.158 0.068 0.426
1576 Fund of Funds 199504–200010 67 1 0.575 0.066 0.293 0.044 0.132 0.067 0.434
1633 Event Driven 199304–199901 70 0 0.576 0.066 0.309 0.042 0.115 0.066 0.440
1883 Event Driven 199306–200101 92 1 0.578 0.053 0.236 0.041 0.187 0.054 0.424
1779 Non-Directional/Relative Value 199512–200101 62 1 0.584 0.067 0.241 0.051 0.175 0.068 0.429
3860 Fund of Funds 199511–200101 63 1 0.584 0.064 0.207 0.053 0.210 0.065 0.428
482 Non-Directional/Relative Value 199406–200101 80 1 0.584 0.060 0.253 0.044 0.163 0.060 0.432

2755 US Equity Hedge 199203–200010 104 1 0.584 0.057 0.321 0.034 0.095 0.056 0.453
1968 Fund of Funds 199402–200012 83 1 0.587 0.060 0.253 0.044 0.160 0.060 0.434
1240 Fund of Funds 199405–200101 81 1 0.592 0.055 0.168 0.049 0.240 0.056 0.436
1884 Event Driven 199301–200101 97 1 0.592 0.059 0.298 0.038 0.110 0.058 0.451
2864 Non-Directional/Relative Value 199408–200101 78 1 0.598 0.064 0.255 0.046 0.147 0.064 0.444

1 Non-Directional/Relative Value 199101–200101 121 1 0.600 0.051 0.241 0.038 0.159 0.051 0.444
412 Pure Emerging Market 199211–200101 99 1 0.600 0.061 0.318 0.036 0.082 0.059 0.468

1046 Pure Emerging Market 199406–200101 80 1 0.603 0.058 0.169 0.051 0.228 0.058 0.444
2570 Event Driven 199001–200101 133 1 0.604 0.046 0.171 0.039 0.225 0.046 0.445
945 Fund of Funds 199210–200101 100 1 0.605 0.060 0.273 0.040 0.122 0.058 0.456

1994 Non-Directional/Relative Value 199507–200101 67 1 0.606 0.069 0.217 0.053 0.177 0.068 0.446
1691 Event Driven 199310–200101 88 0 0.610 0.062 0.232 0.046 0.158 0.061 0.451

34 Non-Directional/Relative Value 199209–200101 101 1 0.612 0.052 0.143 0.047 0.245 0.052 0.455
2630 Non-Directional/Relative Value 199001–200101 133 1 0.612 0.052 0.255 0.036 0.133 0.051 0.457
2685 US Equity Hedge 199207–200101 103 1 0.613 0.060 0.271 0.040 0.116 0.058 0.463
2549 Non-Directional/Relative Value 199408–200101 78 1 0.614 0.079 0.412 0.029 −0.026 0.069 0.547
490 Event Driven 199404–199908 65 0 0.615 0.074 0.237 0.054 0.148 0.072 0.456

3099 Convertible Fund (Long Only) 199501–200101 73 1 0.615 0.060 0.121 0.057 0.263 0.060 0.463
1326 US Equity Hedge 199601–200101 61 1 0.619 0.069 0.145 0.062 0.236 0.068 0.460
1418 Fund of Funds 199301–199804 64 0 0.621 0.085 0.363 0.041 0.016 0.078 0.518
3712 Not Categorized 199304–200101 94 1 0.625 0.062 0.211 0.047 0.164 0.060 0.462
1534 Fund of Funds 199402–200101 84 1 0.625 0.068 0.246 0.048 0.129 0.065 0.468
167 Event Driven 199207–200101 103 1 0.627 0.061 0.239 0.044 0.134 0.059 0.468

Table 9: First 50 funds of ranked list of 908 hedge funds in the TASS Hedge Fund Combined
(Live and Graveyard) database with at least five years of returns history during the period
from November 1977 to January 2001, ranked in increasing order of the estimated smoothing
parameter θ̂0 of the MA(2) smoothing process Ro

t = θ0Rt + θ1Rt−1 + θ2Rt−2, subject to the
normalization 1 = θ0 + θ1 + θ2, and estimated via maximum likelihood.
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averages of Table 8, the parameter estimates of θ0 among these 50 funds range from 0.464 to

0.627, implying that only half to two-thirds of the current month’s true returns are reflected

in observed returns. The asymptotic standard errors are generally quite small, ranging from

0.032 to 0.085, hence the smoothing parameters seem to be estimated reasonably precisely.

The funds in Table 9 fall mainly into three categories: Non-Directional/Relative Value,

Event Driven, and Fund of Funds. Together, these three categories account for 40 of the

50 funds in Table 9. A more complete summary of the distribution of smoothing parameter

estimates across the different fund categories is provided in Figures 5 and 6. Figure 5

contains a graph of the smoothing coefficients θ̂0 for all 908 funds by category, and Figure 6

contains a similar graph for the smoothing index ξ̂. These figures show that although there

is considerable variation within each category, nevertheless, some differences emerge between

categories. For example, categories 6–9, 15, and 17 (Fixed-Income Directional, Convertible

Fund (Long Only), Event Driven Non-Directional/Relative Value, Pure Emerging Market,

and Fund of Funds, respectively), have clearly discernible concentrations that are lower than

the other categories, suggesting more illiquid funds and more smoothed returns. On the

other hand, categories 1, 4, and 14 (US Equity Hedge, Global Equity Hedge, and Pure

Managed Futures, respectively) have concentrations that are at the upper end, suggesting

just the opposite—more liquidity and less return-smoothing. The smoothing index estimates

ξ̂ plotted in Figure 6 show similar patterns of concentration and dispersion within and

between the categories.

To develop further intuition for the smoothing model (21)–(23) and the possible interpre-

tations of the smoothing parameter estimates, we apply the same estimation procedure to

the returns of the Ibbotson stock and bond indexes, the Merrill Lynch Convertible Securities

Index,37 the CSFB/Tremont hedge-fund indexes, and two mutual funds, the highly liquid

Vanguard 500 Index Fund, and the considerably less liquid American Express Extra Income

Fund.38 Table 10 contains summary statistics, market betas, contemporaneous and lagged

37 This is described by Merrill Lynch as a “market value-weighted index that tracks the daily price
only, income and total return performance of corporate convertible securities, including US domestic bonds,
Eurobonds, preferred stocks and Liquid Yield Option Notes”.

38As of January 31, 2003, the net assets of the Vanguard 500 Index Fund (ticker symbol: VFINX) and the
AXP Extra Income Fund (ticker symbol: INEAX) are given by http://finance.yahoo.com/ as $59.7 billion
and $1.5 billion, respectively, and the descriptions of the two funds are as follows:
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Figure 5: Estimated smoothing coefficients θ̂0 for all funds in the TASS Hedge Fund database
with at least five years of returns during the period from November 1977 to January 2001,
ordered by categories 0 to 17. The two panels differ only in the range of the vertical axis,
which is smaller for the lower panel so as to provide finer visual resolution of the distribution
of estimated coefficients in the sample.
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Figure 6: Estimated smoothing index ξ̂ for all funds in the TASS Hedge Fund database with
at least five years of returns during the period from November 1977 to January 2001, ordered
by categories 0 to 17. The two panels differ only in the range of the vertical axis, which
is smaller for the lower panel so as to provide finer visual resolution of the distribution of
estimated smoothing indexes in the sample.
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market betas as in Asness, Krail and Liew (2001), and smoothing-coefficient estimates for

these index and mutual-fund returns.39

Consistent with our interpretation of θ̂0 as an indicator of liquidity, the returns of the

most liquid portfolios in the first panel of Table 10—the Ibbotson Large Company Index, the

Vanguard 500 Index Fund (which is virtually identical to the Ibbotson Large Company Index,

except for sample period and tracking error), and the Ibbotson Long-Term Government

Bond Index—have smoothing parameter estimates near unity: 0.92 for the Ibbotson Large

Company Index, 1.12 for the Vanguard 500 Index Fund, and 0.92 for the Ibbotson Long-Term

Government Bond Index. The first-order autocorrelation coefficients and lagged market

betas also confirm their lack of serial correlation; 9.8% first-order autocorrelation for the

Ibbotson Large Company Index , −2.3% for the Vanguard 500 Index Fund, and 6.7% for the

Ibbotson Long-Term Government Bond Index, and lagged market betas that are statistically

indistinguishable from 0. However, the values of θ̂0 of the less liquid portfolios are less

than 1.00: 0.82 for the Ibbotson Small Company Index, 0.84 for the Ibbotson Long-Term

Corporate Bond Index, 0.82 for the Merrill Lynch Convertible Securities Index, and 0.67 for

the American Express Extra Income Fund, and their first-order serial correlation coefficients

are 15.6%, 15.6%, 6.4% and 35.4%, respectively, which, with the exception of the Merrill

Lynch Convertible Securities Index, are considerably higher than those of the more liquid

portfolios.40 Also, the lagged market betas are statistically significant at the 5% level for

the Ibbotson Small Company Index (a t-statistic for β̂1: 5.41), the Ibbotson Long-Term

“The Vanguard 500 Index Fund seeks investment results that correspond with the price and yield per-
formance of the S&P 500 Index. The fund employs a passive management strategy designed to track the
performance of the S&P 500 Index, which is dominated by the stocks of large U.S. companies. It attempts
to replicate the target index by investing all or substantially all of its assets in the stocks that make up the
index.”

“AXP Extra Income Fund seeks high current income; capital appreciation is secondary. The fund ordinarily
invests in long-term high-yielding, lower-rated corporate bonds. These bonds may be issued by U.S. and
foreign companies and governments. The fund may invest in other instruments such as: money market
securities, convertible securities, preferred stocks, derivatives (such as futures, options and forward contracts),
and common stocks.”

39Market betas were obtained by regressing returns on a constant and the total return of the S&P 500,
and contemporaneous and lagged market betas were obtained by regressing returns on a constant, the
contemporaneous total return of the S&P 500, and the first two lags.

40However, note that the second-order autocorrelation of the Merrill Lynch Convertible Securities Index is
12.0% which is second only to the AXP Extra Income Fund in absolute magnitude, two orders of magnitude
larger than the second-order autocorrelation of the Ibbotson bond indexes, and one order of magnitude larger
than the Ibbotson stock indexes.
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Government Bond Index (t-statistic for β̂1: −2.30), the Merrill Lynch Convertible Securities

Index (t-statistic for β̂1: 3.33), and the AXP Extra Income Fund (t-statistic for β̂1: 4.64).

The results for the CSFB Hedge Fund Indexes in the second panel of Table 10 are also

consistent with the empirical results in Tables 8 and 9—indexes corresponding to hedge-fund

strategies involving less liquid securities tend to have lower θ̂0’s. For example, the smoothing-

parameter estimates θ̂0 of the Convertible Arbitrage, Emerging Markets, and Fixed-Income

Arbitrage Indexes are 0.49, 0.75, and 0.63, respectively, and first-order serial correlation

coefficients of 56.6%, 29.4%, and 39.6%, respectively. In contrast, the smoothing-parameter

estimates of the more liquid hedge-fund strategies such as Dedicated Short Bias and Man-

aged Futures are 0.99 and 1.04, respectively, with first-order serial correlation coefficients of

7.8% and 3.2%, respectively. While these findings are generally consistent with the results

in Tables 8 and 9, it should be noted that the process of aggregation can change the sta-

tistical behavior of any time series. For example, Granger (1980, 1988) observes that the

aggregation of a large number of stationary autoregressive processes can yield a time series

that exhibits long-term memory, characterized by serial correlation coefficients that decay

very slowly (hyperbolically, as opposed to geometrically as in the case of a stationary ARMA

process). Therefore, while it is true that the aggregation of a collection of illiquid funds will

generally yield an index with smoothed returns,41 the reverse need not be true—smoothed

index returns need not imply that all of the funds comprising the index are illiquid. The

latter inference can only be made with the benefit of additional information—essentially

identification restrictions—about the statistical relations among the funds in the index, i.e.,

covariances and possibly other higher-order co-moments, or the existence of common factors

driving fund returns.

It is interesting to note that the first lagged market beta, β̂1, for the CSFB/Tremont

Indexes is statistically significant at the 5% level in only three cases (Convertible Arbitrage,

Event Driven, and Managed Futures), but the second lagged beta, β̂2, is significant in five

cases (the overall index, Convertible Arbitrage, Fixed Income Arbitrage, Global Macro,

41It is, of course, possible that the smoothing coefficients of some funds may exactly offset those of other
funds so as to reduce the degree of smoothing in an aggregate index. However, such a possibility is extremely
remote and pathological if each of the component funds exhibits a high degree of smoothing.
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and Long/Short). Obviously, the S&P 500 Index is likely to be inappropriate for certain

styles, e.g., Emerging Markets, and these somewhat inconsistent results suggest that using

a lagged market-beta adjustment may not completely account for the impact of illiquidity

and smoothed returns.

Overall, the patterns in Table 10 confirm our interpretation of smoothing coefficients and

serial correlation as proxies for liquidity, and suggest that there may be broader applications

of our model of smoothed returns to other investment strategies and asset classes.

6.3 Cross-Sectional Regressions

A more quantitative summary of the cross-sectional properties of the smoothing parameter

estimates for the 908 funds is given in Table 11, which contains the results of cross-sectional

regressions of the smoothing parameter θ̂0 and the smoothing index ξ̂ on a number of 0/1

indicator variables.42 In the first two regressions, θ̂0 and ξ̂ are the dependent variables,

respectively, and the regressors include a constant term, 17 indicator variables corresponding

to the 17 hedge-fund categories defined by TASS (see Appendix A.4), and an indicator

variable that takes on the value 1 if the fund is open and 0 if it is closed to new investors. The

third and fourth regressions have the same dependent variables—θ̂0 and ξ̂, respectively—and

include the same regressors as the first two regressions but also include 0/1 indicator variables

that indicate whether the fund is US-based (USBASED), and whether the geographical focus

of the fund is global (GF-GLB), US (GF-USA), Asia/Pacific (GF-APC), Western Europe

(GF-WEU), Eastern Europe (GF-EEU), and Africa (GF-AFR).

The results of the first regression are consistent with the general intuition gleaned from

Figures 5 and 6. The category indicator variables with the most negative coefficients that are

statistically significant at the 5% level are European Equity Hedge (−0.212), Fixed-Income

Directional (−0.262), Event Driven (−0.218), Non-Directional/Relative Value (−0.211),

Pure Emerging Market (−0.195), Fund of Funds (−0.178), implying that on average, funds

in these categories have smaller smoothing coefficients θ̂0, i.e., less liquidity or smoother

42To conserve space, we report regression results only for the maximum likelihood estimates under the con-
straint (49). Table A.8 of the Appendix reports corresponding results for the maximum likelihood estimates
under the alternate constraint (75).
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returns. These point estimates can be used to approximate the marginal impact that a

given investment style has on the smoothing profile of the fund’s monthly returns. For ex-

ample, from a no-smoothing baseline of 1, conditioning on belonging to the Fixed-Income

Directional category yields an expected smoothing parameter θ̂0 of 1−0.262=0.738 and an

expected smoothing index of ξ̂ of 1−0.583 = 0.417, other things equal (and assuming that

the remaining indicator variables in the two regression equations are 0).

In contrast, the coefficients for Dedicated Shortseller and Pure Leveraged Currency

indicators—0.001 and 0.069, respectively, with t-statistics of 0.01 and 0.11, respectively—

are positive and statistically insignificant at the 5% level, which is consistent with common

intuition about the liquidity of these types of funds. Moreover, the coefficient for the Pure

Managed Futures indicator is both positive and significant at the 5% level—0.101 with a

t-statistic of 3.00—which is also consistent with the intuition that managed futures involve

relatively liquid securities with well established marks that cannot easily be manipulated.

The last indicator variable included in the first two regressions takes on the value 1 if the

fund is open to new investors and 0 if closed. If return-smoothing is actively being pursued,

we might expect it to be more important for funds that are open since such funds are still

attempting to attract new investors. This implies that the coefficient for this indicator

variable should be negative—open funds should be more prone to smoothing than closed

funds. Table 11 confirms this hypothesis: the estimated coefficient for OPEN is −0.040 with

a t-statistic of 2.03, implying that funds open to new investors have a smoothing coefficient

θ̂0 that is lower by 0.040 on average than funds that are closed. An alternate interpretation

is that funds that are still open to new investors are typically those with smaller assets under

management, and as a result, are less likely to be able to afford costly third-party valuations

of illiquid securities in their portfolios. Unfortunately, many funds in the TASS database do

not report assets under management so we were unable to investigate this alternative.

The third and fourth regressions in Table 11 include additional indicator variables that

capture the fund’s geographical base as well as the geographical focus of its investments, and

we see that being in the US has a positive marginal impact on the conditional mean of θ̂0,

but being US-focused in its investments has a negative marginal impact. The latter result is

somewhat counterintuitive but becomes less puzzling in light of the fact that approximately
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46% of the funds are US-focused, hence many of the most illiquid funds are included in this

category. Apart from this indicator, the geographical aspects of our sample of funds seem

to have little impact on the cross-sectional variability in smoothing parameter estimates.

With R2’s ranging from 9.0% to 17.7%, the regressions in Table 11 leave considerable

cross-sectional variation unexplained, but this is no surprise given the noise inherent in the

category assignments and the heterogeneity of investment styles even within each category.

However, the general pattern of coefficients and t-statistics do suggest that the smoothing

coefficients are capturing significant features of the cross section of hedge fund returns in

our sample.

The final set of empirical estimates of the smoothing process (21)–(23) is for the linear

regression model of Section 5.2, and is summarized in Table 12. Recall from Section 5.2

that the linear-regression estimates of (θ0, θ1, θ2) are based on the assumption that true

returns are given by the linear single-factor model (20) where the factor is the return on

the S&P 500 index. To the extent that this assumption is a poor approximation to the true

return-generating process, the corresponding smoothing parameter estimates will be flawed

as well.

Table 12 reports the means and standard deviations of the estimates (θ̂0, θ̂1, θ̂2) and ξ̂

for each of the categories, as well as the Durbin-Watson statistic and the regression R2.

In contrast to the maximum likelihood estimates of Table 8, the regression estimates are

considerably more noisy, with cross-sectional standard deviations for the coefficients that are

often an order of magnitude larger than the means, and in almost every case larger than the

standard deviations of Table 8. For example, the average θ̂0 for the Not Categorized category

is 0.659, but the standard deviation is 8.696. The mean of θ̂0 for Fixed-Income Directional

funds is −1.437 and the standard deviation is 6.398. These results are not unexpected given

the role that the linear single-factor model plays in the estimation process—if true returns

contain additional common factors, then the linear-regression approach (62) will yield biased

and inconsistent estimators for the smoothing parameters in (21)–(23).

The R2 statistics in Table 12 yield some indication of the likelihood of omitted factors

among the different categories. The highest mean R2’s are for the US Equity Hedge, Dedi-

cated Shortseller, and Convertible Fund (Long Only) categories, with values of 26.1%, 43.0%,
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Regressor θ̂0 ξ̂ θ̂0 ξ̂

Constant 1.059 1.314 1.086 1.407
(42.05) (17.26) (35.62) (15.21)

US Equity Hedge −0.077 −0.255 −0.076 −0.257
(2.56) (2.82) (2.36) (2.62)

European Equity Hedge −0.212 −0.531 −0.260 −0.676
(3.79) (3.14) (4.06) (3.48)

Asian Equity Hedge −0.086 −0.254 −0.076 −0.248
(0.78) (0.77) (0.65) (0.71)

Global Equity Hedge −0.113 −0.366 −0.084 −0.294
(2.19) (2.35) (1.55) (1.80)

Dedicated Shortseller 0.001 −0.128 0.001 −0.130
(0.01) (0.45) (0.01) (0.46)

Fixed-Income Directional −0.262 −0.583 −0.258 −0.575
(3.73) (2.75) (3.64) (2.67)

Convertible Fund (Long Only) −0.180 −0.264 −0.188 −0.289
(2.73) (1.32) (2.83) (1.44)

Event Driven −0.218 −0.514 −0.223 −0.527
(6.69) (5.23) (6.57) (5.12)

Non-Directional/Relative Value −0.211 −0.432 −0.194 −0.399
(6.07) (4.12) (5.37) (3.64)

Global Macro −0.075 −0.271 −0.049 −0.230
(1.38) (1.66) (0.86) (1.33)

Global Opportunity −0.282 −0.656 −0.275 −0.647
(1.17) (0.9) (1.14) (0.89)

Natural Resources −0.109 −0.363 −0.112 −0.372
(0.78) (0.86) (0.8) (0.87)

Pure Leveraged Currency 0.069 0.152 0.073 0.158
(1.32) (0.96) (1.37) (0.98)

Pure Managed Futures 0.101 0.210 0.116 0.244
(3.00) (2.06) (3.29) (2.29)

Pure Emerging Market −0.195 −0.486 −0.189 −0.481
(5.34) (4.40) (4.33) (3.63)

Pure Property 0.173 0.304 0.195 0.339
(0.72) (0.42) (0.80 (0.46)

Fund of Funds −0.178 −0.433 −0.170 −0.419
(5.66) (4.57) (5.28) (4.29)

OPEN −0.040 −0.077 −0.024 −0.041
(2.03) (1.30) (1.17) (0.65)

USBASED 0.018 0.030
(1.00) (0.54)

GF-GLB −0.050 −0.139
(2.37) (2.19)

GF-USA −0.053 −0.144
(2.45) (2.19)

GF-APC −0.049 −0.128
(1.59) (1.37)

GF-WEU 0.018 0.052
(0.61) (0.58)

GF-EEU −0.011 −0.045
(0.26) (0.35)

GF-AFR 0.016 0.054
(0.28) (0.31)

Sample Size 908 908 891 891

Adjusted R2(%) 16.5 9.0 17.7 9.9

Table 11: Regressions of maximum likelihood estimated smoothing coefficient θ̂0 and smooth-
ing index ξ̂ on indicator variables for 908 hedge funds in the TASS Hedge Fund Combined
(Live and Graveyard) database with at least five years of returns history during the period
from November 1977 to January 2001, where the maximum likelihood estimators of the MA
coefficients (θ0, θ1, θ2) are constrained to sum to 1. Absolute values of t-statistics are given
in parentheses. The indicator variables are OPEN (1 if the fund is open, 0 otherwise); the
fund categories (1 if the fund belongs to the category, 0 otherwise); USBASED (1 if the fund
is based in the US, 0 otherwise); and geographical focus categories (1 if the geographical
focus of the fund is in a given region, 0 otherwise, where the regions are USA, Asia Pacific,
Western Europe, Eastern Europe, and Africa, respectively).
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and 25.0%, respectively, which is consistent with the fact that our single factor is the S&P

500.43 However, several categories have mean R2’s below 10%, implying relatively poor ex-

planatory power for the single-factor model and, therefore, noisy and unreliable estimates of

the smoothing process.

Overall, the results in Table 12 suggest that the linear regression approach is dominated

by the maximum likelihood procedure, and that while the regression coefficients of lagged

market returns may provide some insight into the net market exposure of some funds, they

are considerably less useful for making inferences about illiquidity and smoothed returns.

6.4 Illiquidity Vs. Smoothing

To address the issue of systematic versus idiosyncratic effects of illiquidity and return-

smoothing, we estimate the more general linear factor model of smoothing (67)–(69) with

k = 3 for the subset of Convertible Funds (Long Only), which consists of 15 funds in our

sample of 908 funds. We take as our common factor Λt the Merrill Lynch Convertible Secu-

rities Index (see footnote 37 for a description), and estimate the linear regression equation

via maximum likelihood and then renormalize the MA coefficients according to (69) and

recompute the standard errors accordingly. Table 13 contains the regression coefficients as

well as the smoothing coefficients, and t-statistics are reported instead of standard errors

because we have specific null hypotheses to test as described in Section 5.2.

The estimates in Table 13 show that including a common factor can have a significant

impact on the smoothing parameter estimates. For example, the value of θ̂0 for Fund 1146

under the smoothing process (21)–(23) is 0.689, and its t-statistic under the null hypothesis

that θ0 =1 is −6.01. However, under the linear factor specification (67)–(69), the smoothing

coefficient estimate becomes 1.172 with a t-statistic of 0.96. Nevertheless, for other funds in

our sample of 15, the smoothing parameter estimates are virtually unchanged by including

the contemporaneous and lagged common factors. For example, the value of θ̂0 for Fund

4243 under the smoothing process (21)–(23) and the linear factor model (67)–(69) is 0.645

and 0.665, respectively, with t-statistics of −8.18 and −5.36, respectively.

43We have omitted the Global Opportunity category from this comparison despite its R2 of 30.9% because
it contains only a single fund.
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We see from Table 13 that the Convertible Securities Index is statistically significant

at the 5% level for most, but not all, of the 15 funds, and that its first lag is significant

for only four funds (818, 2245, 4204, and 4326), and its second lag is significant for only

two funds (1908 and 4216). For five of these six funds, the lagged-index coefficients are

positive in sign, which is consistent with the smoothing model (68)–(69) (assuming that the

funds’ contemporaneous factor loadings and smoothing parameters are positive). For Fund

4216, the smoothing parameter estimate θ̂0 is still significantly different from 1 even after

accounting for the common factor, but for Fund 4204, it is not.

It is tempting to conclude from these results that the linear factor model (67)–(69) is

capable of distinguishing between systematic illiquidity and idiosyncratic return-smoothing

behavior. For example, we might argue that those funds which continue to exhibit significant

smoothing parameters θ̂0 even after accounting for common factors must be engaged in

return-smoothing behavior. However, several caveats must be kept in mind before reaching

such conclusions. First, we cannot be certain that the Merrill Lynch Convertible Securities

Index is the appropriate common factor for these funds, despite the TASS classification—

some funds may be involved in complex trading strategies involving convertible securities

while others are engaged in simpler buy-and-hold strategies.44 Regressing a fund’s returns

on a highly serially correlated common factor that is not directly relevant to that fund’s

investment process will, nevertheless, have an effect on the smoothing-parameter estimates

θ̂k, and the effect may be in either direction depending on the relation between the common

factor and the fund’s observed returns. Second, even if a common factor can account for

much of the serial correlation in a fund’s observed returns, an explanation for the source of

the factor’s serial correlation is still required—if the fund is a buy-and-hold version of the

common factor, e.g., a fund-of-funds designed to replicate the CSFB/Tremont Convertible

Arbitrage Index, then it is of small comfort to investors in such a fund-of-funds that there

is not much smoothing in observed returns beyond what is already present in the common

44 In particular, of the 15 “Convertible Fund (Long Only)” funds in our sample, 12 funds involve long-
only positions in convertible bonds, possibly with a limited degree of leverage, but with no equity or credit
protection, and the remaining 3 funds (4204, 4145 and 4326) are convertible arbitrage funds that involve
long positions in convertible bonds and short positions in the corresponding stocks. We thank Stephen Jupp
of TASS for providing us with this information.
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factor. And finally, no econometric model can fully capture the many qualitative and often

subjective characteristics of a fund’s investment process, and such information is likely to

be of particular relevance in distinguishing between illiquidity and smoothed returns at the

fund level.

These caveats suggest that a more comprehensive econometric analysis of hedge-fund

returns may be worthwhile, with particular emphasis on constructing common factors for

hedge funds with similar investment mandates and processes. By developing a better under-

standing for the common risk exposures that certain hedge funds share, it may be possible

to differentiate between systematic and idiosyncratic illiquidity and provide investors and

managers with a more refined set of tools with which to optimize their investment plans.

6.5 Smoothing-Adjusted Sharpe Ratio Estimates

For each of the 908 funds in our sample, we compute annual Sharpe ratios in three ways

relative to a benchmark return of 0: the standard method (
√

12 times the ratio of the mean

monthly return to the monthly return standard deviation), the serial-correlation-adjusted

method in Lo (2002), and the small-sample method described in Section 5.4. The results are

summarized in Table 14.

The largest differences between standard and smoothing-adjusted Sharpe ratios are found

in the same categories that the smoothing-process estimates of Section 6.2 identified as

the most illiquid: Fixed-Income Directional (20.3% higher average Sharpe ratio relative

to SR∗∗), Convertible Fund (Long Only) (17.8%), Non-Directional/Relative Value (16.0%),

Pure Emerging Market (16.3%), and Fund of Funds (17.8%). For two categories—Dedicated

Shortseller and Managed Futures—the bias is reversed, a result of negative serial correlation

in their returns. For the other categories, Table 14 shows that the smoothing-adjusted Sharpe

ratios are similar in magnitude to the usual estimates. These differences across categories

suggest the importance of taking illiquidity and smoothed returns into account in evaluating

the performance of hedge funds.
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Category

Sharpe Ratios For Combined Sample

N
SR SR∗ SR∗∗

Mean SD Mean SD Mean SD

Not Categorized 111 1.12 1.09 1.06 0.87 1.00 0.82
US Equity Hedge 162 1.26 0.75 1.31 0.75 1.23 0.69
European Equity Hedge 22 1.43 0.74 1.43 0.80 1.33 0.74
Asian Equity Hedge 5 0.50 0.39 0.52 0.39 0.49 0.37
Global Equity Hedge 27 0.90 0.61 0.95 0.66 0.89 0.61
Dedicated Shortseller 7 0.28 0.59 0.32 0.64 0.30 0.61
Fixed-Income Directional 13 2.02 2.35 1.80 2.23 1.68 2.06
Convertible Fund (Long Only) 15 1.83 1.20 1.66 0.85 1.55 0.80
Event Driven 109 2.36 1.45 2.21 1.57 2.08 1.47
Non-Directional/Relative Value 85 2.20 1.86 2.03 2.39 1.89 2.22
Global Macro 24 1.08 0.67 1.14 0.73 1.07 0.70
Global Opportunity 1 −0.56 — −0.39 — −0.37 —
Natural Resources 3 0.60 0.25 0.56 0.23 0.52 0.21
Pure Leveraged Currency 26 0.63 0.49 0.65 0.50 0.61 0.47
Pure Managed Futures 93 0.54 0.55 0.63 0.60 0.60 0.56
Pure Emerging Market 72 0.39 0.45 0.36 0.44 0.34 0.40
Pure Property 1 0.42 — 0.45 — 0.41 —
Fund of Funds 132 1.44 1.01 1.30 0.88 1.22 0.82

All 908 1.32 1.24 1.27 1.27 1.19 1.18

Table 14: Means and standard deviations of Sharpe ratios of 908 hedge funds in the TASS
Hedge Fund Combined (Live and Graveyard) database with at least five years of returns
history during the period from November 1977 to January 2001. SR is the standard Sharpe
ratio, SR∗ is the smoothing-adjusted Sharpe ratio of Lo (2002), and SR∗∗ is the smoothing-
adjusted Sharpe ratio using σ̂NW. All Sharpe ratios are computed with respect to a 0
benchmark.
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7 Conclusions

Although there are several potential explanations for serial correlation in asset returns, we

have argued in this paper that the serial correlation present in the returns of hedge funds

is due primarily to illiquidity and smoothed returns. Using a simple econometric model

in which observed returns are a finite moving-average of unobserved economic returns, we

are able to generate empirically realistic levels of serial correlation for historical hedge-fund

returns while, at the same time, explaining the findings of Asness, Krail and Liew (2001)

regarding the significance of lagged market returns in market-model regressions for hedge

funds. Although our moving-average specification is similar to some of the early models of

nonsynchronous trading, our motivation is quite different and is meant to cover a broader

set of factors that give rise to serial correlation and smoothed returns, even in the presence

of synchronously recorded prices.

Maximum likelihood estimates of our smoothing model for the returns of 908 hedge funds

in the TASS Hedge Fund database yield empirically plausible estimates of smoothing coeffi-

cients and suggest that simple time-series measures such as our smoothing index may serve

as useful proxies for a hedge fund’s illiquidity risk exposure. In some cases, our econometric

model may also be useful for flagging possible cases of deliberate performance-smoothing

behavior, although additional information will need to be gathered before any firm conclu-

sions regarding such behavior can be made. Regardless of the sources of serial correlation,

illiquidity exposure is the main implication and this has potentially important consequences

for both managers and investors. Therefore, we also develop a set of tools for quantifying the

degree of smoothing in the data and adjusting for smoothed returns in computing perfor-

mance statistics such as means, variances, market betas, and Sharpe ratios, and derive their

asymptotic distributions using continuous-record asymptotics that can better accommodate

the small sample sizes of most hedge-fund datasets.

Our empirical results suggest several applications for our econometric model of illiquidity

and smoothed returns. Despite the general consistency of our empirical results with common

intuition regarding the levels of illiquidity among the various hedge-fund investment styles,

the variation in estimated smoothing coefficients within each category indicates that there
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may be better ways of categorizing hedge funds. Given the importance of liquidity for the

typical hedge-fund investor, it may be useful to subdivide each style category into “liquidity

tranches” defined by our smoothing index. This may prove to be especially useful in iden-

tifying and avoiding the potential wealth transfers between new and existing investors that

can occur from the opportunistic timing of hedge-fund investments and redemptions. Alter-

natively, our smoothing parameter estimates may be used to compute illiquidity exposure

measures for portfolios of hedge funds or fund of funds, which may serve as the basis for a

more systematic approach to managing portfolios that include alternative investments.

Although we have focused on hedge funds in this paper, our analysis may be applied

to other investments and asset classes, e.g., real estate, venture capital, private equity, art

and other collectibles, and other assets for which illiquidity and smoothed returns are even

more problematic, and where the estimation of smoothing profiles can be particularly useful

for providing investors with risk transparency. More generally, our econometric model may

be applied to a number of other contexts in which there may be a gap between reported

results and economic realities. For example, recent events surrounding the collapse of Enron

and other cases of corporate accounting irregularities have created renewed concerns about

“earnings management” in which certain corporations are alleged to have abused accounting

conventions so as to smooth earnings, presumably to give the appearance of stability and

consistent growth.45 The impact of such smoothing can sometimes be “undone” using an

econometric model such as ours.

There are a number of outstanding issues regarding our analysis of illiquidity and smoothed

returns that warrant further study. Perhaps the most pressing issue is whether the proximate

source of smoothing is inadvertent or deliberate. Our linear regression model with contem-

poraneous and lagged common factors may serve as the starting point for distinguishing

between systematic illiquidity versus idiosyncratic smoothing behavior. However, this issue

is likely to require additional information about each fund along the lines of Chandar and

Bricker’s (2002) study, e.g., the size of the fund, the types of the securities in which the fund

invests, the accounting conventions used to mark the portfolio, the organization’s compen-

45See Beneish (2001) and Healy and Wahlen (1999) for reviews of the extensive literature on earnings
management.
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sation structure, and other operational aspects of the fund. With these additional pieces

of information, we may construct more relevant common factors for our linear-regression

framework, or relate the cross-sectional variation in smoothing coefficients to assets under

management, security type, fee structure, and other characteristics, yielding a more complete

picture of the sources of smoothed returns.

It may also be fruitful to view the hedge-fund industry from a broader perspective, one

that acknowledges the inherent capacity constraints of certain types of strategies as well

as the time lags involved in shifting assets from one type to another. Because of the in-

evitable cross-sectional differences in the performance of hedge-fund styles, assets often flow

in loosely coordinated fashion from one style to another, albeit under various institutional

restrictions such as calendar-specific periods of liquidity, tiered redemption schedules, re-

demption fees, and other frictions. The interactions between asset flows and institutional

rigidities—especially over time—may sometimes cause statistical side-effects that include

periodicities in performance and volatility, time-varying correlations, structural breaks, and

under certain conditions, serial correlation. The dynamics of the hedge-fund industry are

likely to be quite different than that of more traditional investment products, hence the

“ecological” framework of Niederhoffer (1998, Chapter 15), Farmer (1998), and Farmer and

Lo (1999), or the system dynamics approach of Getmansky and Lo (2003) might be more

conducive paradigms for addressing these issues.

Finally, from the hedge-fund investor’s perspective, a natural extension of our analysis

is to model illiquidity directly and quantify the illiquidity premium associated with each

hedge-fund investment style, perhaps in a linear-factor framework such as Chordia, Roll

and Subrahmanyam (2000) and Pastor and Stambaugh (2002). Whether such factor models

can forecast liquidity crises like August 1998, and whether there are “systematic” illiquidity

factors that are common to categories of hedge funds are open questions that are particularly

important in the context of hedge-fund investments. We plan to address these and other

related questions in our ongoing research.
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A Appendix

Proofs of Propositions 3, 4, and 5 are provided in Sections A.1, A.2, and A.3, respectively.

Section A.4 provides definitions of the 17 categories from TASS, and Section A.5 contains

additional empirical results.

A.1 Proof of Proposition 3

The constraint (49) may be used to substitute out θ0, hence we need only consider (θ1, θ2).

Now it is well known that in the standard MA(2) specification where the usual identification

condition is used in place of (49), i.e.,

Xt = εt + aεt−1 + bεt−2 ,

the asymptotic distribution of the maximum likelihood estimators (â, b̂) is given by:

√
T





 â

b̂


−


 a

b





 a∼ N (0,V) (A.1)

where

V ≡

 1− b2 a(1− b)

a(1− b) 1− b2


 . (A.2)

But under our normalization (49), there is a simple functional relation between (â, b̂) and

(θ̂1, θ̂2):

θ̂1 =
â

1 + â + b̂
, θ̂2 =

b̂

1 + â + b̂
. (A.3)
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Therefore, we can apply the delta method to obtain the asymptotic distribution of (θ̂1, θ̂2)

as:

√
T





 θ̂1

θ̂2


−


 θ1

θ2





 a∼ N (0,JVJ′) (A.4)

where the matrix J is Jacobian associated with (A.3):

J =
1

(1 + a + b)2


 1 + b −a

−b 1 + a


 . (A.5)

Then we have:

JVJ′ =

1

(1 + a + b)3


 −(1 + b)(−1 + a− ab + b2) b(−1 + a− ab + b2)

b(−1 + a− ab + b2) −(−1 + b)(−1 + a− ab + b2)


 (A.6)

and solving for a and b as a function of θ1 and θ2 using (A.3) and substituting these expres-

sions into A.6 yields the desired result.

The process Xt is invertible if and only if the roots of characteristic polynomial

f(x) = θ0x
2 + θ1x + θ2 (A.7)

lie inside the unit circle in the complex plane. It is easy to see that this is equivalent to the

condition that the roots of

f(x) = f

(
z + 1

z − 1

)
=

z2 + 2(1− θ1 − 2θ2)z + 1− 2θ1

(z − 1)2
(A.8)
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lie in the left half-plane (Samuelson, 1941, was perhaps the first to state this result). Apply-

ing the Routh-Hurwitz necessary and sufficient conditions to (A.8) then yields the desired

result.

A.2 Proof of Proposition 4

Theorem 1 [Herrndorf (1984)] If {εt} satisfies the following assumptions:

(A1) E[εt] = µ for all t.

(A2) supt E[|εt−µ|β] < ∞ for some β > 2 .

(A3) 0 < σ2
o = limT→∞ E

[
1
T

(∑n
j=1(εj−µ

)2
]

< ∞ .

(A4) {εt} is strong-mixing with mixing coefficients αk that satisfy:

∞∑
j=1

α
1− 2

β

j < ∞ . (A.9)

then as n increases without bound,

Wn(s) ≡ 1

σo

√
n

[ns]∑
j=1

(εj−µ) ⇒ W (s) , s ∈ [0, 1] (A.10)

where [ns] denotes the greater integer less than or equal to ns and ‘⇒’ denotes weak conver-

gence.

With these results in hand, we are ready to prove Proposition 4. Let returns Rt be given by:

Rt = εt (A.11)
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where εt satisfies assumptions (A1)–(A4) of Theorem 1, and recall:

µ̂ =
1

T

T∑
1

εt (A.12)

σ̂2
NW =

1

T

T∑
1

(εt − µ̂)2 +
2

T

θ∑
j=1

(1− j

θ + 1
)

T∑
t=j+1

(εt − µ̂)(εt−j − µ̂) (A.13)

= I1 + I2 where (A.14)

I1 ≡ 1

T

T∑
1

(εt − µ̂)2 (A.15)

I2 ≡ 2

T

θ∑
j=1

(1− j

θ + 1
)

T∑
t=j+1

(εt − µ̂)(εt−j − µ̂) (A.16)

Observe that

I1 =
1

T

T∑
1

(εt − µ̂)2 =
1

T

T∑
1

ε2
t − µ̂2 p→ σ2

ε (A.17)

where

σ2
ε ≡ lim

t→∞
1

T

T∑
1

ε2
t = E[ε2

t ] . (A.18)

Now the second term I2 can be written as:

I2
T (m + 1)

2
=

m∑
j=0

(m + 1− j)
T∑

t=j+1

(εt − µ̂)(εt−j − µ̂) = J1 + J2 + J3 (A.19)
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where

J1 ≡
m∑

j=0

(m+1− j)
T∑

t=j+1

εtεt−j (A.20)

J2 ≡
m∑

j=0

(m+1−j)
T∑

t=j+1

µ̂(εt + εt−j) (A.21)

J3 ≡
m∑

j=0

(m+1−j)
T∑

t=j+1

µ̂2 (A.22)
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Consider the first term in (A.19):

J1 =
m∑

j=0

(m + 1− j)
T∑

t=j+1

εtεt−j = m(ε1ε2 + ε2ε3 + · · ·+ εT−1εT ) +

(m− 1)(ε1ε3 + ε2ε4 + · · ·+ εT−2εT ) +

(ε1εm+1 + ε2εm+2 + · · ·+ εT−mεT ) (A.23)

= ε1

(
(S2 − S1) + (S3 − S1) + · · ·+ (Sm+1 − S1)

)
+ · · · +

εT−m

(
(ST−m+1 − ST−m) + · · ·+ (ST − ST−m)

)
+

εT−m+1

(
(ST−m+2 − ST−m+1) + · · ·+ 2(ST − ST−m+1)

)
+ · · · +

εT−1

(
m(ST − ST−1)

)
(A.24)

= ε1(S2 + S3 + · · ·+ Sm+1) − mε1S1 + · · · +

εT−m(ST−m+1 + · · ·+ ST ) − mεT−mST−m +

εT−m+1(ST−m+2 + · · ·+ 2ST ) − mεT−m+1ST−m+1 + · · · +

εT−1mST − mεT−1ST−1 (A.25)

= S2S1 + S3S2 + · · · + Sm+1Sm + Sm+2(Sm+1 − S1) + · · · +

ST (ST−1 − ST−m−1) + ST (εT−m+1 + · · ·+ mεT−1) − m

T−1∑
t=1

εtSt (A.26)

=
T−1∑
t=1

S2
t − (m− 1)

T−1∑
t=1

εtSt −
T−(m+1)∑

t=1

StSt+m+1 +

ST

(
mST−1 −

T−1∑
t=T−m

St

)
(A.27)

When the Functional Central Limit Theorem is applied to (A.27), we have:

J1/T
2 ⇒ σ2

(∫ 1

0

W (r)(W (r)−W (min(r + λ, 1)))dr

)
−

(m− 1)

2T
(σ2W 2(1) + σ2

ε ) +
m

T
σ2W 2(1) (A.28)
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Now the second term in (A.19) can be rewritten as:

J2 = −
m∑

j=1

(m + 1− j)
T∑

t=j+1

µ̂(εt + εt−j) (A.29)

= −µ̂

m∑
j=1

(m + 1− j)(ST − Sj + ST−j) (A.30)

= − m(m + 1)

2
µ̂ST − µ̂

m∑
j=1

(m + 1− j)(ST−j − Sj) (A.31)

and applying the Functional Central Limit Theorem to (A.31) yields

J2/T
2 ⇒ − m(m + 1)

2T 2
σ2W 2(1) − σ2W (1)

∫ λ

0

(λ− r)(W (1− r)−W (r))dr . (A.32)

The third term of (A.19) can be rewritten in a similar manner:

J3 =
m∑

j=1

(m + 1− j)
T∑

t=j+1

µ̂2 = µ̂2

m∑
j=1

(m + 1− j)(T − j − 1) (A.33)

= µ̂2

m∑
j=1

(j2 − j(T + m) + (m + 1)(T − 1)) (A.34)

= µ̂2m(m + 1)(3T −m− 5)

6
(A.35)

and applying the Functional Central Limit Theorem to (A.35) yields:

J3/T
2 ⇒ σ2W 2(1)

(1 + m)m(3T −m− 5)

6T 3
. (A.36)
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Combining (A.28), (A.32) and (A.36) shows that:

I2 ⇒ 2

λ
σ2

(∫ 1

0

W (r)
[
W (r)−W (min(r + λ, 1))

]
dr −

W (1)

∫ λ

0

(λ− r)(W (1− r)−W (r))dr

)
+ σ2W 2(1)(1− λ2

3
)− σ2

ε (A.37)

and summing (A.17) and (A.37) yields the desired result.

A.3 Proof of Proposition 5

Given the weak convergence of σ̂
2

NW to the functional f(W ) in (87), Proposition 5 is an

almost trivial consequence of the following well-known result:

Theorem 2 [Extended Continuous Mapping Theorem]46 Let hn and h be measurable map-

pings from D[0, 1]—the space of all functions on [0, 1] that are right continuous with left-hand

limits—to itself and denote by E the set of x ∈ D[0, 1] such that hn(xn) → h(x) fails to hold

for some sequence xn converging to x. If Wn(s) ⇒ W (s) and E is of Wiener-measure

zero, i.e. P(W ∈ E) = 0, then hn(Wn) ⇒ h(W ).

A.4 TASS Fund Category Definitions

The following is a list of category descriptions, taken directly from TASS documentation,

that define the criteria used by TASS in assigning funds in their database to one of 17

possible categories:

Equity Hedge This directional strategy involves equity-oriented investing on both the long and short sides
of the market. The objective is not to be market neutral. Managers have the ability to shift from
value to growth, from small to medium to large capitalization stocks, and from a net long position
to a net short position. Managers may use futures and options to hedge. The focus may be regional,
such as long/short US or European equity, or sector specific, such as long and short technology or
healthcare stocks. Long/short equity funds tend to build and hold portfolios that are substantially
more concentrated than those of traditional stock funds. US equity Hedge, European equity Hedge,
Asian equity Hedge and Global equity Hedge is the regional Focus.

46See Billingsley (1968) for a proof.
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Dedicated Short Seller Short biased managers take short positions in mostly equities and derivatives.
The short bias of a manager’s portfolio must be constantly greater than zero to be classified in this
category.

Fixed Income Directional This directional strategy involves investing in Fixed Income markets only on
a directional basis.

Convertible Arbitrage This strategy is identified by hedge investing in the convertible securities of a
company. A typical investment is to be long the convertible bond and short the common stock of the
same company. Positions are designed to generate profits from the fixed income security as well as
the short sale of stock, while protecting principal from market moves.47

Event Driven This strategy is defined as ‘special situations’ investing designed to capture price movement
generated by a significant pending corporate event such as a merger, corporate restructuring, liquida-
tion, bankruptcy or reorganization. There are three popular sub-categories in event-driven strategies:
risk (merger) arbitrage, distressed/high yield securities, and Regulation D.

Non Directional/Relative Value This investment strategy is designed to exploit equity and/or fixed
income market inefficiencies and usually involves being simultaneously long and short matched market
portfolios of the same size within a country. Market neutral portfolios are designed to be either beta
or currency neutral, or both.

Global Macro Global macro managers carry long and short positions in any of the world’s major capital
or derivative markets. These positions reflect their views on overall market direction as influenced
by major economic trends and or events. The portfolios of these funds can include stocks, bonds,
currencies, and commodities in the form of cash or derivatives instruments. Most funds invest globally
in both developed and emerging markets.

Global Opportunity Global macro managers carry long and short positions in any of the world’s major
capital or derivative markets on an opportunistic basis. These positions reflect their views on overall
market direction as influenced by major economic trends and or events. The portfolios of these funds
can include stocks, bonds, currencies, and commodities in the form of cash or derivatives instruments.
Most funds invest globally in both developed and emerging markets.

Natural Resources This trading strategy has a focus for the natural resources around the world.

Leveraged Currency This strategy invests in currency markets around the world.

Managed Futures This strategy invests in listed financial and commodity futures markets and currency
markets around the world. The managers are usually referred to as Commodity Trading Advisors, or
CTAs. Trading disciplines are generally systematic or discretionary. Systematic traders tend to use
price and market specific information (often technical) to make trading decisions, while discretionary
managers use a judgmental approach.

Emerging Markets This strategy involves equity or fixed income investing in emerging markets around
the world.

Property The main focus of the investments are property.

Fund of Funds A ‘Multi Manager’ fund will employ the services of two or more trading advisors or Hedge
Funds who will be allocated cash by the Trading Manager to trade on behalf of the fund.

47Note that the category closest to this definition in the TASS database is “Convertible Fund (Long
Only)”, which is related to but different from convertible arbitrage—see footnote 44 for details. TASS
recently changed their style classifications, and now defines “Convertible Arbitrage” as a distinct category.
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A.5 Supplementary Empirical Results

In Tables A.1–A.7, we provide corresponding empirical results to Tables 7–14 but with Live

and Graveyard funds separated so that the effects of survivorship bias can be seen. Of

course, since we still apply our five-year minimum returns history filter to both groups, there

is still some remaining survivorship bias. Tables A.1 and A.2 contain summary statistics for

the two groups of funds, Tables A.3 and A.4 report summary statistics for the maximum

likelihood estimates of the smoothing model (21)–(23), Tables A.5 and A.6 report similar

statistics for the regression model estimates (62) of the smoothing model, and Table A.7

contains smoothing-adjusted Sharpe ratios for the two groups of funds. Finally, Table A.8

corresponds to the regressions of Table 11 but with dependent variables θ̂0 and ξ̂ estimated

by maximum likelihood under the alternate constraint (75).
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Regressor θ̂0 ξ̂ θ̂0 ξ̂

Constant 1.007 1.152 1.029 1.212
(42.02) (21.91) (35.56) (19.04)

US Equity Hedge 0.020 −0.009 0.026 −0.004
(0.69) (0.15) (0.85) (0.07)

European Equity Hedge −0.063 −0.175 −0.120 −0.281
(1.19) (1.50) (1.97) (2.10)

Asian Equity Hedge −0.054 −0.167 −0.030 −0.131
(0.52) (0.73) (0.28) (0.54)

Global Equity Hedge 0.005 −0.053 0.032 0.006
(0.11) (0.49) (0.64) (0.05)

Dedicated Shortseller 0.178 0.291 0.184 0.293
(2.01) (1.50) (2.06) (1.49)

Fixed-Income Directional −0.203 −0.386 −0.196 −0.375
(3.04) (2.63) (2.92) (2.54)

Convertible Fund (Long Only) −0.060 −0.073 −0.064 −0.086
(0.95) (0.53) (1.01) (0.62)

Event Driven −0.116 −0.228 −0.124 −0.247
(3.74) (3.36) (3.85) (3.49)

Non-Directional/Relative Value −0.194 −0.303 −0.180 −0.281
(5.88) (4.18) (5.26) (3.73)

Global Macro 0.004 −0.029 0.034 0.026
(0.09) (0.26) (0.63) (0.22)

Global Opportunity −0.314 −0.598 −0.309 −0.59
(1.37) (1.19) (1.35) (1.18)

Natural Resources −0.096 −0.281 −0.095 −0.284
(0.72) (0.96) (0.72) (0.97)

Pure Leveraged Currency 0.042 0.019 0.045 0.022
(0.85) (0.17) (0.89) (0.20)

Pure Managed Futures 0.133 0.267 0.142 0.284
(4.16) (3.78) (4.25) (3.87)

Pure Emerging Market −0.161 −0.344 −0.146 −0.311
(4.63) (4.50) (3.53) (3.42)

Pure Property −0.056 −0.190 −0.028 −0.146
(0.25) (0.38) (0.12) (0.29)

Fund of Funds −0.099 −0.211 −0.092 −0.199
(3.32) (3.21) (3.03) (2.96)

OPEN −0.061 −0.128 −0.055 −0.118
(3.27) (3.13) (2.78) (2.73)

USBASED 0.012 0.022
(0.68) (0.58)

GF-GLB −0.034 −0.078
(1.69) (1.78)

GF-USA −0.043 −0.087
(2.09) (1.92)

GF-APC −0.051 −0.104
(1.73) (1.61)

GF-WEU 0.048 0.079
(1.70) (1.28)

GF-EEU −0.058 −0.133
(1.46) (1.51)

GF-AFR 0.071 0.137
(1.27) (1.12)

Sample Size 908 908 891 891

Adjusted R2(%) 15.7 11.4 16.9 12.6

Table A.8: Regressions of maximum likelihood estimated smoothing coefficient θ̂0 and
smoothing index ξ̂ on indicator variables for 908 hedge funds in the TASS Hedge Fund
Combined (Live and Graveyard) database with at least five years of returns history during
the period from November 1977 to January 2001, where the maximum likelihood estimator
σ̂η is constrained to equal a nonparametric estimator σ̃η of the innovation standard deviation.
Absolute values of t-statistics are given in parentheses. The indicator variables are OPEN (1
if the fund is open, 0 otherwise); the fund categories (1 if the fund belongs to the category, 0
otherwise); USBASED (1 if the fund is based in the US, 0 otherwise); and geographical focus
categories (1 if the geographical focus of the fund is in a given region, 0 otherwise, where the
regions are USA, Asia Pacific, Western Europe, Eastern Europe, and Africa, respectively).
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The Life Cycle of Hedge Funds: Fund Flows,
Size and Performance

Mila Getmansky

Abstract

Since the 1980s we have seen a 25% yearly increase in the number of hedge funds, and an
annual attrition rate of 7.10% due to liquidation. This paper analyzes the life cycles of hedge
funds. Using the TASS database provided by the Tremont Company, it studies industry and
fund specific factors that affect the survival probability of hedge funds. The findings show
that in general, investors chasing individual fund performance decrease probabilities of hedge
funds liquidating. However, if investors follow a category of hedge funds that has performed
well, then the probability of hedge funds liquidating in this category increases. We interpret
this finding as a result of competition among hedge funds in a category. As competition
increases, marginal funds are more likely to be liquidated than funds that deliver superior
risk-adjusted returns. We also find that there is a concave relationship between performance
and assets under management. The implication of this study is that an optimal asset size
can be obtained by balancing out the effects of past returns, fund flows, market impact,
competition and favorable category positioning that are modeled in the paper. Hedge funds
in illiquid categories are subject to high market impact, have limited investment opportu-
nities, and are more likely to exhibit an optimal size behavior compared to those in more
liquid hedge fund categories.
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1 Introduction

The hedge fund industry has grown tremendously since it was founded 50 years ago. Since

the late 1980s, the number of hedge funds has risen by more than 25% per year. The value of

assets under management has grown as well. In 1990, $39 billion was invested in hedge funds,

and in 2003, it was estimated that $650 - $700 billion is managed by 5,000 single-manager

hedge funds (Tremont Company). However, alongside the tremendous growth, there has also

been a significant attrition in the industry. The annual liquidation rate in the hedge fund

industry is 7.10% compared to 1.00% in the mutual fund industry. Despite the increased

interest in hedge funds as an asset class, we have only a limited understanding of what drives

hedge fund continuation and liquidation. This paper explores the drivers of the life-cycles of

hedge funds. Both individual and category 1 related factors are explored in the paper, using

the TASS database provided by the Tremont Company.

First, we study the determinants of fund flows. We analyze how net flows into individual

funds are affected by past fund performance, current performance, past flows, age, past

standard deviation of returns, and past assets. An increase by 10% in a current return

increases fund flow by 2%. The relationship between current flow and past return, however,

is non-linear. A piecewise linear relationship model between current fund flows and past fund

performance is proposed and analyzed. As with private equity funds (Kaplan and Schoar

(2003)), the relationship between flows and past returns is positive and concave, so that the

top performing funds do not grow proportionally as much as the average fund in the market.

An increase in age, assets under management and standard deviation of returns negatively

affects fund flows.

Funds flows are also influenced by categories hedge funds belong to. We extend the fund

flows-performance analysis to different hedge fund categories. Investors in hedge funds that

follow directional strategies, i.e., strategies that follow trends, such as “Global Macro” and

“Dedicated Short Seller” are more responsive to past returns. On the other hand, investors

in “Market Neutral” and “Event Driven” categories are less responsive to past returns as

these categories are more driven by market conditions and events peculiar for that particular

1A category is defined as belonging to one of 11 strategies described in Appendix A.2.
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time.

Withdrawals due to poor performance can lead to liquidation (Berk and Green (2002)

and Vayanos (2003)). Liquidation can appear in two forms: failure of the fund or closure of

the fund. Failure can happen due to fraud, forced liquidation due to levered positions that

falls below a threshold, or concentrated bets that go against the manager’s strategy. Closure

can happen if a hedge fund exhausts all opportunities within a category, cannot obtain more

capital, or has a bad performance. In the first case, as in bankruptcy, hedge fund managers

and investors incur significant costs due to the loss of the capital. In the case of liquidation

due to closure, hedge fund investors, rather than managers, incur search costs as they now

have to look for new investment opportunities in the hedge fund industry. The new investors

might incur higher management and incentive fees in a new fund, as well as being subject

to a 2-3 year lock-up period, which is mandatory for new investors. Moreover, liquidation

increases survivorship bias which can cause new investors to overestimate potential returns

from hedge funds.

Second, this paper studies the determinants of category flows, that is, aggregated fund

flows into a category. We find that investors are more likely to invest in categories that

have done well. Controlling for fund characteristics, such as returns, age, and assets under

management, hedge funds are less likely to be liquidated if they are located in favorable

categories. We introduce a favorable positioning metric that determines whether a hedge fund

is located in a category that experiences an increased proportional net dollar flow compared

to other categories. An increase in the favorable positioning metric decreases the liquidation

probability of a hedge fund. However, at the same time, it increases competition due to

hedge fund entry into the favorable category. Hedge funds compete for limited opportunities

and capital, thus increasing the liquidation probability of a fund. This finding is contrary

to what we find by analyzing individual fund flows. As hedge fund investors chase fund

returns, thus increasing flows into a fund, the liquidation probability is decreased. However,

as hedge fund investors chase category returns, the liquidation probability increases due to

competition effects. We also find that as competition increases, marginal funds exit first,

and funds that deliver superior returns are left as they are able to withstand competition.

Finally, we look at the relationship between performance and assets under management,
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both of which affect the life cycles of hedge funds. We find that the relationship between

current performance and past asset size is positive and concave. Agarwal, Daniel and Naik

(2003), and Goetzmann, Ingersoll, and Ross (2003) find a similar relationship. We confirm

this result and extend it to different hedge fund strategies. The performance-asset size rela-

tionship takes on different functional forms for different categories. For instance, for illiquid

categories such as “Emerging markets” and “Convertible arbitrage” that experience high

market impact and are subject to limited opportunities, the relationship is concave and the

optimal size can be calculated. The result is opposite for liquid categories such as “Dedicated

short bias” and “Equity market neutral” categories. We also propose a model that accounts

for fund effects, favorable positioning, competition and market impact. The resulting model

produces concave relationship between returns and past assets and an optimal asset size

using realistic estimates. The result is important for hedge fund managers and investors

because managers of hedge funds with high asset sizes might choose to close the funds to

new investors before facing a decrease in returns and an increase in liquidation probabilities.

Also, by maximizing returns to hedge fund investors, an optimal asset size can be calculated.

This paper analyzes the effects of fund and category specific factors on life cycles of hedge

funds. It introduces new concepts such as competition, favorable positioning and a life cycle

in intermediation and hedge fund literatures.

Before describing the empirical analysis of the life cycles in hedge funds, we provide a

brief hedge fund overview in Section 2 and a literature review in Section 3. The data are

described in Section 4. Performance-fund flow relationship is estimated for different hedge

fund styles in Section 5. The effects of category flows, favorable positioning and competition

on the liquidation probability of a hedge fund are analyzed in Section 6. The performance-

asset size relationship is analyzed in Section 7, and the optimal asset size for different hedge

fund categories is calculated. Moreover, a performance model that takes into the account the

effects of flows, returns, competition, favorable positioning and market impact is proposed

in this section. We conclude in Section 8.
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2 Hedge Fund Overview

As of October 2003, the size of the global single-manager hedge fund universe (not including

funds of funds) is $650 - $700 billion (Tremont Company). There are about 5,000 global

single-manager hedge funds in the hedge fund universe. There are about 1,200 - 1,400

funds of funds. There are about 3,000 distinct hedge fund managers that manage both

offshore and domestic accounts. In 1990, there were 610 funds managing $39 billion. Hedge

funds differ from mutual funds and other investment vehicles by both internal structure and

investment discipline. Hedge fund managers are not restricted to any particular type of

investments. Hedge funds can buy (long) or sell (short) securities that they do not own.

They are not restricted to common “buy and hold” strategies. Most U.S. hedge funds are

limited partnerships, or limited liability companies, established to invest in public securities.

However, there is no common definition of a hedge fund. U.S. hedge funds are defined by

their freedom from regulatory controls stipulated by the Investment Company Act of 1940.

Before 1996, a hedge fund had a 100 investor limit in order to qualify as a limited partnership.

However, under the National Securities Markets Improvement Act of 1996, the 100 investor

limit was lifted. The minimum new worth requirement for a qualified investor is $5 million

and the minimum institution capital is $25 million. Companies can also become reporting

companies voluntarily by filing with the SEC. Under the Exchange Act, a company must

become a reporting company if it has at least 500 shareholders and $10 million in assets.

The Exchange Act contains registration and reporting provisions that may apply to hedge

funds.

Depending upon their activities, in addition to complying with the federal securities laws,

hedge funds and their advisers may have to comply with other laws including the Commod-

ity Exchange Act (“CEA”), rules promulgated by the National Association of Securities

Dealers (“NASD”) and/or provisions of the Employment Retirement Income Security Act

(“ERISA”). In addition, hedge funds may be subject to certain regulations promulgated

by the Department of the Treasury, including rules relating to the prevention of money

laundering. Moreover, hedge fund advisers are subject to certain state laws.

Offshore hedge funds are typically corporations registered in a tax haven such as the
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British Virgin Islands, the Bahamas, Bermuda, the Cayman Islands, Dublin, or Luxem-

bourg, where tax liabilities to non-U.S. citizens are minimal. In general, the hedge fund

industry is not transparent to regulators unlike the mutual funds industry. Like mutual

funds, hedge funds are actively managed investment portfolios holding positions in publicly

traded securities. However, unlike mutual funds, hedge funds have greater flexibility in the

kind of securities they can invest in. Hedge funds can invest in domestic and international

debt and derivative securities. They can take undiversified positions, sell short, and lever

up their portfolios. These alternative investments mainly attract institutions and wealthy

individuals with minimum investments typically in the range of $250,000 - $1 million. Hedge

funds are also characterized by a substantial managerial investment and strong managerial

incentives. On average, hedge fund managers receive a 1% annual management fee and 20%

of the annual profits. Most of funds employ a bonus incentive fee: managers are paid a

percentage of the excess of a fund’s return over some level, commonly called a “high-water

mark.” If a hedge fund incurred losses in the past, its managers can be paid in present period

only if return in this period exceeds the “high-water mark” plus past losses.

3 Literature Review

Given the availability of public and private hedge fund databases such as TASS, AltVest,

Hedge Fund Research (HFR) and Managed Account Reports (MAR), numerous studies have

analyzed hedge fund performance. For example, Ackermann, McEnally and Ravenscraft

(1999), Agarwal and Naik (2000b, 2000c), Edwards and Caglayan (2001), Fung and Hsieh

(1999, 2000, 2001), Kao (2002), and Liang (1999, 2000, 2001) provide empirical studies of

hedge fund performance using different hedge fund databases. In comparison, Brown, Harlow

and Starks (1996), Chen, Hong, Huang and Kubik (2003), and Chevalier and Ellison (1997)

provide empirical performance analysis studies for mutual funds; Kaplan and Schoar (2003)

do so for private equity funds.

Performance attribution and style analysis in hedge funds have been studied in the fol-

lowing papers: Agarwal and Naik (2000b, 2000c), Brown and Goetzmann (2001), Brown,

Goetzmann and Ibbotson (1999), Brown, Goetzmann, and Park (1997, 2000, 2001), Fung
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and Hsieh (1997), and Lochoff (2002). Ackermann et al. (1999) and Brown, Goetzmann,

Ibbotson, and Ross (1992) find that hedge fund databases can suffer from survivorship bi-

ases that can bias both first and second moments in returns. According to Ackermann et al.

(1999), termination and self-selection biases are the most powerful data-conditioning biases.

Funds that are closed leave the database due to termination. Funds that choose not to be

included in the database can voluntarily withdraw from databases. Performance studies of

existing hedge funds may be artificially inflated if poorly performing funds are systemat-

ically omitted from the database. Brown, Goetzmann and Ibbotson (1999) find that the

survivorship bias is about 3 percentage points per year for offshore hedge funds.

Favorable category positioning and competition have not been introduced in the hedge

fund literature, and their effects on the life cycles of hedge funds have not been studied. In

the Industrial Organization literature, authors find that an increase in competition leads to

an increase in the probability of liquidation in a firm (Aghion, Dewatripont and Rey (1995)

and Schmidt (1997)). The life cycle of a firm is studied by Mueller (1972).

Khorana and Servaes (1999) find that mutual fund starts are positively related to the

level of assets invested in and capital gains embedded in other funds with the same objective.

For mutual funds, Chen, Hong, Huang, and Kubik (2003) find that controlling for its size, a

fund’s performance increases with the asset base increase of other funds in the family that

the fund belongs to. For private equity funds, Kaplan and Schoar (2003) find that in the

periods of an overall increased entry of funds into the industry, there is a large negative

effect on the performance of younger funds compared to the performance of older, more

established funds. Unlike mutual funds and private equity funds, hedge funds have very

distinct categories with a high barrier to entry. It takes time and managerial talent to set up

a hedge fund in a particular category. Therefore, empirical analysis of the effect of favorable

positioning of a category and competition among hedge funds within a category can provide

insights into understanding the life cycles of hedge funds.

Hedge funds that have higher returns experience higher net flows. Agarwal, Daniel, and

Naik (2003) find a convex relationship in hedge fund flow-performance relationship. Ippolito

(1992), Chevalier and Ellison (1997), Goetzmann and Peles (1997), Gruber (1996), Sirri and

Tufano (1998) and Zheng (1999) look at the determinants of money flows in mutual funds,
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and find a positive and convex relationship. However, Kaplan and Schoar (2003) find a

concave relationship for private equity funds.

The impact of volatility on fund net flows is modeled theoretically by Vayanos (2003)

and studied empirically for mutual funds by Chevalier and Ellison (1997). They find that

the higher volatility leads to more outflows.

Withdrawals due to poor performance can lead to liquidation (Berk and Green (2002) and

Vayanos (2003)). Amin and Kat (2002), Bares, Gibson and Gyger (2001), Brown, Goetzmann

and Ibbotson (1999), Brown, Goetzmann and Park (2001), Fung and Hsieh (2000), Gregoriou

(2002), and Liang (2000, 2001) focus on hedge fund survival rates. Baquero, Horst, and

Verbeek (2002) look at liquidation probabilities of individual hedge funds and find that they

are greatly dependent on past performance.

Agarwal, Daniel, and Naik (2003) and Goetzmann, Ingersoll and Ross (2003) find decreas-

ing returns to scale in hedge funds. Perold and Salomon (1991) report decreasing returns

to scale in mutual funds and propose an optimal size calculation for mutual funds. Kaplan

and Schoar (2003) find decreasing returns to scale in the private equity industry. Our paper

suggests that an optimal size can be calculated for different hedge fund categories.

4 Data Description

The TASS database is used for the empirical analysis. As of 2003, the TASS database tracks

$270 billion held by global single-manager hedge funds and $63 billion held by funds of

funds. These numbers exclude money held in separately managed accounts. There are other

databases like AltVest, Hedge Fund Research (HFR) and Zurich Capital Markets/Managed

Accounts Reports (ZCM/MAR). However, the TASS database is the most comprehensive

one. The TASS database consists of 3,928 hedge funds from November 1977 to April 2003.2

The database is divided into two parts: “Live” and “Graveyard” funds. Funds that are

in the “Live” category are considered to be active as of April 2003. Once a hedge fund is

considered no longer active, it is transferred into the “Graveyard” category. Hedge funds

are in the “Graveyard” category if they stop reporting their performance, are liquidated,

2For further information about the TASS database, see http://www.tassresearch.com.
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closed to new investment, restructured, or merged with other hedge funds. A hedge fund

can be listed in the “Graveyard” database only after being listed in the “Live” database.

However, the TASS database is subject to backfill bias: When a fund decides to be listed

in the database, all its prior history is incorporated in the TASS database. Also, due to

reporting delays, some “Graveyard” funds can be incorrectly listed in the “Live” database.

Tremont adopted a policy of transferring funds from the “Live” to the “Graveyard” database

if its managers have not heard from hedge funds or were not able to contact the hedge fund

managers over a 6-8 month period. Because the “Graveyard” database became active in

1994, thus funds that were dropped from the “Live” database before 1994 were not recorded

by TASS, the database is subject to some degree of survivorship bias.3

For the analysis in this paper, another sub-database, called “Liquidated” is constructed.

This sub-database has funds that are liquidated. To construct the sub-database, we eliminate

funds from the “Graveyard” category that are there due to mergers with other hedge funds,

that are dormant, or that decided not to list in the database due to their large size. Moreover,

we eliminate funds that decided to be closed to new investment, and therefore, not needing

advertisement by being listed in the database, got matured, or got reconstructed. In order to

compile the “Liquidated” sub-database, we carefully examined the “Notes” section provided

by TASS to understand the history of each hedge fund, researched the history of funds,

and talked to TASS employees who communicate directly with hedge fund managers. Most

hedge funds in the “Graveyard” category with less than $20 million in assets on the last

day that the funds were reported are actually liquidated and therefore we put them in

the “Liquidated” sub-database. The exception is the funds that merged. There are some

hedge funds in the TASS database that stopped reporting their performance to the Tremont

between September 2002 and April 2003 and have less than $20 million of assets on the last

reporting date. These funds might have characteristics of funds that are liquidated - low

returns, and very low assets under management (less than $20 million). However, they are

not considered in the “Liquidated” database due to reporting delays. TASS allows up to 8

3 For studies attempting to quantify the degree and impact of survivorship bias, see Brown, Goetzmann,
Ibbotson, and Ross (1992), Brown, Goetzmann, and Ibbotson (1999), Brown, Goetzmann, and Park (1997),
Carpenter and Lynch (1999) and Fung and Hsieh (1997b, 2000).
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months delay before further investigation and before considering the hedge fund a liquidation,

unless, during this 8 month period, it is discovered that the hedge fund is liquidated.

The database is further filtered by considering only hedge funds that report monthly and

net-of-fees returns. Hedge funds for which monthly returns or monthly assets are missing

are eliminated. Also, to correct for the termination bias, the data from January 1994 until

December 2002 is used. In the end, the “Combined” database contains 3,501 hedge funds

with continuous net-of-fees monthly returns and monthly assets under management. Out

of 3,501, 1,264 funds are in the “Liquidated” sub-database, and 2,237 funds are in the

“Successful” subcategory, representing funds still alive. There are 1,387 hedge funds in

the “Graveyard” database, out of which 1,264, or 91% are failures; the rest decided not to

advertise through TASS, decided to be closed to new investment, or merged with other hedge

funds.

The TASS database considers 11 different investment style categories, described in detail

in Appendix A.2. The number of hedge funds in each category is presented in Table A.1.

[ INSERT TABLE A.1 ]

The dynamics of annual hedge fund entries and exits are presented in Table A.2. As of

1994, the date when the TASS database started reporting hedge fund liquidations, the aver-

age annual attrition rate has been 7.33%. The average attrition rate due only to liquidation

is 7.10%.

[ INSERT TABLE A.2 ]

Summary statistics for monthly returns, standard deviation of monthly returns, age,

assets under management as well as favorable category positioning and competition metrics

for both hedge funds and fund of funds are presented in Table A.3.

[ INSERT TABLE A.3 ]
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5 Performance-Fund Flow Relationship

Berk and Green (2002) and Vayanos (2003)propose theoretical models in which fund specific

factors such as flows and returns affect liquidation probabilities. This section presents an

empirical analysis of the effects of fund specific factors on liquidation probabilities. Also, the

fund specific factors are correlated. For example, current fund flows depend on past returns

(Agarwal, Daniel and Naik (2003)). The authors find that the relationship between fund

flows and performance is positive and non-linear in past performance.

5.1 Hypotheses

Hypothesis 1: As investors chase high fund returns, the liquidation probability of the hedge

fund decreases.

5.2 Methodology

The performance-fund flow function is estimated using a piecewise linear relationship be-

tween current flows and past returns. A modified methodology proposed by Sirri and Tufano

(1998) to study performance fund flow relationship in mutual funds is used. Fractional rank

terciles, Tranki,t−1 for each time t and fund i are constructed. First, a fractional rank, Frank,

is calculated for each fund, from 0 to 1 based on returns in year t-1. Then, Trank1, the

bottom tercile rank, Trank2, the middle tercile rank and Trank3, the top tercile rank are

calculated as follows: Trank1=Min(1
3
, Frank),

Trank2=Min(1
3
, Frank-Trank1),

Trank3=Min(1
3
, Frank-Trank1-Trank2),
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The following regression is specified to understand the determinants of fund flows:

Flowi,t = αi,t +
3∑

j=1

βj
1(Trankj

i,t−1) + β2Sizei,t−1 + β3Agei,t−1

+β4Flowi,t−1 + β5Returni,t + β6σi,t−1

+
10∑

k=1

βc
7I(Categoryi,k) + εi,t

(1)

Current quarterly flows are regressed on bottom, middle and top terciles of last quarter

performance, current fund return, last quarter flow, last quarter asset size, age, and the last

quarter standard deviation of returns. The quarterly data from 1994 until 2002 is used.

Empirical studies define net flow of funds as a percentage change in new assets adjusted

for return.

Ft =
At − At−1(1 + rt)

At−1

(2)

However, this measure downplays the significance of very large negative returns that

lead to a hedge fund liquidation. If a hedge fund is liquidated at time t, then, At is 0, and

At−At−1(1+rt)
At−1

= −(1 + rt). Therefore, when a fund is liquidated, the minimum return will be

rt = −1 or -100%. Under the conventional metric of measuring the flow, the response to the

flow is 0. Therefore, to correct for this, in the empirical analysis, the flow measure is set to

-1 when a fund is liquidated.

To test Hypothesis 1 whether an increase in returns and flows impacts liquidation prob-

abilities of hedge funds, we specify the following logit model.
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Liquidationi,t = f(αi,t + β1Agei,t + β2ri,t−1

+β3ri,t + β4Flowi,t−1 + β5Assetsi,t−1

+
10∑

k=1

βc
6I(Categoryi,k) +

38∑
t=1

βt
7I(Timei,t) + εi,t)

(3)

5.3 Results

We find that average net flows into funds in different terciles are as follows: Top: 42.15%,

Medium: 5.68%, Bottom: -21.62% per quarter. As predicted, higher returns lead to higher

future flows.

The Fama-MacBeth results for the piecewise linear relationship between current flows

and past returns are presented in Table A.4.

[ INSERT TABLE A.4 ]

Better performing funds are more likely to attract funds than poorly performing funds.

This relationship is concave so that the top performing funds do not grow proportionally as

much as the average fund in the market. Top funds might choose not to grow that fast in

order not to face diminishing returns. For the analysis of the regions of diminishing returns,

see Section 7. The relationship is concave for private equity funds as well (Kaplan and Schoar

(2003)). In the mutual fund literature, the relationship is convex, so that the top performing

funds increase their share of the overall hedge fund market (Sirri and Tufano (1998)).

For the bottom tercile, the estimate is 0.293 with a t-stat of 5.46. For the middle tercile,

the estimate is 0.269 with a t-stat of 5.46. For the top tercile, the estimate is 0.006 with

a t-stat of 0.08. Therefore, if in the last quarter a hedge fund was in a top tercile, an

increase of return by 10% would lead to a 0.8% increase in flows, and if the hedge fund was

in a bottom tercile, an increase of return by 10% would lead to 2.9% increase in flows. In

contrast, Agarwal, Daniel and Naik (2003) find that the fund flow-performance relationship
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is convex for hedge funds. However, unlike this paper, the authors use data from 1994-2000.

They also look only at the annual relationship between flows and returns. We find that there

is a high degree of volatility in flows and returns on an annual basis. That is why we look

at the quarterly data. Also, the authors use the combination of HFR, TASS, ZCM/MAR

databases, and we use only the TASS database. The relationship between current returns and

current flows is positive and significant with a coefficient of 0.234. Past flows positively affect

current flows with a coefficient of 0.048. However, both past size and age negatively affect

the future flows with coefficients of -0.041 and -0.001, respectively. Asset size is measured as

a natural logarithm of assets under management. The topic of an asset size and the notion

of an optimal asset size are covered thoroughly in Section 7. The past standard deviation of

returns negatively affects current quarterly flows with a coefficient of -0.002. People are less

likely to invest or hold their money in a hedge fund with high volatility, after adjusting for

returns. The R2 for the regression is 5.53%.

To understand whether there are any category effects on the performance-fund flow re-

lationship, we estimate the same model for each fund category and present results in Table

A.5.

[ INSERT TABLE A.5 ]

For all categories, the fund flow-performance relationship is positive and concave. By

looking at the middle coefficient of past returns, Trank2, we study the average impact of

past returns on current flows for different hedge fund categories. We expect that hedge funds

that have more directional focus by concentrating on trends have a higher impact of past

returns on flows. Funds that follow event oriented and market timing strategies should have

a lower impact of past returns on flows. The expectations are closely correlated with the

data depicted in Table A.6.

[ INSERT TABLE A.6 ]

Hedge fund categories that have more of a directional focus like “Dedicated Short Bias,”

“Fixed Income Arbitrage,” “Global Macro,” “Long/Short Equity” and “Managed Futures”
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have higher estimates of Trank2. More event oriented strategies and less directional strate-

gies such as “Convertible Arbitrage,” “Emerging Markets,” “Event Driven” and “Equity

Market Neutral” have much smaller coefficients.

To test Hypothesis 1, whether an increase in returns and flows affects liquidation proba-

bility of hedge funds, the logit model is specified in equation 3. The results are depicted in

Table A.7.

[ INSERT TABLE A.7 ]

The implied probability of liquidation is 0.60% per quarter.

We also adjust coefficients by the mean in the logistic specification so it is possible to

directly compare the effects of each coefficient on the liquidation probability. The results are

depicted in Table A.8.

[ INSERT TABLE A.8 ]

Both current and past returns and past flows negatively affect liquidation probability.

Past asset size also negatively impacts the liquidation probability and has the biggest effect

for each percentage deviation from the mean.

Results of the likelihood ratio test and the efficient score test for testing the joint signif-

icance of the explanatory variables are included in Table A.9.

[ INSERT TABLE A.9 ]

6 Favorable Positioning and Competition

Different fund characteristics such as fund returns, flows, asset size and age affect the liquida-

tion of hedge funds. Returns are affected by abilities of fund managers, costs, and exogenous

shocks to hedge fund investment portfolios. However, even if a manager is able to deliver

solid returns, a fund can still be liquidated due to other factors. We propose that given a

fund manager’s abilities and other fund characteristics, a hedge fund’s probability to survive

is affected by favorable positioning and competition. The paper is the first to introduce the
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concepts in the literature on financial intermediation and asset pricing. Competition and

its effects on liquidation probability are introduced in the Industrial Organization literature

(Aghion, Dewatripont and Ray (1995) and Schmidt (1997)).

A hedge fund experiences favorable positioning if it is located in the right category at the

right time. This category experiences a higher proportional increase in net dollar fund flows

compared to other categories. A hedge fund experiences competition if it is surrounded

by a lot of funds in its category. However, the relationship among favorable positioning,

competition, and the probability of liquidation is not obvious and provides surprising results

and insights into understanding the life cycles of hedge funds.

Below we list examples of hedge funds in the database that are liquidated even though

the returns at the time of liquidation are positive for each of the funds. The liquidation is

affected by high competition, low favorable positioning, or both.

Reference 10. Category: Long/Short Equity. The fund is liquidated in March 1999.

The return at the time of liquidation was 3.87%. The flow a quarter before the liquidation

was -78.96%. The average monthly return during the past year was -0.01%. The favorable

positioning metric (FAV) in Q4, 1998 was -0.24. The number of competitors in Q4, 1998

was 497.

Reference 15. Category: Long/Short Equity. The fund is liquidated in April 1995. The

return at the time of liquidation was 2.17%. The flow a quarter before the liquidation

was 3.20%. The average monthly return during the past year was 0.57%. The favorable

positioning metric (FAV) in Q1, 1995 was -0.21. The number of competitors in Q1, 1995

was 192.

Reference 4429. Category: Long/Short Equity. The fund is liquidated in January 2001.

The return at the time of liquidation was 31.40%. The flow a quarter before the liquidation

was 29.99%. The average monthly return during the past year was 6.93%. The favorable

positioning metric (FAV) in Q4, 2000 was 0.2910. The number of competitors in Q4, 2000

was 693.

Reference 560. Category: Managed Futures. The fund is liquidated in December 1995.

The return at the time of liquidation was 8.21%. The flow a quarter before the liquidation

was 0%. The average monthly return during the past year was -0.40%. The favorable
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positioning metric (FAV) in Q3, 1995 was -0.05. The number of competitors in Q3, 1995

was 211.

Reference 563. Category: Managed Futures. The fund is liquidated in December 1995.

The return at the time of liquidation was 2.16%. The flow a quarter before the liquidation

was 3.20%. The average monthly return during the past year was 1.13%. The favorable

positioning metric (FAV) in Q3, 1995 was -0.05. The number of competitors in Q3, 1995

was 211.

6.1 Hypotheses

Hypothesis 2: As investors chase category returns, they move money into the favorable

category. The favorable category that experiences a higher proportional increase in net dollar

fund flows compared to other categories, attracts other hedge funds into the category, thus

increasing the liquidation probability of hedge funds in that category. Therefore, as investors

chase category returns, by investing in a favorable category, the liquidation probability of

hedge funds in that category increases due to competition effects.

Hypothesis 3: As the competitors become smaller, measured by asset value, their

impact on liquidation probability reduces.

Hypothesis 4: As competition within a strategy increases, marginal performers leave

and only hedge funds with superior risk-adjusted performance survive.

6.2 Methodology

To test Hypothesis 2, we define a Favorable Positioning metric (FAV). FAV measures whether

a fund category experiences a higher proportional increase in net dollar fund flows compared

to other categories. Hypothesis 2 proposes that if a hedge fund is in the right category at

the right time, in other words, in the category with high FAV value, then the liquidation

probability of the hedge fund decreases. However, increased FAV leads to an increase in

competition which increases the liquidation probability.

134



In order to define FAV, we need to define fund Dollar Flow at any time t.

DollarF lowi,t = Ai,t − Ai,t−1(1 + ri,t) (4)

Equation 4 assumes that fund flows occur at the end of the month, which is true for hedge

funds. If an investor chooses to deposit or withdraw money into a hedge fund, he usually

has to wait until the end of the month to make the transaction. Of course, for new investors,

the average lock-up period is 2 years, which limits the outflow of money from a hedge fund.

Dollar Flows are then aggregated over a quarter to calculate the Quarterly Dollar Flow.

Then, as in Chevalier and Ellison (1997), Sirri and Tufano (1998) and Agarwal, Daniel,

and Naik (2003), quarterly dollar flows are scaled by the beginning-of-quarter assets under

management to measure flows. Flows capture the change in size due to net money flows.

Flowi,t =
QuarterDollarF lowi,t

Ai,t−1

(5)

FAV is a favorable positioning metric that is measured as follows:

FAVk,t =

∑
i,i∈k QuarterDollarF lowi,t∑

i,i∈POSNET QuarterDollarF lowi,t

(6)

If category k experiences net positive flows during the quarter. POSNET is a set of category

flows that are net positive during the quarter.

FAVk,t = −
∑

i,i∈k QuarterDollarF lowi,t∑
i,i∈NEGNET QuarterDollarF lowi,t

(7)

If category k experiences net negative flows during the quarter. NEGNET is a set of category

flows that are net negative during the quarter. By construction, FAV metric lies between -1

and 1.

To test whether FAV is affected by previous category return, we run the following regres-
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sion model:

FAVk,t = αk,t + β1rk,t−1 + εk,t (8)

To test the relationship between liquidation probability and FAV, we run the logit model

of the probability of liquidation on current age, return during the past quarter, return during

the current quarter, past quarter flow, past quarter FAV, and past quarter assets measured

as the natural logarithm of assets under management. The model controls for category and

time effects.

Liquidationi,t = f(αi,t + β1Agei,t + β2ri,t−1

+β3ri,t + β4FAVk,t−1 + β5Assetsi,t−1

+
10∑

k=1

βc
6I(Categoryi,k) +

38∑
t=1

βt
7I(Timei,t) + εi,t)

(9)

To make sure that we are not capturing a trend in variables, the FAV metric is graphed

for each category over time, and no consistency in the behavior is found.

EntryFraction for a category k at time t is defined as follows:

EntryFractionk,t =
ENTRYk,t

NUMBERk,t−1

(10)

where ENTRYk,t is the number of funds entering a particular category k in a quarter t and

NUMBERk,t−1 is the number of funds in the category at the end of the quarter t-1.

To measure the effect of FAV on EntryFraction, the following regression is performed:

EntryFractionk,t = αk,t + β1FAVk,t−1 + εk,t (11)
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However, it takes time for hedge fund managers to perceive the “hotness” of the category

as well as to set-up a fund. Therefore, we perform the similar regression on 4 lags of FAV

(up to a year).

EntryFractionk,t = αk,t +β1FAVk,t−1 +β2FAVk,t−2 +β3FAVk,t−3 +β4FAVk,t−4 + εk,t (12)

To understand the relationship between competition and liquidation probability, we run

the logit model of the probability of a hedge fund liquidation on current age, return during

the past quarter, return during the current quarter, past quarter flow, the number of hedge

funds in the category a year before, and past quarter assets measured as the natural logarithm

of assets under management. The model is controlled for category and time effects. The

number of hedge funds in the category is a proxy for competition. The reason why a year

lag is taken when calculating competition is because it takes some time for hedge funds to

enter a category and become competitive. They need to raise awareness in the hedge fund

community, communicate their strategy to new investors, build relationships with dealers

and bankers who extend credit, and build a track record to attract new investors.

Liquidationi,t = f(αi,t + β1Agei,t + β2ri,t−1

+β3ri,t + β4Numberk,t−4 + β5Assetsi,t−1

+
10∑

k=1

βc
6I(Categoryi,k) +

31∑
t=1

βt
7I(Timei,t) + εi,t)

(13)

The data used in the paper is from 1994 until 2002. The TASS started reporting exits

by hedge funds starting in 1994. Therefore, during this time period, FAV and competition

metrics are going to be correctly calculated.

To test Hypothesis 2, the joint effect of competition and favorable positioning on liqui-

dation probability is modeled. Also, the estimates are controlled for the mean to allow for
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direct comparison.

Liquidationi,t = f(αi,t + β1Agei,t + β2ri,t−1

+β3ri,t + β4Numberk,t−4 + β5FAVi,t−1 + β6Assetsi,t−1

+
10∑

k=1

βc
7I(Categoryi,k) +

31∑
t=1

βt
8I(Timei,t) + εi,t)

(14)

To test Hypothesis 3, we run the logit model for liquidation of hedge funds on age,

previous return, current return, previous assets measured in logarithmic quantities, previous

FRAC, and previous assets under management measured in logarithmic quantities, where

FRAC is defined as follows:

Frack,t =
Numberk,t∑
i,i∈k Assetsi,t

(15)

FRAC measures the fraction of the number of competitors in a category to the overall

asset size in the category.

The logit specification is as follows:

Liquidationi,t = f(αi,t + β1Agei,t + β2ri,t−1

+β3ri,t + β4Numberk,t−1 + β5FRACk,t−1 + β6Assetsi,t−1

+
10∑

k=1

βc
7I(Categoryi,k) +

38∑
t=1

βt
8I(Timei,t) + εi,t)

(16)

To test Hypothesis 4, we divide competition metric, NUMBER, into 5 quintiles and run

the logistic model in equation 14 five times for each of the quintilies.
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6.3 Results

Results for Hypothesis 2

The Fama-MacBeth results of the regression model 8 are presented in Table A.10.

[ INSERT TABLE A.10 ]

When pooled regression is used, the coefficient in front of current FAV is 3.347 with a

t-stat of 2.93. When the Fama-MacBeth method is used, the coefficient is 1.358 with a t-stat

of 1.85. As can be seen, current FAV significantly depends on a previous category return.

Investors chase hedge funds in a category that performed well. The R2 for the regression is

28.46%. Returns are value-weighted.

The results of logit regression specified in equation 9 are presented in Table A.11. Even if

a hedge fund manager has skills and a good track record, the hedge fund can still fail simply

due to its belonging to the wrong category at the wrong time.

[ INSERT TABLE A.11 ]

For robustness, the FAV metric is plotted over time for each category to make sure

that there is no consistent trend in the measure that can diminish the favorable positioning

explanation. FAV for each category is plotted over time in the Figure A.1. According to the

figure, FAVs for Global Macro and Long/Short Equity are negatively correlated.

[ INSERT FIGURE A.1 ]

The R2 for the regression is 13.24%. As predicted, the funds with higher current and

past returns have a higher survival probability. Funds with higher assets are less likely to

fail. Higher FAV leads to lower liquidation probability. The coefficient in front of the FAV

measure is -0.502 and is significant at 1% level. Therefore, for a hedge fund, being in the

right category at the right time helps to reduce liquidation probability. Given equation 9,

the implied probability of liquidation for a particular hedge fund in any quarter is 0.52%.

Changing FAV from -1 standard deviation to +1 standard deviation affects the implied
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probability by -30.11%. 4

Results of the likelihood ratio test and the efficient score test for testing the joint signif-

icance of the explanatory variables are included in the Table A.12.

[ INSERT TABLE A.12 ]

The result shows that a hedge fund is likely to survive if it is in the right category at

the right time. If the category as a whole experiences higher inflows than other categories,

a hedge fund in this favorable category has a greater probability of survival after controlling

for current and past returns, age, and assets under management in the fund.

However, as the category becomes favorable, other hedge funds are more likely to enter

into the same category. The barrier of entry to the hedge fund industry is very low, and over

time the cost and time of setting up a new hedge fund has greatly diminished.

The proposition is tested in the equation 11 and the results are as follows. The parameter

estimate of the FAVk,t−1 is 0.018 with t-statistic of 2.24. Therefore, hedge funds tend to be

formed in categories which have increased relative net flows.

It takes time for hedge fund managers to perceive the “hotness” of a category as well as

to set-up a fund in this favorable category. Therefore, the EntryFraction is regressed on 4

lags of FAV (up to 1 year). The sum of parameter estimates for all 4 lags is 0.038. The R2

for the regression is 2.15%.

As EntryFraction into a category increases, competition among hedge funds in a cate-

gory increases. Table A.13 presents results of the following: logit regression of liquidation

probability of a hedge fund at time t on intercept, current age, previous quarterly return on

investments, current quarterly return, the number of hedge funds in a particular category in

the previous year, and previous quarterly assets under management. Even if a hedge fund

manager has skills and a good track record, the hedge fund can still fail due to competition

among other hedge funds in a category.

[ INSERT TABLE A.13 ]

4 Implied Probability= exp(αi,t+
Pn

z=1 βi,t,zµi,t,z)

1+exp(αi,t,z+
Pn

z=1 βi,t,zµi,t,z) where µi,t,z is a mean value for an independent variable
z.
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The R2 for the regression is 12.30%. As suggested by Hypothesis 2, a higher number

of hedge funds in a category leads to more competition, thus increasing the liquidation

probability. The coefficient on the Number is 0.002 and is significant at 1% level. Therefore,

competition increases the liquidation probability. Given equation 13, the implied probability

of liquidating a particular hedge fund in any quarter is 0.90%. Changing the number of hedge

funds in a category from -1 standard deviation to +1 standard deviation increases the implied

probability by +76.97%.

Results of the likelihood ratio test and the efficient score test for testing the joint signif-

icance of the explanatory variables are included in Table A.14.

[ INSERT TABLE A.14 ]

The results that show the combined effect of competition and favorable positioning are

in Table A.15.

[ INSERT TABLE A.15 ]

The results that show estimates adjusted for the mean are in Table A.16.

[ INSERT TABLE A.16 ]

Results of the likelihood ratio test and the efficient score test for testing the joint sig-

nificance of the explanatory variables in Tables A.15 and A.16 are included in the Table

A.17.

[ INSERT TABLE A.17 ]

If FAV and competition are taken into account, then the annual implied liquidation

probability of any hedge fund is 2.72%. If these variables are not taken into the account,

then the implied liquidation probability is 1.84%.

Overall, hedge funds are likely to survive if they are in the right category at the right

time, even after adjusting for performance. If the category falls out of favor, hedge funds have

bigger liquidation probability. Hedge funds are not able to raise new capital and withdrawals

can lead to forced liquidation due to levered positions that fall below a threshold. If a
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category has a favorable positioning, it has a positive effect on survival probability as well

as on the number of new hedge fund entrants into the favored category. The increase in the

competition among the funds in a category leads to an increased proportional liquidation

within the hedge fund category.

The quarterly Spearman correlation coefficients for the current liquidation probability,

current age, current returns, past returns, past flows, past FAV, the last year’s number

of hedge funds in a category and past assets are presented in Table A.18. In Spearman

correlation only the order of the data is important, not the level, therefore extreme variations

in expression values have less control over the correlation, unlike in the Pearson correlation.

[ INSERT TABLE A.18 ]

The correlation between past returns and current flows is positive and significant: 0.211

for quarterly data. The relationship between flows and returns is thoroughly analyzed in the

Section 5.

Results for Hypothesis 3

The results of logistic regression specified in 16 are presented in Table A.19.

[ INSERT TABLE A.19 ]

The coefficient in front of the competition metric, NUMBER, is 0.019, positive and

significant. Coefficient in front of FRAC is -0.660, negative and significant. Therefore, as

competition increases in a particular category k, more hedge funds in that category are

likely to be liquidated. However, as more hedge funds control smaller amounts of assets, it

improves success probabilities of hedge funds. Competition from smaller hedge funds is less

likely to increase liquidation probabilities than competition from bigger hedge funds. This

is consistent with Hypothesis 3.

Results for Hypothesis 4

To test Hypothesis 4, we divide competition metric, NUMBER, into 5 quintiles and run the

logistic model in equation 14 five times for each of the quintiles. The results for the effect of

the past return on liquidation probabilities are depicted in Table A.20. As can be seen from
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the table, as competition increases, the effect of the past quarterly return on liquidation

probabilities increases.

[ INSERT TABLE A.20 ]

As competition within a strategy increases, more hedge funds are looking for diminishing

opportunities, compete for scarce capital and leverage opportunities. Marginal funds that

deliver average or below average returns are more affected during the increased competition

and will be forced to liquidate. Only hedge funds that can deliver superior returns to their

investors stay.

7 Optimal Asset Size

Both performance and assets under management impact the life cycles of hedge funds. The

relationship is important as the understanding of the relationship helps investors to optimize

future profits and for hedge fund managers to decide when it is appropriate to close the fund

to new investments. Agarwal, Daniel and Naik (2003) and Goetzmann, Ingersoll and Ross

(2003) find positive and concave relationship between returns and assets. However, they do

not analyze the relationship for different hedge fund categories. Categories that hold illiquid

assets, have limited market opportunities and high market impact of trades, are more likely

to exhibit the concave relationship. Moreover, by optimizing returns, an optimal asset size

can be calculated for funds in these categories.

7.1 Hypotheses

Hypothesis 5: The relationship between current performance and past assets is concave.

By maximizing returns, an optimal asset size can be obtained for more illiquid categories.

7.2 Methodology

It is important that the dataset we are using does not have survivorship biases. According to

Ackermann et al. (1999), termination and self-selection biases are the most powerful data-
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conditioning biases. Funds that are liquidated leave the database due to termination. Funds

that choose not to be included in the database due to mergers, being closed to investors

or a decision to discontinue advertising through the database due to sufficient funds, can

voluntarily withdraw from the database. This induces a self-selection bias. Performance

studies of existing hedge funds may be artificially inflated if poorly performing funds are

systematically omitted from the database. Most databases with hedge fund data may contain

various forms of conditioning bias. For mutual funds, Elton, Gruber, and Blake (1996), and

Malkiel (1995) estimate that the inclusion of discontinued funds reduces the average annual

mutual fund return by between 0.2 and 1.4 percentage points. Brown et al. (1999) find that

the survivorship bias is about 3 percentage points per year for offshore hedge funds.

Hedge funds that leave due to self-selection are usually those that have raised enough

capital and performed well enough that they do not see the need to be listed in the TASS

database. One of the major reasons why hedge funds are voluntarily listed in the database is

to obtain free advertising. Under Regulation D, that consists of rules governing the limited

offer and sale of securities without registration under the Securities Act of 1933, specifically,

Reg. 230.502. (c), hedge funds are banned from direct advertising. Hedge funds acquire new

investors by using consultants, “word of mouth,” or being listed in the database. Therefore,

the self-selected hedge funds that left the database are eliminated from the analysis as the

data on their returns and assets is not available after they choose to withdraw from the

database.

There are two implications of the omission of the self-selected funds. First, if the asset

size continues to grow in the future with increased returns, the true relationship might not

exhibit the optimal fund size. However, the inclusion of the self-selected funds will negatively

bias the optimal fund size. The second implication of the omission of the self-selected funds

is that region A of the concave relationship between asset size and performance is omitted.

In this case, the self-selection bias undermines the results of a concave relationship between

a hedge fund asset size and returns (see Figure 1).

[ INSERT FIGURE 1 ]

If hedge funds are subject to termination bias, then including such funds in the analysis
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would eliminate regions B and C (see Figure 2).

[ INSERT FIGURE 2 ]

Hedge funds that are liquidated are more likely to be located in the regions B and C,

and not adjusting for the termination bias would lead to an incorrect relationship between

returns and performance.

In order to eliminate the self-selection bias, we examine all hedge funds in the “Grave-

yard” database, and eliminate funds that no longer report their performance, are closed

to investment, or merged with other hedge funds. Therefore, in this Section we analyze

3,501 combined hedge funds, out of which 2,237 are in the “Successful” sub-database and

1,264 in the “Liquidated” sub-database. In order to eliminate the termination bias, perfor-

mance and asset size values for hedge funds before 1994 are not considered. TASS started

the “Graveyard” database in 1994. Therefore, the “Combined” database that consists of

the “Successful” and “Liquidated” sub-databases does not have termination bias starting in

1994.

The relationship between returns and assets is further analyzed using monthly data.

ri,t = αi,t + β1Assetsi,t−1 + β2Assets2
i,t−1 + εi,t (17)

The returns versus assets are drawn in the Figure 3. The Figure is constructed as follows.

First, assets are separated into 20 different bins according to asset sizes with an equal number

of hedge funds. Then, for each bin, an average size and an average corresponding return

is calculated. The relationship between the average returns and the average asset sizes is

depicted in Figure 3.

[ INSERT FIGURE 3 ]

7.3 Results

The results for regression 17 are specified in Table A.21.
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[ INSERT TABLE A.21 ]

The relationship between performance and asset size is positive (the coefficient= 0.290, t-

stat=2.69); however, when the size squared is taken into account, the relationship is negative

(the coefficient=-0.011, t-stat=-3.39). Therefore, the relationship between current returns

and past assets is concave, suggesting that it is possible to obtain an optimal size for different

hedge fund strategies. Note, when time effects are taken into the account, the relationship is

still concave; however, the coefficient on the size squared is not significant at 5% level. This

is due to category differences in the functional forms between returns and past assets as well

as average assets and returns.

The relationship between returns and assets for all hedge funds is depicted in Figure 3.

Volatility of returns versus assets is depicted in the Figure 4.

[ INSERT FIGURE 3 ]

[ INSERT FIGURE 4 ]

The relationship is concave, reaching an optimal size by optimizing returns. The asset

size is optimal for a hedge fund investor, as the further increase in the asset size can actually

decrease the return. The volatility decays with size according to a power law. Hedge funds

that have a smaller asset size, usually younger hedge funds, tend to increase their riskiness in

order to obtain high returns. As hedge funds become more mature and bigger in size, hedge

fund managers employ less risky strategies. Also, the decrease in volatility can be explained

by the diversification hypothesis: As funds become bigger, they have more flexibility of

investing in more securities that are not correlated, thus reducing the variance of the overall

portfolio.

We expect that the performance-asset relationship is different for various hedge fund

strategies. Funds that invest in illiquid securities are more likely to exhibit a concave be-

havior than hedge funds that invest in liquid strategies. Funds in illiquid categories are

also more likely to reach an optimal size in the analysis. These funds have larger market

impact costs. Also, hedge funds that employ strategies with limited opportunities, such as
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“Convertible arbitrage,” “Event driven” and “Emerging market,” are more likely to exhibit

concave behavior in returns versus assets.

As can be seen in Figures 5 - 14, the performance-asset relationship is concave and reaches

the optimal asset size for illiquid categories and categories with limited opportunities, such

as “Convertible arbitrage” and “Emerging markets.”

“Dedicated short bias”, “Equity market neutral” and “Global macro” strategies that

involve liquid instruments and have relatively unlimited opportunities, do not exhibit concave

relationship between returns and assets under management. Interestingly, according to our

analysis, it is possible to calculate an optimal size for a “Managed futures” strategy; however,

the result is mainly driven by the outlier.

“Funds of funds” do exhibit a concave relationship between returns and assets; however,

the fit is much better for “Convertible Arbitrage,” “Emerging Markets,” and all hedge funds

taken together. “Funds of funds” are less likely to be affected by the diseconomies of scale

than individual funds. Agarwal, Daniel, and Naik (2003) came to the same conclusion.

[ INSERT FIGURES 5 - 14]

7.4 Performance Model

In order to be assured that the results for the concave relationship between returns and assets

and the notion of optimal assets are not mechanical, Monte Carlo simulations of returns are

performed. In the beginning of the simulation, we use 3,000 funds. The starting value for

each hedge fund is $25 Million, and the cut-off liquidation value is $20 Million. Returns are

normally distributed with the monthly µ=0.90% and the σ = 6.58%. The simulation is run

for 10 years.

Figure 15 shows the relationship between returns and assets using simulated data.

[ INSERT FIGURE 15]

The relationship is random around the mean of 0.9%. There is no concave relationship

between hedge funds returns and past assets. The proposed model takes into account only
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the distribution of returns and eliminates hedge funds after they reach a threshold of $20

million in assets. However, the data for the eliminated funds, as in TASS, is used in the

analysis.

To make the model more realistic, we use parameters from previous sections of the paper.

We adjust the performance for FAV, flows, competition and market impact.

Each month, returns are drawn from the Normal Distribution with µ = 0.90 and σ =

6.58, R0
i,t = N(µ, σ).

Flows are calculated as follows:

Fi,t =





1− exp(−ri,t−1) if ri,t−1 ≥ 0

−1 + exp(ri,t−1) if ri,t−1 < 0

(18)

Using calculated Ft, DollarFlow, DollFt is calculated as follows:

Fi,t =
DollFi,t

Assetsi,t−1

(19)

Using calculated DollF and past assets, current assets are calculated using the following

formula:

DollFi,t = Assetsi,t − Assetsi,t−1(1 + Ri,t) (20)

FAV, the favorable positioning metric is calculated as follows:

FAVk,t =

∑
i,i∈k DollFi,t∑

i,i∈POSNET DollFi,t

(21)
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POSNET is a subset of flows that are net positive during the time period t.

FAVk,t = −
∑

i,i∈k DollFi,t∑
i,i∈NEGNET DollFi,t

(22)

NEGNET is a subset of flows that are net negative during the time period t. Competition,

C, is measured as follows:

Ck,t = −µ expFAVi,t−1−1 (23)

New Entry into category k is calculated as follows:

ENTRYk,t = INTEGER(
√

NUMBERt−1FAVt−1) (24)

where NUMBERt−1 is the number of hedge funds in category k in the previous time period.

Market Impact, M, for each hedge fund i at time t is calculated as follows:

Mi,t = −0.2
Assetsi,t−1∑

i,i∈k Assetsi,t−1

(25)

Return is given by:

Ri,t = R0
i,t + Ck,t + Mi,t (26)

Each fund starts with $40 Million. The cut-off for hedge fund liquidation is $20 Million.

There are 10 categories, and each category starts off with 100 hedge funds. The model is

run for 10 years. The results are depicted in Figure 16.

[ INSERT FIGURE 16]
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As can be seen from this figure, the relationship between returns and assets is concave

and reaches an optimal asset size. The relationship resembles the real data depicted in Figure

3.

The same model is run for 20 years, and the second 10 years of data are taken for the

analysis. The results are presented in Figure 17.

[ INSERT FIGURE 17]

The same model is run for 50 years, and the last 10 years of data are taken for the

analysis. The results are presented in Figure 18.

[ INSERT FIGURE 18]

Using these results, we can see the progression of the performance-asset size relationship

over time. In the first 10 years, the number of funds is relatively small compared to the

number of funds in 50 years. Therefore, the market impact, which is a function of a fraction

of total assets in a category, greatly affects the performance of the funds. In 50 years, as

more competitors come in, the fraction of asset size for each competitor decreases, reducing

market impact. Therefore, in Figure 16 we see negative returns with high assets due to high

market impact. That effect diminishes in Figure 18. The concave relationship in all figures is

due to competition and market impact effects. As more new hedge funds enter, competitors

have to compete for limited opportunities as well as limited capital, thus, reducing returns

of the funds in that category.
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8 Conclusions

The paper explores the drivers of life cycles of hedge funds. Compared to mutual funds,

hedge funds have a very large probability of liquidation. The annual attrition in hedge funds

due to liquidation averaged 7.10% between 1994-2002. The paper studies the impact of age,

size, returns, flows, favorable positioning and competition on the life cycles of hedge funds.

Performance and flows positively affect the survival probability. The relationship between

performance and fund flows is studied. The piecewise linear relationship is estimated and

applied to different hedge fund categories. The performance-flow relationship is positive and

concave. As expected, hedge funds that follow more directional strategies are more likely

to have a higher effect of past returns on future flows than funds with more event-driven

strategies.

We propose that favorable positioning positively affects the survival probability of a

hedge fund. Therefore, being in the right category at the right time can reduce the liqui-

dation probability for a hedge fund, after adjusting for fund characteristics. On the other

hand, competition among hedge funds in the same category greatly increases the liquidation

probability of an individual hedge fund in that category. As a result, hedge fund managers

might choose to stay in the category which experiences favorable positioning and less com-

petition. However, it is shown that as the hedge fund category becomes more favorable,

more hedge funds enter such a category, thus increasing the competition. As investors chase

category returns, competition among hedge funds within the category increases, thus, liqui-

dation probability of hedge funds in that category increases. Therefore, hedge fund managers

should dynamically weigh the risks of being in a particular category at any time and under-

stand the interrelationships between competition and favorable positioning. Smaller hedge

funds are less likely to increase liquidation probability. We also find that as competition

increases, marginal funds are more likely to be liquidated than funds that deliver superior

risk-adjusted returns.

Past asset size also impacts current hedge fund returns that in turn affect the life cycle

of hedge funds. The relationship between current performance and past asset size is positive

and concave. It is possible to obtain an optimal asset size by optimizing returns. Therefore,

151



hedge fund investors should be wary of hedge fund asset size before investing, and try to

invest in a hedge fund that is near its optimal size. Hedge fund managers might be more

inclined to increase the asset base, thereby increasing the fees. Therefore, it is in the best

interest of an investor to choose hedge fund strategies that do not have asset size higher than

the optimum. The performance-asset size relationship takes on different functional forms for

different categories. The relationship is concave and the optimal size can be obtained for more

illiquid categories such as “Emerging markets” and “Convertible arbitrage.” These hedge

fund categories experience high market impact and are subject to limited opportunities.

‘Funds of funds” are less likely to be affected by the diseconomies of scale than individual

funds. Hedge fund managers with high asset sizes might choose to close the fund to new

investors before facing a decrease in returns and an increase in liquidation probabilities.

In order to understand the life cycles of hedge funds, it is important to understand the

interrelationships of fund characteristics – flows, returns, asset size and age – and indus-

try characteristics – favorable positioning and competition –. For hedge fund managers,

the benefit of this approach will be an improved understanding of the effects of survival

probabilities. For hedge fund investors, the benefit will be an improved understanding of

investment opportunities. Next step would be to propose theoretical models for the optimal

dynamic strategies for hedge fund managers and investors given the factors outlined in the

paper. This is the focus of our future research.
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A Appendix

A.1 Tables and Figures

Code Category
Number of Funds In:

Combined Successful Liquidated

1 Convertible Arbitrage 143 117 26
2 Dedicated Short Bias 23 15 8
3 Emerging Markets 219 107 112
4 Equity Market Neutral 190 136 54
5 Event Driven 304 227 77
6 Fixed Income Arbitrage 138 88 50
7 Global Macro 181 84 97
8 Long/Short Equity 1139 779 360
9 Managed Futures 421 164 257

10 Fund of Funds 657 458 199
11 Other 86 62 24

All 3501 2237 1264

Table A.1: This table presents the number of funds in the TASS Hedge Fund Combined,
Successful and Liquidated databases during the period from January 1994 to December 2002.

153



Y
ea

r
E

xi
st

in
g

N
ew

N
ew

In
tr

ay
ea

r
T
ot

al
A

tt
ri

ti
on

Fu
nd

s
E

nt
ri

es
E

xi
ts

E
nt

ry
/E

xi
t

Fu
nd

s
R

at
e

(%
)

19
77

0
3

0
0

3
0.

0
19

78
3

2
0

0
5

0.
0

19
79

5
2

0
0

7
0.

0
19

80
7

3
0

0
10

0.
0

19
81

10
3

0
0

13
0.

0
19

82
13

4
0

0
17

0.
0

19
83

17
8

0
0

25
0.

0
19

84
25

14
0

0
39

0.
0

19
85

39
9

0
0

48
0.

0
19

86
48

21
0

0
69

0.
0

19
87

69
27

0
0

96
0.

0
19

88
96

31
0

0
12

7
0.

0
19

89
12

7
43

0
0

17
0

0.
0

19
90

17
0

10
2

0
0

27
2

0.
0

19
91

27
2

86
0

0
35

8
0.

0
19

92
35

8
15

5
0

0
51

3
0.

0
19

93
51

3
23

0
0

0
74

3
0.

0
19

94
74

3
25

5
19

1
99

8
2.

6
19

95
99

8
28

9
60

1
12

87
6.

0
19

96
12

87
31

0
11

9
9

15
97

9.
3

19
97

15
97

34
9

93
6

19
46

5.
8

19
98

19
46

32
5

16
2

9
22

71
8.

3
19

99
22

71
36

3
18

3
7

26
34

8.
1

20
00

26
34

33
0

23
1

9
29

64
8.

8
20

01
29

64
35

5
26

0
5

33
19

8.
8

20
02

33
19

24
6

27
5

12
35

65
8.

3

T
ab

le
A

.2
:

T
h
is

ta
b
le

p
re

se
n
ts

th
e

an
n
u
al

n
u
m

b
er

of
en

tr
ie

s
in

to
an

d
ex

it
s

ou
t

of
th

e
T
A

S
S

H
ed

ge
F
u
n
d

D
at

ab
as

e
fr

om
J
an

u
ar

y
19

94
to

D
ec

em
b
er

20
02

.

154



Fu
nd

C
ha

ra
ct

er
is

ti
cs

H
ed

ge
Fu

nd
s

Fu
nd

s
of

Fu
nd

s

M
ea

n
M

ed
ia

n
M

ea
n

M
ed

ia
n

M
on

th
ly

R
et

ur
n

%
0.

90
0.

79
0.

59
0.

59
St

an
da

rd
D

ev
ia

ti
on

of
M

on
th

ly
R

et
ur

ns
%

6.
58

−
3.

68
−

A
ge

(M
on

th
s)

46
.3

6
35

.0
0

52
.5

3
42

.0
0

A
ss

et
s

(M
ill

io
n

U
S

D
ol

la
rs

)
81

.7
7

20
.0

0
67

.5
9

18
.3

9
Fa

vo
ra

bl
e

P
os

it
io

ni
ng

(F
A
V

)(
pe

r
qu

ar
te

r)
0.

07
0.

09
0.

03
0.

13
St

an
da

rd
D

ev
ia

ti
on

of
Fa

vo
ra

bl
e

P
os

it
io

ni
ng

(F
A
V

)(
pe

r
qu

ar
te

r)
0.

30
−

0.
23

−
N

U
M

B
E

R
(p

er
qu

ar
te

r)
30

7.
11

22
8.

00
33

2.
75

36
9.

00
St

an
da

rd
D

ev
ia

ti
on

of
N

U
M

B
E

R
(p

er
qu

ar
te

r)
22

3.
32

−
64

.9
6

−

T
ab

le
A

.3
:

T
h
is

ta
b
le

sh
ow

s
m

ed
ia

n
an

d
av

er
ag

e
m

on
th

ly
re

tu
rn

s,
st

an
d
ar

d
d
ev

ia
ti

on
of

m
on

th
ly

re
tu

rn
s,

ag
e,

as
se

ts
u
n
d
er

m
an

ag
em

en
t,

fa
vo

ra
b
le

p
os

it
io

n
in

g
(F

A
V

)
m

et
ri

c,
st

an
d
ar

d
d
ev

ia
ti

on
fo

r
th

e
F
A
V

,
th

e
n
u
m

b
er

of
co

m
p
et

it
or

s
in

a
p
ar

ti
cu

la
r

ca
te

go
ry

(N
U

M
B

E
R

),
an

d
th

e
st

an
d
ar

d
d
ev

ia
ti

on
fo

r
th

e
n
u
m

b
er

of
co

m
p
et

it
or

s
in

a
p
ar

ti
cu

la
r

ca
te

go
ry

fo
r

si
n
gl

e-
m

an
ag

er
h
ed

ge
fu

n
d
s

an
d

fo
r

fu
n
d
s

of
fu

n
d
s.

T
h
e

st
at

is
ti

cs
ar

e
ca

lc
u
la

te
d

u
si

n
g

th
e

T
A

S
S

D
at

ab
as

e
fr

om
J
an

u
ar

y
19

94
to

D
ec

em
b
er

20
02

.

155



Parameter Estimate t-Statistic

αi,t 0.679∗ 8.05
Returni,t 0.234∗ 5.82
Trank1

i,t−1 −BottomTercile 0.293∗ 5.46
Trank2

i,t−1 −MiddleTercile 0.269∗ 5.51
Trank3

i,t−1 − TopTercile 0.006 0.08
Flowi,t−1 0.048∗ 4.56
Sizei,t−1 −0.041∗ −8.32
Agei,t−1 −0.001∗ −9.71
σi,t−1 −0.002 −1.19

Table A.4: This table reports the Fama-MacBeth results of regression of current flows Flowi,t

on Bottom, Middle and Top Terciles of past quarter performance, past flows Flowi,t−1, last
quarter’s asset size Sizei,t−1, past age Agei,t−1, last quarter’s standard deviation of monthly
returns σi,t−1 and categories of hedge funds. Funds of funds are omitted from the model.
The R2 for the regression is 5.53%. Quarterly data from 1994 to 2002 is used. The regression
is adjusted for category effects. Figures with ∗ are significant at 5% level.
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Code Category Estimate

1 Convertible Arbitrage 0.21
2 Dedicated Short Bias 0.47
3 Emerging Markets -0.01
4 Equity Market Neutral 0.19
5 Event Driven -0.04
6 Fixed Income Arbitrage 0.36
7 Global Macro 0.24
8 Long/Short Equity 0.26
9 Managed Futures 0.26

10 Fund of Funds 0.05
11 Other 0.03

All 0.27

Table A.6: This table presents the estimates of the Middle Tercile of past quarterly returns
for 11 categories.

Parameter Estimate Standard Error Wald Chi-Square Pr > Chi-Square

αi,t −1.823∗ 0.586 9.670 0.002
Agei,t 0.001 0.001 0.028 0.867
ri,t−1 −2.677∗ 0.356 56.659 < 0.001
ri,t −3.362∗ 0.330 103.774 < 0.001
Flowi,t−1 −0.790∗ 0.192 16.991 < 0.001
Assetsi,t−1 −0.399∗ 0.027 224.442 < 0.001

Table A.7: This table reports the results of logit regression of probability of liquidation
of a hedge fund at time t on intercept, current age (Agei,t), previous quarterly return on
investments (ri,t−1), current quarterly return (ri,t), previous quarterly flow into the fund
(Flowi,t−1) and previous assets under management Assetsi,t−1. The R2 is 13.62%. The
model adjusts for time and category effects. Figures with ∗ are significant to 5% level.
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Parameter Estimate Standard Error Wald Chi-Square Pr > Chi-Square

αi,t −5.103∗ 0.411 154.568 < 0.001
Agei,t 0.010 0.059 0.028 0.867
ri,t−1 −0.076∗ 0.010 56.659 < 0.001
ri,t −0.090∗ 0.009 103.774 < 0.001
Flowi,t−1 −0.105∗ 0.025 16.991 < 0.001
Assetsi,t−1 −6.666∗ 0.027 224.442 < 0.001

Table A.8: This table reports the results of logit regression of probability of liquidation
of a hedge fund at time t on intercept, current age (Agei,t), previous quarterly return on
investments (ri,t−1), current quarterly return (ri,t), previous quarterly flow into the fund
(Flowi,t−1) and previous assets under management Assetsi,t−1. All variables are adjusted
for the mean. The R2 is 13.62%. The model adjusts for time and category effects. Figures
with ∗ are significant to 5% level.

Test Chi-Square Degrees of Freedom Pr > Chi-Square

Likelihood Ratio 739.795 53 < 0.001
Score 801.630 53 < 0.001
Wald 687.167 53 < 0.001

Table A.9: This table reports the results of a test for global null hypothesis that BETA=0
for logit regression of probability of liquidation of a hedge fund at time t on intercept, current
age (Agei,t), previous quarterly return on investments (ri,t−1), current quarterly return (ri,t),
previous quarterly flow into the fund (Flowi,t−1) and previous assets under management
Assetsi,t−1. The model adjusts for time and category effects.

Parameter Estimate t-Statistic

αk,t −0.041 −1.16
rk,t−1 1.357 1.85

Table A.10: This table reports Fama-MacBeth regression of favorable positioning (FAV) on
past quarter category return rk,t−1. The category return is value-weighted. The R2 for this
regression is 28.46%.
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Parameter Estimate Standard Error Wald Chi-Square Pr > Chi-Square

αi,t 1.631∗ 0.590 7.649 0.006
Agei,t 0.002 0.001 2.170 0.141
ri,t−1 −2.685∗ 0.357 56.459 < 0.001
ri,t −3.440∗ 0.331 108.031 < 0.001
FAVk,t−1 −0.502∗ 0.183 7.501 0.006
Assetsi,t−1 −0.405∗ 0.026 238.018 < 0.001

Table A.11: This table reports the results of logit regression of probability of liquidation
of a hedge fund at time t on intercept, current age (Agei,t), previous quarterly return on
investments (ri,t−1), current quarterly return (ri,t), previous favorable positioning of the
hedge fund category compared to other categories in the database (FAVk,t−1) and previous
assets under management Assetsi,t−1 . The R2 for the regression is 13.24%. The model
adjusts for time and category effects. Figures with ∗ are significant to 5% level.

Test Chi-Square Degrees of Freedom Pr > Chi-Square

Likelihood Ratio 727.056 53 < 0.001
Score 811.074 53 < 0.001
Wald 682.541 53 < 0.001

Table A.12: This table reports the results of a test for global null hypothesis that BETA=0
for logit regression of probability of liquidation of a hedge fund at time t on intercept, current
age (Agei,t), previous quarter return on investments (ri,t−1), current quarterly return (ri,t),
previous favorable positioning of the hedge fund category compared to other categories in the
database (FAVk,t−1) and previous assets under management Assetsi,t−1. The model adjusts
for time and category effects.

Parameter Estimate Standard Error Wald Chi-Square Pr > Chi-Square

αi,t 1.737∗ 0.588 8.734 0.003
Agei,t 0.002 0.001 2.560 0.110
ri,t−1 −2.593∗ 0.360 51.999 < 0.001
ri,t −3.396∗ 0.332 104.420 < 0.001
Numberk,t−4 0.002∗ 0.001 6.945 0.008
Assetsi,t−1 −0.412∗ 0.027 241.442 < 0.001

Table A.13: This table reports the results of logit regression of probability of liquidation
of a hedge fund at time t on intercept, current age (Agei,t), previous quarterly return on
investments (ri,t−1), current quarterly return (ri,t), the number of hedge funds in a particular
category a year before (Numberk,t−4) and previous assets under management Assetsi,t−1.
The R2 is 12.30%. The model adjusts for time and category effects. Figures with ∗ are
significant to 5% level.
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Test Chi-Square Degrees of Freedom Pr > Chi-Square

Likelihood Ratio 653.078 46 < 0.001
Score 754.083 46 < 0.001
Wald 666.474 46 < 0.001

Table A.14: This table reports the results of a test for global null hypothesis that BETA=0
for logit regression of probability of liquidation of a hedge fund at time t on intercept, current
age (Agei,t), previous quarterly return on investments (ri,t−1), current quarterly return (ri,t),
the number of hedge funds in a particular category a year before (Numberk,t−4) and previous
assets under management Assetsi,t−1. The model adjusts for time and category effects.

Parameter Estimate Standard Error Wald Chi-Square Pr > Chi-Square

αi,t 1.579∗ 0.596 7.028 0.008
Agei,t 0.002 0.001 2.555 0.110
ri,t−1 −2.593∗ 0.360 51.932 < 0.001
ri,t −3.400∗ 0.332 104.750 < 0.001
Numberk,t−4 0.001∗ 0.000 4.267 0.039
FAVk,t−1 −0.416∗ 0.192 4.674 0.031
Assetsi,t−1 −0.411∗ 0.027 240.513 < 0.001

Table A.15: This table reports the results of logit regression of probability of liquidation
of a hedge fund at time t on intercept, current age (Agei,t), previous quarterly return on
investments (ri,t−1), current quarterly return (ri,t), the number of hedge funds in a particu-
lar category a year before (Numberk,t−4), previous favorable positioning of the hedge fund
category compared to other categories in the database (FAVk,t−1) and previous assets under
management Assetsi,t−1. The R2 is 12.38%. The model adjusts for time and category effects.
Figures with ∗ are significant to 5% level.
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Parameter Estimate Standard Error Wald Chi-Square Pr > Chi-Square

αi,t −4.979∗ 0.447 124.118 < 0.001
Agei,t 0.090 0.057 2.555 0.110
ri,t−1 −0.074∗ 0.010 51.932 < 0.001
ri,t −0.091∗ 0.009 104.750 < 0.001
Numberk,t−4 0.416∗ 0.202 4.267 0.039
FAVk,t−1 −0.027∗ 0.013 4.674 0.031
Assetsi,t−1 −6.872∗ 0.443 240.513 < 0.001

Table A.16: This table reports the results of logit regression of probability of liquidation
of a hedge fund at time t on intercept, current age (Agei,t), previous quarterly return on
investments (ri,t−1), current quarterly return (ri,t), the number of hedge funds in a particu-
lar category a year before (Numberk,t−4), previous favorable positioning of the hedge fund
category compared to other categories in the database (FAVk,t−1) and previous assets under
management Assetsi,t−1. All variables are adjusted for the mean. The R2 is 12.38%. The
model adjusts for time and category effects. Figures with ∗ are significant to 5% level.

Test Chi-Square Degrees of Freedom Pr > Chi-Square

Likelihood Ratio 657. 74647 < 0.001
Score 756.373 47 < 0.001
Wald 671.032 47 < 0.001

Table A.17: This table reports the results of a test for global null hypothesis that BETA=0
for logit regression of probability of liquidation of a hedge fund at time t on intercept, current
age (Agei,t), previous quarterly return on investments (ri,t−1), current quarterly return (ri,t),
the number of hedge funds in a particular category a year before (Numberk,t−4), previous
favorable positioning of the hedge fund category compared to other categories in the database
(FAVk,t−1) and previous assets under management Assetsi,t−1. The model adjusts for time
and category effects.

Variable TOTLIQi,t Agei,t ri,t−1 ri,t Flowi,t−1 Flowi,t FAVk,t−1 Assetsi,t−1 Numberk,t−4

TOTLIQi,t 1.000 0.022 −0.082 −0.056 −0.075 −0.049 −0.022 −0.102 0.001
Agei,t 0.022 1.000 −0.083 −0.077 −0.249 −0.243 −0.043 0.281 0.026
ri,t−1 −0.082 −0.083 1.000 0.078 0.084 0.211 0.010 0.024 −0.047
ri,t −0.056 −0.077 0.098 1.000 0.023 0.083 −0.0145 −0.028 −0.060
Flowi,t−1 −0.075 −0.249 0.084 0.023 1.000 0.355 0.151 0.092 0.019
Flowi,t −0.049 −0.243 0.211 0.083 0.355 1.000 0.100 −0.024 0.011
FAVk,t−1 −0.022 −0.043 0.010 −0.015 0.151 0.100 1.000 0.104 0.359
Assetsi,t−1 −0.102 0.281 0.024 −0.028 0.092 −0.024 0.104 1.000 0.012
Numberk,t−4 0.001 0.026 −0.047 −0.060 0.019 0.011 0.359 0.012 1.000

Table A.18: This table reports the results for quarterly Spearman correlation of TOTLIQi,t,
Agei,t, ri,t−1, ri,t, Flowi,t−1, Flowi,t, FAVk,t−1, Assetsi,t−1 and Numberk,t−4.
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Parameter Estimate Standard Error Wald Chi-Square Pr > Chi-Square

αi,t 2.017∗ 0.592 11.607 < 0.001
Agei,t 0.002 0.001 1.832 0.176
ri,t−1 −2.413∗ 0.362 44.446 < 0.001
ri,t −3.344∗ 0.339 97.335 < 0.001
Numberk,t−1 0.019∗ 0.002 132.944 < 0.001
Frack,t−1 −0.660∗ 0.047 201.447 < 0.001
Assetsi,t−1 −0.388∗ 0.027 209.622 < 0.001

Table A.19: This table reports the results of logit regression of probability of liquidation
of a hedge fund at time t on intercept, current age (Agei,t), previous quarterly return on
investments (ri,t−1), current quarterly return (ri,t),the number of hedge funds in a particular
category a quarter before (Numberk,t−1), the fraction of the number of hedge funds in a
category divided by the total assets under management in that category (Frack,t−1) and
previous assets under management Assetsi,t−1. The R2 is 18.65%. The model adjusts for
time and category effects. Figures with ∗ are significant to 5% level.

Parameter Estimate Standard Error Wald Chi-Square Pr > Chi-Square

ri,t−1 - Comp 1 −0.029 0.026 1.203 0.273
ri,t−1 - Comp 2 −0.063∗ 0.022 8.021 0.005
ri,t−1 - Comp 3 −0.066∗ 0.020 11.416 0.001
ri,t−1 - Comp 4 −0.089∗ 0.026 11.910 0.001
ri,t−1 - Comp 5 −0.115∗ 0.021 31.308 < 0.001

ri,t−1 - Comp 1-5 −0.074∗ 0.010 51.932 < 0.001

Table A.20: This table reports the results of logit regressions of probability of liquidation
of a hedge fund at time t on intercept, current age (Agei,t), previous quarterly return on
investments (ri,t−1), current quarterly return (ri,t), the number of hedge funds in a particular
category a year before (Numberk,t−4), favorable positioning (FAV) and previous assets under
management Assetsi,t−1 for 5 different terciles of competition, where Comp 1 represents the
lowest tercile, and Comp 5 represents the highest tercile. All variables are adjusted for
the mean. The coefficients on the past return are shown. The models adjust for time and
category effects. Figures with ∗ are significant to 5% level.
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Concave Relationship Between Returns and Assets
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Figure 1: This figure shows that if the data are not adjusted for the self-selection bias, then
the section A is going to be eliminated from the analysis.

Parameter Estimate t-Statistic

αi,t −0.911 −1.02
Assetsi,t−1 0.290∗ 2.69
Assets2

i,t−1 −0.011∗ −3.39

Table A.21: This table reports the results of linear regression of a monthly return of a
hedge fund on Assetsi,t−1 and Assets2

i,t−1. Note, assets are measured in natural logarithm
quantities. The R2 for this regression is 0.05%. Figures with ∗ are significant at 5% level.
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Concave Relationship Between Returns and Assets
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Figure 2: This figure shows that if the data are not adjusted for the termination bias, then
the sections B and C are going to be eliminated from the analysis.
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Returns vs. Assets
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Figure 3: This figure shows the relationship between returns and assets for all hedge funds.
The data are adjusted for termination and self-selection biases.
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Volatility vs. Assets
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Figure 4: This figure shows the relationship between volatility of returns and assets for all
hedge funds. The data are adjusted for termination and self-selection biases.
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Convertible Arbitrage Category:  Returns vs. Assets
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Figure 5: Returns vs. Assets relationship for the Convertible Arbitrage Category.

Dedicated Short Bias Category:  Returns vs. Assets
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Figure 6: Returns vs. Assets relationship for the Dedicated Short Bias Category.
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Emerging Markets Category:  Returns vs. Assets
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Figure 7: Returns vs. Assets relationship for the Emerging Markets Category. Note, the
outlier (Assets=13.16, Returns=2.02%) is taken out of the picture.

Equity Market Neutral Category:  Returns vs. Assets
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Figure 8: Returns vs. Assets relationship for the Equity Market Neutral Category.
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Event Driven Cateogry:  Returns vs. Assets
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Figure 9: Returns vs. Assets relationship for the Event Driven Category.

Fixed Income Arbitrage Category:  Returns vs. Assets
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Figure 10: Returns vs. Assets relationship for the Fixed Income Arbitrage Category.

171



Global Macro Category:  Returns vs. Assets
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Figure 11: Returns vs. Assets relationship for the Global Macro Category.
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Figure 12: Returns vs. Assets relationship for the Long/Short Equity Category.
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Managed Futures Category:  Returns vs. Assets
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Figure 13: Returns vs. Assets relationship for the Managed Futures Category.

Fund of Funds Category:  Returns vs. Assets
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Figure 14: Returns vs. Assets relationship for the Fund of Funds Category.
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Monte Carlo:  Returns vs. Assets
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Figure 15: This figure shows the relationship between returns and assets using simulated
data. In the beginning of the simulation, 3,000 funds enter. The starting value is $40 Million,
and the cut-off liquidation value is $20 Million. Returns are normally distributed with the
monthly µ=0.90% and the σ = 6.58%. The Monte Carlo simulation is run for 10 years (120
months).
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Model:  Returns vs. Asssets
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Figure 16: This figure shows the relationship between returns and assets using simulated
data. Each month, returns are drawn from the Normal Distribution with the monthly
µ=0.90% and the σ = 6.58%. In the beginning of the simulation, 100 funds enter into each
of 10 categories. The starting value is $40 Million, and the cut-off liquidation value is $20
Million. New funds are allowed to enter during the simulation. Returns are adjusted for
competition between categories, favorable positioning and market impact. The simulation
is run for 10 years.
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Model:  Returns vs. Assets

y = -0.058x
2
 + 1.9714x - 16.286

R
2
 = 0.8721

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

17 17.5 18 18.5 19 19.5 20 20.5

Assets

R
e
tu

r
n

s

Figure 17: This figure shows the relationship between returns and assets using simulated
data. Each month, returns are drawn from the Normal Distribution with µ=0.90% and the
σ = 6.58%. In the beginning of the simulation, 100 funds enter into each of 10 categories.
The starting value is $40 Million, and the cut-off liquidation value is $20 Million. New funds
are allowed to enter during the simulation. Returns are adjusted for competition between
categories, favorable positioning and market impact. The simulation is run for 20 years, and
the last 10 years are taken for the analysis.
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Model:  Returns vs. Assets
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Figure 18: This figure shows the relationship between returns and assets using simulated
data. Each month, returns are drawn from the Normal Distribution with µ=0.90% and the
σ = 6.58%. In the beginning of the simulation, 100 funds enter into each of 10 categories.
The starting value is $40 Million, and the cut-off liquidation value is $20 Million. New funds
are allowed to enter during the simulation. Returns are adjusted for competition between
categories, favorable positioning and market impact. The simulation is run for 50 years, and
the last 10 years are taken for the analysis.
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A.2 TASS Fund Category Definitions

The following is a list of category descriptions, taken directly from TASS documentation,
that defines the criteria used by TASS in assigning funds in their database to one of 11
possible categories:

Convertible Arbitrage This strategy is identified by hedge investing in the convertible securities of a
company. A typical investment is to be long the convertible bond and short the common stock of the
same company. Positions are designed to generate profits from the fixed income security as well as
the short sale of stock, while protecting principal from market moves.

Dedicated Short Bias Short biased managers take short positions in mostly equities and derivatives. The
short bias of a manager’s portfolio must be constantly greater than zero to be classified in this category.

Emerging Markets This strategy involves equity or fixed income investing in emerging markets around
the world. As many emerging markets do not allow short selling, nor offer viable futures or other
derivative products with which to hedge, emerging market investing often employs a long-only strategy.

Equity Market Neutral This investment strategy is designed to exploit equity and/or fixed income mar-
ket inefficiencies and usually involves being simultaneously long and short matched market portfolios
of the same size within a country. Market neutral portfolios are designed to be either beta or currency
neutral, or both.

Event Driven This strategy is defined as ’special situations’ investing designed to capture price movement
generated by a significant pending corporate event such as a merger, corporate restructuring, liquida-
tion, bankruptcy or reorganization. There are three popular sub-categories in event-driven strategies:
risk (merger) arbitrage, distressed/high yield securities, and Regulation D.

Risk Arbitrage - This strategy is identified by managers investing simultaneously in long and short
positions in both companies involved in a merger or acquisitions. Merger arbitrageurs are typically
long the stock of the company being acquired and short the stock of the acquirer. The principal risk
is deal risk, should the merger or acquisition fail to close.

Distressed Securities - Fund managers invest in the debt, equity or trade claims of companies in
financial distress and generally bankrupt. The securities of companies in need of legal action or
restructuring to revive financial stability typically trade at substantial discounts to par value and
thereby attract investments when managers perceive that a turn-around will materialize.

High Yield - Often called junk bonds, this strategy refers to investing in low-grade fixed-income
securities of companies that show significant upside potential. Managers generally buy and hold high
yield debt.

Regulation D - This strategy refers to investments in micro and small capitalization public companies
that are raising money in private capital markets. Investments usually take the form of a convertible
security with an exercise price that floats or is subject to a look-back provision that insulates the
investor from a decline in the price of the underlying stock.

Fixed Income Arbitrage Funds that attempt to limit volatility and generate profits from price anomalies
between related fixed income securities. Most managers trade globally with a goal of generating steady
returns with low volatility. This category includes interest rate swap arbitrage, United States and
non-United States government bond arbitrage, forward yield curve arbitrage and mortgage-backed
securities arbitrage. The mortgage-backed market is primarily United States-based and over-the-
counter.

Fund of Funds A ’Multi Manager’ fund will employ the services of two or more trading advisors or Hedge
Funds who will be allocated cash by the Trading Manager to trade on behalf of the fund.
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Global Macro Global macro managers carry long and short positions in any of the world’s major capital
or derivative markets. These positions reflect their views on overall market direction as influenced
by major economic trends and or events. The portfolios of these funds can include stocks, bonds,
currencies, and commodities in the form of cash or derivatives instruments. Most funds invest globally
in both developed and emerging markets.

Long/Short Equity This directional strategy involves equity-oriented investing on both the long and short
sides of the market. The objective is not to be market neutral. Managers have the ability to shift from
value to growth, from small to medium to large capitalization stocks, and from a net long position
to a net short position. Managers may use futures and options to hedge. The focus may be regional,
such as long/short US or European equity, or sector specific, such as long and short technology or
healthcare stocks. Long/short equity funds tend to build and hold portfolios that are substantially
more concentrated than those of traditional stock funds.

Managed Futures This strategy invests in listed financial and commodity futures markets and currency
markets around the world. The managers are usually referred to as Commodity Trading Advisors, or
CTAs. Trading disciplines are generally systematic or discretionary. Systematic traders tend to use
price and market specific information (often technical) to make trading decisions, while discretionary
managers use a judgmental approach.

Other This strategy describes hedge funds that cannot be classified in one of the ten listed categories.
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