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Analysis of the Impact of Channel Estimation
Errors on the Performance of a
Decision-Feedback Equalizer in Fading
Multipath Channels
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and Josko A. Catipovic, Member, IEEE

Abstract— A coherent receiver with a decision-feedback
equalizer (DFE) operating on a Rayleigh fading channel un-
der a suitable adaptive algorithm is considered. In the anal-
ysis of a DFE, a common assumption is that the receiver has
perfect knowledge of the channel impulse response. How-
ever, this is not the case in practice, and for a rapidly fading
channel, errors in channel tracking can become significant.
We analyze theoretically the impact of these errors on the
performance of a multichannel DFE. The expressions ob-
tained for the achievable average MPSK bit error probabil-
ities depend on the estimation error covariance. In order
to specify this matrix, we focus on a special case when a
Kalman filter is used as an optimal channel estimator. In
this case, the probability of bit error can be assessed directly
in terms of channel fading model parameters, the most in-
teresting of which is the fading rate. Our results show the
penalty imposed by imperfect channel estimation, as well as
the fading-induced irreducible error rates.

I. INTRODUCTION

Due to its low computational complexity and near-
optimal performance, the decision-feedback equalizer
(DFE), operating under a suitable adaptive algorithm, is
used in a variety of time-dispersive fading channels, such as
a mobile radio channel, a troposcatter channel, or an un-
derwater acoustic channel. It is well-known that the criti-
cal issue for its performance in a rapidly changing channel
is the tracking capability of the underlying adaptive algo-
rithm. Although a vast body of literature has been devoted
to the performance analysis of the DFE, it seems that none
addresses the impact of fading-induced imperfect channel
tracking. The goal of this analysis is to determine the per-
formance limitations of a coherent receiver which incorpo-
rates a DFE, under the conditions that only the statistical
properties of the channel are known to the receiver.

The primary factor which causes the degradation of the
DFE performance from the matched filter bound is the

Paper approved by Jack H. Winters, the Editor for Equalization of
the JEEE Communications Society. Manuscript received: February
19, 1993; revised August 17, 1993. This work was supported in part
by ARPA Grant MDA 972-91-5-1004 and by the National Science
Foundation under Grant MIP 9115526. This paper was presented in
part at the Conference on Information Sciences and Systems, Balti-
more, MD, March 1993.

M. Stojanovic and J. G. Proakis are with the Department of Elec-
trical and Computer Engineering, Northeastern University, Boston,
MA 02115.

J. A. Catipovic is with the Department of Applied Ocean Physics
and Engineering, Woods Hole Oceanographic Institution, Woods
Hole, MA 02543.

1EEE Log Number 9410883.

0090-6778 /95$4.00

residual intersymbol interference (ISI) from future symbols.
Its impact on the average achievable bit error probabil-
ity has been theoretically analyzed in [1], assuming that a
complete side information about the channel state is avail-
able. In practice, however, the channel is not known, and
in the case of a rapidly changing environment, it has to
be tracked continuously. Errors in channel estimation will
result in additional DFE performance degradation, which
is quantitatively analyzed in this paper.

We assume that the tap adjustment of the equalizer is
performed indirectly via a channel estimate. Such an ap-
proach was found in [2], [3] to be more robust with respect
to channel fading than the classical direct adaptation of the
DFE taps. The equalizer itself can be expected to track
the channel phase fluctuations, provided that it has been
relieved of the tap rotation problem by a preceding phase
tracking loop. The channel estimator accomplishes planar
carrier phase tracking, thus providing coherent demodula-
tion. The residual error in carrier phase tracking can then
be incorporated into the overall channel estimation error,
which is the approach taken in [4]. However, only the case
of a nondispersive channel is treated in [4]. The impact
of channel estimation errors on the performance of a maxi-
mum likelihood sequence estimator on a frequency selective
channel was analyzed in [5] for the case of a slowly fading
channel.

We obtain the expression for the average probability of
error in terms of the channel estimation error covariance
matrix, which in turn depends on the particular channel es-
timation technique used. A special case of a Gauss-Markov
channel model, accompanied by a Kalman filter as a chan-
nel estimator, is considered. In this case, the probability of
error can be assessed in terms of channel model parameters,
e.g., fading rate. Besides being generally accepted for a va-
riety of radio communication channels, such a model was
also used in [6] to describe the underwater acoustic chan-
nel fluctuations. Other estimation methods, namely least
squares and correlation techniques, have been addressed in
[3], [5]. The performance of a DFE aided by a Kalman
filter as a channel estimator, and related channel modeling
issues were addressed through simulation in [7].

After discussing the general channel and system model
in Section II, in Section III we derive the optimal values
of the DFE parameters, subject to the fact that only the
© 1995 [EEE
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channel estimates are available, and using the minimum
mean-squared (MMSE) criterion. In Section IV, the anal-
ysis of the average bit error probability which takes into
account the channel estimation errors is presented. We
consider a general case of diversity reception and MPSK
modulation format. Section V deals with the computation
of the needed error covariance matrices when the Kalman
filter is used for channel tracking. Finally, in Section VI the
results obtained are illustrated through several numerical
examples.

II. CHANNEL AND SYSTEM MODEL

The block diagram of the transmitter, the channel and
the receiver is shown in Fig.1. The transmitted sequence

2/T

Fig. 1. System block diagram.

of data symbols is denoted by {d(n)}, and any linear mod-
ulation format is applicable. The signal at the transmit-
ter is shaped by a filter having an impulse response p(m)!
and transmitted over K diversity channels with impulse
responses given by {ci(7,t)} as a function of the delay 7
at time ¢t. The filters at the receiver front end have the
impulse response g(r). The transmitter and receiver filters
are often chosen to have a square root Nyquist character-
istic, so that the overall response f(r) = p(7) * g() has a
Nyquist characteristic, resulting in no ISI if the channel is
ideal. However, it is not necessary to do so when the chan-
nel introduces time-dispersion. When the channel response
is not known, the receiving filter is often chosen to have a
rectangular low-pass transfer function.

The independent AWGN terms {n;(t)} are zero-mean
with power spectral density Ny. The total received signal
power is B, /T, T being the signaling interval. The received
signal, as seen by the k** equalizer, is given by

v (t) = Y d(n)hi(t — nT,t) + vi(2) (1)

where hi(7,t) = ¢p(7,t) * f(7) is the overall channel re-
sponse at time ¢, and the additive noise v (t) is zero-mean
Gaussian with

E{ui(tvi(t — 1)} = NoG(r). )

1ALl the signals are represented in equivalent complex baseband
form.

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 43, NO. 2/3/4, FEBRUARY /MARCH /APRIL 1995

The feedforward equalizers are fractionally spaced for pur-
poses of obtaining adaptive matched filtering and correct
symbol timing. For signals band-limited to 1/7, a frac-
tional spacing of T/2 is assumed without loss of general-
ity. The total time-span of the N-tap feedforward equalizer
needs to be at least as long as that of the the significant
part of the channel response. The M feedback filter taps
are assumed to cover all of the ISI resulting from the pre-
viously detected symbols. The outputs of the feedforward
equalizers are produced once per symbol interval, and they
are given by?

u(nT + N, T/2)

zi(n) = [a;,-N1-~-ai‘NJ

vk(nT —. NQT/2)

3)
The vector vi(n) of received signal samples in the k** di-
versity channel can be represented as

vi(n) =Y d(m)hg(n — m, n) + v (n)

ajvi(n).

(4)

where

hi(mT + NyT/2,0T + N1 T/2)

hg(m, n) = hg(mT, nT)

hk(mT - NzT/?,nT— NzT/2)

is the vector of T/2 spaced samples of the overall channel
impulse response, shifted by m symbols with respect to the
‘centered’ channel vector hg(0,n), and v¢(n) is the vector
of T'/2 spaced noise samples. The coherent combination of
the feedforward equalizers outputs is

K vi(n)
z(n) = Zxk(n) =[a}...ak] =a'v(n). (6)
k=1

vK(n)

If the composite vector of all the channel responses is
formed as

W/(m, n) = (b (m, n) ...y (m, n)] (7)
and similar composition () of the noise vectors is made,
the composite signal vector v(n) can be expressed as

v(n) = > d(m)h(n —m, n) + v(n). (8)

Since the composite signal vector can be expressed in the
same form as the corresponding single-channel received sig-
nal vector (4), the analysis of a multichannel DFE is essen-
tially the same as that of a single-channel DFE.

2Prime denotes conjugate transpose, and the equalizer coefficients
are taken conjugate for convenience of notation.
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I11I. DFE PARAMETER OPTIMIZATION

In the case of a rapidly time-varying channel, the adap-
tation of the equalizer tap-weights has to be carried out
continuously. There are two ways in which this task can be
accomplished. One is the direct adaptation of the equal-
izer tap coefficients, and the other is their computation
from a separately obtained channel estimate. The second
approach has the advantage that it is potentially more ro-
bust to the channel time-variations [2], and also less com-
putationally complex [3].

So, let us assume that the equalizer adaptation is carried
out via a channel estimation process. Let h(m,n) denote
the estimate of h(m, n), the m'? shift of the channel vector
at time n. The corresponding estimation error is defined

(9)

For the time being, the exact way in which the estimation
is performed is not important. We are only concerned with
the fact that if the channel is represented as a Gaussian
process, as it is the case for Rayleigh fading, we shall as-
sume that its estimate is also a Gaussian process, as well
as the estimation error. Even in the case of a fixed, but un-
known channel, the Gaussian assumption for the channel
estimate would hold due to the Gaussianity of the mea-
surement noise present in the channel estimation. We shall
also use the fact that the error is zero-mean and orthogonal
to the channel estimate, which establishes the relationship

e(m,n) = h(m,n) — h(m,n).

E{(0, m)i(0,n)} = E{R(0, m)k(0, m))
= E{h(0,n)h’(0,n)} — E{e(0,n)e’(0,n)}.  (10)
The equalizer tap-weights are chosen to minimize the
mean-squared error at the input to the decision device, as-
suming that the ISI due to previously detected symbols
has been completely canceled by the feedback section, and
subject to the fact that only the knowledge of the channel
estimates and channel statistics is available. In practice, in-
correct symbol decisions will affect the performance of both
the equalizer and the channel estimator in the decision-
directed mode of operation. The induced symbol error
propagation then has to be limited by periodically insert-
ing the training sequences into the data stream. Assuming
that reliable operation has been achieved in this way, we
neglect the effect of symbol errors in what follows.
The output z(n) of the feedforward section is given as

z(n) = Za'(n)h(m, n)d(n — m) + a'(n)v(n) (11)

and the output of the feedback section of the equalizer is
given by

y(n) = Y bu(n)d(n —m)

m>0

(12)

where d(n) denotes the decision made on the symbol d(n).
The input to the decision device is then

d(n) = a'(n)h(0,n)d(n)+ Z a'(n)h(m, n)d(n — m)

m#0

+al(n)w(n) = Y by (n)d(n —m).

m>0

(13)

When the decisions are correct with high probability, it is
reasonable to assume [1] that the feedback filter completely
cancels the ISI due to past symbols. In an ideal DFE this
is accomplished when

by, (n)=a'(n)h(m,n), m=1,..., M.

Mopt

(14)

In a more realistic situation, when only the channel esti-
mates are available, the feedback taps of the DFE will be
chosen as

b (n) = a'(n)h(m,n), m=1,..., M. (15)

Assuming correct decisions, and using the feedback coeffi-
cients from (15), the decision variable becomes

d(n) a'(n)[h(0,n)d(n) + Z h(m,n)d(n —m)

m<0

+ Z e(m,n)d(n — m) + v(n)]

m>0
a'(n)[h(0,n)d(n) +h™(n)
+e*(n) +v(n)]

(16)

The term h~(n) represents noise due to the residual ISI.
The fact that the summation is carried only over negative
values of m, indicates that residual ISI comes from future
symbols only. The noise term e (n) results from the chan-
nel estimation errors in the feedback taps of the equalizer.
Hence, the feedback filter cancels the ISI from past sym-
bols at the expense of introducing this term. Note that if
only a linear equalizer were used, the term e*(n) would be
replaced by an adequately defined term h*(n).

The optimization of the feedforward filter through min-
imization of the mean-squared error, MSE = E{|d(n) —
d(n)|?}, is made difficult by the fact that the noise terms
are data-dependent. In order to avoid this dependence on
the unknown symbols, we follow the approach taken in
[1], in which the needed covariances of the data-dependent
terms are substituted by their expected values. The va-
lidity of such approximation was justified in [1] through
simulation and measurements on experimental data.

For the case of independent, unit-variance data symbols,
the MMSE solution for the feedforward equalizer coeffi-
cients is obtained as

a(n) = [h(0,n)h'(0,n) + R]"'h(0, n) (17)

where

R = Cov[e(0,n) + h™(n) + e*(n) + v(n))] (18)

is the covariance matrix of the equivalent noise.

Due to the independence among the data symbols, the
components of the equivalent noise are assumed to be in-
dependent. The covariance of the residual ISI noise term
is computed as

Covlh™(n)] = a Z E{h(m,n)h'(m,n)}

m<0

(19)
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where the scale factor @ was introduced in [1] to account
for averaging over the data sequence. For E{|d(n)|?} = 1,
it should be taken less than one, so as not to obtain too
pessimistic results. The value a = 0.25 was found in [1]
to give excellent results. Averaging over the data sequence
alone leaves random channel components in the matrix R,
and the resulting non-Gaussian distribution of the opti-
mal equalizer vector prohibits comprehensive probability
of error analysis. However, since most of the symbol er-
rors result from the channel fading, random components of
the matrix R can be substituted by their statistical aver-
ages without significantly altering the average probability
of error [1]. Hence the form of the expression (19) where
averaging is performed over the channel components.

The noise term e¥(n) exhibits similar data-dependence
as does the term h~(n). Therefore, it is reasonable to
treat this noise term using the same approximation with
averaging over the data sequence, as it was done with the
residual ISI noise. Thus, we use

Covlet(n)] = a Z E{e(m,n)e'(m,n)}.

m>0

(20)

Since the contribution of this term to the overall noise co-
variance is many times smaller than that of the residual
ISI noise term, the use of the factor « is optional.

If we denote the covariances

E{h(m,n)h'(m,n)} = H(m)
E{e(m,n)e'(m,n)} = E(m)
Covly(n)] = NG (21)

where G is adequately defined through the receiver filter
autocorrelation function G(7), the resulting matrix R is
given by

R=E(0)+a) H(m)+a Y E(m)+NG. (22)
m<0 m>0

Assuming that the statistical properties of the channel,
as given by the matrix R, are known, the feedforward
equalizer taps can be determined from (17). Equivalently,
the feedforward filter tap-vector can be written as

a(n) !

= — - R~'h(0,n).
14 h/(0,n)R~1h(0, n)

(23)

Since the scaling factor in the last expression varies more
slowly than the channel estimate h(0,n) [5], and scaling
by a positive constant does not affect the performance, the
feedforward filter taps can, as well, be determined from
a(n) = R™'h(0, n). (24)
This choice of filter tap-weights, suitable for the subsequent

probability of error analysis, is the one that maximizes the
signal to noise ratio

v - (b0, n)?

SVE = = Rt (25)
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Note that due to the presence of channel estimation errors
this ratio differs from the true signal to noise ratio which
is given by

|a’(n)h(0, n)|?
a/(n)Cov[h~(n) + e*(n) + v(n)la(n)’

The fact that the matrix R incorporates the estimation
error related terms accounts for the best achievable MSE
performance when only the channel estimates are available.
Nevertheless, the resulting SN R is always lower than in the
absence of estimation errors, which will affect the achiev-
able probability of error.

SNR = (26)

IV. PROBABILITY OF ERROR ANALYSIS WITH
IMPERFECT CHANNEL ESTIMATION

The probability of bit error for the case of BPSK signal-
ing is given by

P.y = P{Re[d] < 0]|d = 1}. (27)

Due to the presence of estimation errors, the approach
taken in [1] which uses averaging of the conditional prob-
ability of error over all channel realizations is no longer
applicable, since the resulting SN R is no longer a Gaus-
sian quadratic form of the channel vector h(0, n). Instead,
the expression for the probability of error can be obtained
through the following representation which uses a different
Gaussian quadratic form. By grouping all the noise terms
as

£(n) = h~(n) +*(n) + v(n) (28)
and dropping all the indices for simplicity of notation, the
estimated data symbol is given by

d=a'[dh+¢] (29)
and the expression (27) can be rewritten as
P = P{[ a/ (h+£)’][2 (I)] [hj—ﬁ ] <°}
= P{Q <0} (30)

where I denotes the identity matrix, and O denotes the zero
matrix of adequate dimensions KN X KN (N = Ny+Na+1
is the number of feedforward taps in each diversity branch).
Under the Gaussian assumption for all the noise terms, and
with the equalizer vector proportional to the Gaussian-
distributed channel estimate, the decision variable @ in
the last expression is a Gaussian quadratic form. Its
probability density function is easily obtained [8] once
the covariance matrix of the underlying Gaussian vector
[a" (h+¢) ]is known. The resulting probability of er-
ror will depend only on the eigenvalues of the matrix

Az[o I]Cov[hig]. (31)

I 0
If the I distinct eigenvalues of this matrix are denoted by
{A:}, and each is of multiplicity K;, the probability of error

is given by
K,
Po= ) D Auk
<0 k=1

(32)
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where {A4; x} are the coefficients of the partial fraction ex-
pansion of the characteristic function Cg(jw) of the deci-
sion variable @,

K; A &
; ; ]'w ™) . (33)

! 1
w) = E (1— jwr)&s

To denote this dependence on the eigenvalues, we use the
shorthand notation
P, = P[A]. (34)

When all the eigenvalues of A are distinct, the probability
of error is simply given by

Py = E A;, A,-:Hl 1&.
A

A <0 it TN

(35)

In order to find the relevant submatrices comprising the
matrix A, we invoke the orthogonality assumptions (10).
Using these expressions, and the feedforward filter coeffi-
cients from (24), the matrix A which determines the prob-
ability of error (34) is obtained as

[H(0) - E(O)JR™*
R + H(0) — E(0)

R-1[H(0) —
R-[H(0) —

_ E(O)JR"
A= E(0)]

(36)
with R given in (22).

The impact of estimation errors is reflected in the proba-
bility of error through the matrix A in two ways. First, the
signal power, as represented by the matrix H(0), is reduced
by the amount E(0), and second, the overall noise covari-
ance is increased by the estimation error related terms in-
troduced by the DFE. Note that although the input noise
power Ny is shown explicitly only in the thermal noise com-
ponent of R, the error covariance matrices E(m) are also
affected by this noise through the estimation process. If
the overall noise covariance were computed by leaving out
the h™(n), e*(n) terms, the resulting bit error probability
would correspond to the matched filter bound which takes
into account the channel estimation errors. Any equalizer
will therefore suffer the effects introduced by the term E(0).

The result obtained is quite general in the sense that it
accommodates correlated fading both between the diver-
sity channels and within each of the channels. However,
the diversity channels are commonly chosen to be indepen-
dently fading and we verify our result in the case of inde-
pendently fading channels with identical statistics. Setting
E(m) = 0 in this case, leads to the same result for the bit
error probability as the one obtained in [1]. Next, we set
the ISI to zero, i.e. disconnect the feedback equalizer, and
reduce the feedforward filter to one tap only, assuming that
the receiver filter is matched to the transmitter filter and
that perfect timing exists. Such configuration corresponds
to carrier synchronization using planar filtering, which has
been treated in [4]. In this case, for equal energy (E,/K
per channel) independent diversity, the expression for P,
can be obtained in closed form, since there are only two
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distinct eigenvalues of the matrix A. It is given by

pamomn £ (K0 ) ()

where

(387

(38)

and E./K is the variance of the (single) channel tap esti-
mation error in each of the diversity branches. The expres-
sion obtained has the same form as the well-known result
from [9], except for the fact that p. takes into account the
effect of estimation errors. For K = 1, the expression (37)
reduces to the result from [4].

For QPSK signaling, the probability of bit error, assum-
ing Gray coding, is given by

P.y = P{Re[d] < 0|d = ™%} (39)

and for 8PSK signaling it is

P = §-P{Re[c?]<0|d=ej3”/8}

+§P{Re[a] > 0|d = ¢/37/8}

P{Im[d] < 0|d = &/%"/3}. (40)
In order to develop these expressions it is useful to evaluate
the general term

P{Re[de’*] < 0|d = ¢/**}. (41)

Defining
A(9) = [H(0) — E(0)]R"1e/* R™![H(0) - E(O)]R"1
- R+ H(0) - E(0) R~![H(0) — E(0)]e~7¢
(42)
the probability (41) is seen to be equal to P[A(d1 + 62)].
Substituting this result into the expressions (39) and (40),
we obtain the desired probabilities of error as
P[A(n/4)]

P.y= (43)

and
2
Pey = 3{P[A(37/8)]+(1 - P[AB7/8))PIA(7/8)]}. (44)
Similarly as for the BPSK case, it can be shown that in the

absence of ISI, the terms P[A(¢)] reduce to the form (37)
with p. being replaced by

6032¢(KEN0 - KENU)

ne(9) = cosqu -+ smzq) -+ 1

(45)

which, when substituted into (43), (44) for K = 1 agrees
with [4].
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V. CoMPUTATION OF THE KALMAN FILTER ERROR
COVARIANCE MATRICES

The question that remains to be discussed is the determi-
nation of the error covariance matrix needed for the com-
putation of the probability of error. The value of this ma-
trix obviously depends on the particular technique used for
channel estimation. We examine the case when a Kalman
filter is used for channel tracking. This is the case of par-
ticular interest since the Kalman filter represents the opti-
mal MMSE estimator of the channel process which obeys a
Gauss-Markov model, provided the knowledge of the model
parameters and given the set of the observed received signal
samples.

In practice, the use of a Kalman filter is just a possible
choice. Frequently, the channel model is not known and
a different estimation procedure is preferred. The perfor-
mance of a DFE coupled with an optimally designed LMS
or RLS channel estimator was analyzed in [3]. On the other
hand, since for a variety of channels the model parameters
can accurately be obtained from probing measurements [7],
we shall assume the optimal regime for the Kalman filter.
Although the optimality is conditioned on correct modeling
and access to correctly reconstructed past data, these as-
sumptions are expected to bear much less influence on the
estimated average performance than does the assumption
of a perfectly known channel response.

The overall channel vector which contains all the relevant
(nonzero) samples of the channel response at time nT, is
given as

h'(n) = [hi(n)...hk(n)] (46)
where
hy (M1 T, nT)
hie(MT —T/2,nT)
hi(n) = - (47)

hi(—M3T,nT)
hk(—MzT - T/2, nT)

is the k** channel vector at time n. The fading channel
dynamics are often described by a Gauss-Markov model,
which represents the channel vector h(n) as an autoregres-
sive process in noise [4], [6]. The underlying state-space
channel description is given by the process equations

c(n+1)
h(n) =

F(n+1,n)e(n) + x(n)
Tc(n)

(48)

where F(n + 1, n) is the one-step channel state transition
matrix at time n, and x(n) is the process noise, Gaussian-
distributed with zero-mean in the case of Rayleigh fad-
ing. For the well-known case of a wide-sense stationary
channel, the transition matrix does not depend on time,
F(n + m,n) = F(m).

The channel states can be thought of as gains of the
physical propagation paths. A simple first-order model in
which the paths of each channel are independently fading
at the same rate is given by

ce{n+1) = fep(n) +xx(n), k=1,.. . K (49)

where the state covariance matrix

Blex(m)eh(n)} = 7= £ (m)xh ()}

is diagonal, and its elements represent the sampled multi-
path intensity profile of the channel.

The output transformation T accounts both for the fil-
tering introduced by the physical channel, and the particu-
lar transmitter and receiver filtering. Note that due to the
receiver filtering and Nyquist rate sampling, the uncorre-
lated scattering between the propagation paths does not
imply the independence of channel vector components.

In the case of independently fading channels, the chan-
nel covariance H = E{h(n)h’(n)} is block diagonal, with
each block corresponding to one of the diversity channels.
When the channels are independently fading, it suffices to
estimate each channel based only on the corresponding re-
ceived signal. We concentrate on this case, and for simplic-
ity drop the index designating the channel number.

In our case of a T'//2 fractionally spaced feedforward filter,
the inputs to the estimator are the two T'/2 spaced sam-
ples of the received signal v(r) = [v(nT) v(nT — T/2)]7.
The estimator uses a Kalman type algorithm based on the
knowledge of the process and measurement equation

(50)

c(n+1)
y(n)

where the process noise is assumed to be white with co-
variance Q, and y(n) = [v(nT) v(nT — T/2)]7 is the mea-
surement noise of covariance NoG. However, the sequence
{v(n)} is not white in general, since the receiver filter in-
troduces correlation.® In order to deal with the colored
noise, either an optimal filter of increased dimension can be
designed, or a suboptimal filter of the original state dimen-
sion can be used, retaining comparable performance [10].
When the receiver filter is an integrator or a square root
Nyquist filter with roll-off 1, the measurement noise vec-
tors will be correlated only at the lag of one time instant.
In such a case, the optimal filter has its complexity just
slightly increased, and it achieves the same performance as
if the noise were white. We are going to concentrate on
the white noise case, keeping in mind that other choices of
the receiver filter and adequate whitening procedures will
result in somewhat increased, but comparable estimation
€ITOr covariances.

The measurement equation involves a time dependent
data vector

Fe(n) + x(n)
D'(n)Te(n) + 1(n)

(61)
(52)

Although it is given here in a noncausal form, in a real
situation when the receiver operates in a decision-directed
mode, there will exist a delay of My symbol intervals in

3The T-spaced samples of the measurement noise are uncorrelated
both in the case of rectangular receiver filter with cutoff frequency
1/T, and when this filter has a square root Nyquist characteristic,
but the samples spaced at an odd number of T/2 intervals are uncor-
related only in the first case.
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the channel estimation process, and the channel estimates
h(m,n+1), computed upon forming the decision d(n), will
be obtained from the predictions

h(n—My+1+iln—M,) = TF'¢(n—My+1|n—M;), i>0
(54)
which are based on the currently available state estimate
é(n — My + 1jn — Ma).
The state error covariance A = Covlc(n) — é(n|n — 1)]
is defined through a discrete time Ricatti equation [10]

M(n,D(n)) = D(n)[D'(n)TA(n|n~1)T'D(n)
+NoG]™'D'(n)
A(n+1Jn) = F[A(n|n—1)- A(njn-1)T

-M(n, D(n))TA(n|n — )]JF' + Q.
(55)

Due to the data-dependence, there is no steady-state solu-
tion to the Ricatti equation (55). On the other hand, for
the case of random input data, one does not expect the
error covariance matrix, or rather, the average probability
of error, to depend heavily on the particular transmitted
sequence. We may therefore resort to an approximation
in order to obtain a quasi steady-state value of the error
covariance matrix. By invoking once again the assumption
about the independence of the steady-state error covari-
ance to the data symbols, and averaging (55) with respect
to the data sequence, we obtain the corresponding quasi
stationary form of the Ricatti equation

M(n) = E{D(n)[D'(n)TA(n|n—1)T'D(n)
+NoG| ™D’ (n)}
A(n+1n) = F[A(r|n—1)- A(n|n- 1T’

M(n)TA(n|n — D)]F + Q. (56)
When the simple model (49) is used, this equation can be
rewritten directly in terms of the channel error covariance

E(n|n — 1) = Covfh(n) — h(n|n — 1)] as

M(n) = E{D(n)[D'E(n|n —1)D(n)
+NoG]™'D'(n)}
E(n+1ln) = |fI[E(n|n — 1) — E(n|n — 1)M(n)

E(nln - 1)] + (1 - |f|)H (57)
where H is the sampled channel covariance, which can be
measured at the receiver.

Finally, from the quasi steady-state value A, and the
state covariance C, the needed matrices E(m), H(m) are
obtained. Assuming that the channel stays fixed for the du-
ration of one symbol interval, the channel vectors h(m, n)
can be represented as

M,
h(m,n) = Z Jiizmh(n+ 1)
i=—M,

(58)

where J; i+m is an appropriately defined transformation
which assigns the two samples corresponding to the (i +
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m)** symbol interval of the vector h(n+7) to the i** symbol
interval of the vector h(m, n), setting the rest to zero. The
desired channel estimates are obtained as

M,
h(m,n) = Z Jiipmh(n +iln— My —1).
i=—M,

(59)

From these expressions, we obtain the covariance matrices

M,
Hm) =Y Y JismTCiT Iy (60)
k, I=—M;

and

M,
Em) =Y > JirsmTArisr i3, T pim  (61)

k, 1=—M;
where
Cii=FFiC, k>1 (62)
and
Apy = FFAF' +F'Qu, k21,
-1
Qi = ZF'QF”', >0, Qoo=0. (63)
1=0

Using this approach with approximation of the error co-
variance matrix by its quasi steady-state value, several ex-
amples have been analyzed, and they are presented in the
following section. For the chosen channel parameters, com-
puter experiments were conducted to verify that the prob-
ability of error results obtained by averaging the solutions
of the true Ricatti equation (55) showed excellent agree-
ment with those obtained when the stationary solution of
(57) was used for the computation of the error covariance
matrices. Hence, either method can be used to obtain the
desired data-independent error covariance; however, solv-
ing the modified Ricatti equation is computationally much
simpler.

VI. NUMERICAL EXAMPLES

We illustrate the results obtained through several exam-
ples. A two-path Rayleigh fading model is used for each
of the diversity channels. The paths are taken to be of
equal power 1/2, and independently fading with a differ-
ential delay of half a symbol interval. The transmitter and
the receiver filter pulses are assumed to be rectangular of
duration T and unit energy. A first-order Gauss-Markov
model for the fading process as described by the equa-
tions (49) is used. The signal-to-noise ratio is defined as
SNR = Ey/Nqy, where Ey = E,/logaM, M being the mod-
ulation level, and the signal energy is

E, =Y E{|h(mT/2,nT)|*} = tr(H). (64)

Besides varying the SN R, we shall also be interested in
the probability of error as a function of the channel pa-
rameter f. The parameter f can be described as the value
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of the channel spaced-time correlation function at a spac-
ing of one symbol interval. Since it is more common to
use the Doppler spread of the channel to characterize its
time-coherence properties, we first relate the parameter f
to the Doppler spread By. A constant transition matrix
corresponds to an exponentially decaying channel time cor-
relation function, in which case the desired relationship is

f=emd (65)
where wg = 2/(At), = nBg, (At). is the coherence time
of the channel, and By the 3dB bandwidth of the related
Doppler power spectrum.

Several examples are presented in Figs.2 through 5. In
all of the examples it is assumed that the feedforward filter
spans two symbol intervals, and that the feedback filter is
as long as the causal ISI.

Fig.2 shows the probability of a bit error for BPSK sig-
naling, as a function of the SN R, with normalized fading
rate wyT as a parameter. The two sets of curves correspond
to the single-channel and dual diversity reception. For val-
ues of f very close to 1, there is little or no impact of the
estimation errors on the overall performance; however, as f
decreases, i.e. fading gets faster, the degradation becomes
significant and eventually limits the performance. The re-
sulting error floor is higher for higher fading rates. The
reason for the error probability saturation is that even as
the noise vanishes, there remains a constant, nonzero level
of the error covariance matrix, induced by the channel dy-
namics only. These estimation errors lead to an irreducible
bit error rate regardless of the residual ISI. Residual ISI
alone will also lead to performance saturation [1], but at a
higher SN R. Errors in channel estimation cause the crit-
ical SNR at which saturation is reached to decrease as a
function of fading rate.

10 . .
... WdT=0.01
10l -~ wdT=0.001
i -.- wdT=0.0001
- hoest, err.
10'2r E
107 N AN e
10*} 4
10°%
10° , , . NN X
0 5 10 15 20 25 30 35

Eb/No [dB]

Fig. 2. Single-channel and dual diversity BPSK performance.

The single-channel BPSK probability of error is shown in
Fig.3 as a function of fading rate for different SN R’s. The

fading rate is represented through the quantity (1 — f), so
that the limiting behavior as wsT — oo Is concentrated in
a single point. The ‘no noise’ curve represents the asymp-
totic, or irreducible error rate. For fading rates above 10~2,
performance becomes severely limited on this channel. The
degradation of the error probability from the corresponding
value on a very slowly fading channel is highly dependent
on the given SNR. At SNR = 30 dB, an increase in fading
rate from wyT = 107* to wyT = 1072 causes the probabil-
ity of error to increase about 30 times. However, for SN R’s
of about 10 dB or lower, the performance degradation due
to channel estimation errors is relatively small at fading
rates up to 1072, At SNR = 10 dB and wgqT = 1072, the
error probability is less than twice the value obtained in
the absence of estimation errors.
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rate.

Single-channel BPSK performance as a function of fading

The second set of curves (K = 2) in Fig.2 shows BPSK
performance with dual diversity. While it is known that di-
versity helps to reduce the ISI [1], it helps less so to reduce
the estimation error penalty. Since each independent diver-
sity branch introduces new estimation errors, the estima-
tion error penalty will increase with diversity order. Defin-
ing the BPSK estimation error penalty Egk)(wdT, SNR)
as the ratio of bit error probabilities at a given fading rate
wqT and in the absence of estimation errors, the ratio of
penalties with and without diversity, Eg))/Egl), is plotted
in Fig.4 versus SNR. At SNR = 20 dB, and wyT = 1073,
the estimation error penalty is almost two times higher
when diversity is employed. Nevertheless, its absolute value
remains small, Egz)(10‘3,20 dB) = 3. Similarly, as the
number of propagation paths increases, the estimation er-
ror penalty will increase. Although in such a case the ISI
penalty will also increase, better performance can still be
achieved, which is explained by the fact that more implicit
diversity is present in the longer multipath [1].
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Fig. 4. BPSK estimation error penalty ratio for dual and no diversity.

Fig.5 shows the comparison between the results obtained
for BPSK and QPSK signaling, in configurations with a
single-channel and dual diversity. Similarly as for the
nondispersive channels discussed in [4], the penalty caused
by imperfectly estimating a multipath channel is higher
for higher level modulation schemes. As this penalty in-
creases with the order of diversity, so does the degradation

Egk)/Egk) between QPSK and BPSK performance.
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Fig. 5. BPSK and QPSK probabilities of bit error for single-channel
and dual diversity reception.

The dominant component of the estimation error penalty
lies in the error covariance E(0), which indicates that not
only the DFE, but any other type of an equalizer, will
suffer in a similar way from the incomplete knowledge of
the channel.

The examples presented take into account only the chan-
nel estimation errors, assuming perfect knowledge of the
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channel fading model, which, of course, is generally not
available. However, it has been shown (e.g., {6], [7]) that
the Kalman filter is fairly robust to the model parameters
mismatch, so that the additional degradation due to the
model mismatch can be expected to be much smaller than
that of the channel mismatch. Hence, the results presented
can be regarded as the best-case performance of more re-
alistic receivers.

VII. CONCLUDING REMARKS

A coherent MPSK receiver with an adaptive multichan-
nel DFE operating on a frequency selective, Rayleigh fading
channel was considered. The expression for the probability
of error, which takes into account the channel estimation
errors, was presented. For the channel fading process de-
scribed by a Gauss-Markov model, the model parameters,
which describe fading dynamics, are reflected in the ex-
pression for the probability of error. The results presented
show the penalty imposed by imperfect channel estimation,
as well as the resulting irreducible error rates.

For a given fading channel, the normalized fading rate,
which determines the estimation error penalty, will be lower
at higher symbol rates, resulting in a smaller penalty due
to the imperfect channel estimation. At the same time, the
multipath will span more symbol intervals, resulting in a
higher residual ISI penalty. This suggests a tradeoff in the
determination of the symbol rate to be used for a given
fading channel.

Relatively high losses which occur at high fading rates
suggest that the commonly used performance measures for
the DFE may be too loose in cases of rapidly fading chan-
nels. The degradation due to the channel mismatch then
becomes significant, and has to be taken into account when
estimating the achievable performance of a DFE.
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