
An Architecture for Underwater Networks

Mandar Chitre
Acoustic Research Laboratory, National University of Singapore

Lee Freitag

Woods Hole Oceanographic Institution

Ethem Sozer
Massachusetts Institute of Technology

Shiraz Shahabudeen

Acoustics Research Laboratory, National University of Singapore

Milica Stojanovic
Massachusetts Institute of Technology

John Potter

Acoustic Research Laboratory, National University of Singapore

Abstract – As electromagnetic waves do not propagate
well underwater, acoustics plays a key role in underwater
communication. Due to significant differences in the
characteristics of electromagnetic and acoustic channels,
networking protocols for underwater systems differ from
those developed for wired and wireless radio networks.
Various schemes have been proposed for one or many
aspects of underwater networks. However, no widely
accepted common framework exists for underwater
acoustics to unify these proposed schemes into a
functional underwater network. The availability of such a
framework will enable easy integration of independently
developed techniques and thus accelerate the pace of
research in underwater acoustic networking.

In order for a common framework to be successful, it
needs to have a wide acceptance. To gain such an
acceptance, a framework needs to take into account a
wide variety of different constraints and requirements for
various underwater applications. This requires inputs
from various research groups and end users. To help
define the use cases and a common framework for
underwater networking, a joint effort has been initiated
between acoustic communication research groups at the
Acoustic Research Laboratory (National University of
Singapore), Woods Hole Oceanographic Institution and
the Massachusetts Institute of Technology. In this paper,
we discuss the first draft of the framework specifications
from this effort. We welcome feedback from the
underwater acoustic research community and potential
end users of underwater networking systems.

I. INTRODUCTION

Communication between a set of underwater systems
such as remote sensors, autonomous underwater vehicles and
control vessels would enhance the effective use of such
systems tremendously. As electromagnetic waves do not
propagate well underwater, acoustics plays a key role in
underwater communication. Due to significant differences in
the characteristics of electromagnetic and acoustic channels,
networking protocols for underwater systems differ from
those developed for wired and wireless radio networks. As
the sound waves are much slower than the electromagnetic
waves, the latency in communication is typically much
higher. Due to the multi-path propagation and ambient noise,
the effective data rates are lower and packet loss rate is
usually much greater. Comprehensive reviews of underwater
acoustic communications are presented in [1][2][3].

In order to develop a fully functional network, several
aspects of a protocol need to be defined. This typically
includes modulation, synchronization, packet formatting,
error correction, medium access control, addressing, routing,
etc. Over the past few decades, various schemes have been
proposed for one or many of these aspects of underwater
networks (e.g. [4][5]). However, no widely accepted
common framework exists for underwater acoustics to unify
these proposed schemes into a functional underwater
network. The availability of such a framework will enable
easy integration of independently developed techniques and
thus accelerate the pace of research in underwater acoustic
networking.

1

In order for a common framework to be successful, it
needs to have a wide acceptance. To gain such an
acceptance, a framework needs to take into account a wide
variety of different constraints and requirements for various
underwater applications. This requires inputs from various
research groups and end users. To help define the use cases
and a common framework for underwater networking, a joint
effort has been initiated between acoustic communication
research groups at the Acoustic Research Laboratory
(National University of Singapore), Woods Hole
Oceanographic Institution and the Massachusetts Institute of
Technology.

Many traditional approaches to network design are based
on the Open System Interconnection (OSI) model [6] or its
variants. We define an underwater networking framework
loosely based on the OSI model – the Underwater Network
Architecture (UNA). The primary goal of the initiative is to
define a layered architecture for underwater networking
research.

In this paper, we discuss the first draft of the
specifications from this effort. We welcome feedback from
the underwater acoustic research community and potential
end users of underwater networking systems.

II. UNDERWATER NETWORK ARCHITECTURE

A. Overview

The UNA takes into account underwater networking
needs and is specific enough to allow easy integration
between implementations of different layers by different
research groups. At the same time, the architecture is flexible
enough to accommodate different application requirements
and new ideas. In addition to defining a layered architecture,
the architecture definition specifies the primitives that define
communication between layers. Additionally, a UNA
Framework Application Programming Interface (FAPI) is
defined to enable layer implementations to be easily
incorporated into various stacks. To ensure flexibility, the
architecture also defines an extension framework so that the
architecture can be expanded and cross-layer optimization
can be taken into account.

The UNA is based on a five-layer model. Each of the
nodes consists of the layers shown in Fig. 1. The application
layer is not defined in the UNA specifications, but is rather a
client of the four layers (transport, network, data link and
physical) defined in the UNA. The UNA does not define the
algorithms used in each of the four layers. It only defines the
service access point interface (SAPI) to be implemented by
each of the layers.

Application

Transport

Network

Data Link

Physical

Fig. 1. Layers in the UNA

As typical underwater systems have limited processing
capability, the protocol has been kept as simple as possible
without significantly compromising performance. The UNA
specifications currently do not include any recommendations
for authentication and encryption. These may be easily
implemented at the application layer or via a spreading
scheme at the physical layer. The UNA will be expanded
later to explicitly address these requirements.

Each layer is described by a SAPI. The SAPI is defined
in terms of messages being passed to and from the layer. The
clients (usually higher layers) of a layer invoke the layer via
a request (REQ). The layer responds to each REQ by a
response (RSP). Errors are reported via an ERR RSP with
error codes. If the layer needs to send unsolicited messages
to the client, it does so via a notification (NTF). A layer
communicates logically with its peer layer via protocol data
units (PDU). As the peer-to-peer communication is
symmetric, a layer may send a REQ PDU to its peer layer at
any time. It would optionally respond to such a PDU with a
RSP PDU. This is logically depicted in Fig. 2.

Layer X Peer Layer X
PDU (REQ)

PDU (RSP)

NTF REQ RSP

Fig. 2. Message Nomenclature in the UNA

It may be desirable in some cases, that non-neighboring

layers communicate with each other to achieve cross-layer
optimization. This may be implemented by allowing REQ
and RSP PDUs between any two layers in the protocol stack.

The UNA specifications define detailed message
structures for all SAPI messages. These message structures
include message identifiers, data formats to be used,
parameters and their possible values. In the interest of
keeping this paper brief, we concentrate on the messages and
not the detailed message structures in the following sections.

2

B. Addressing

Each node must be issued a unique address by the
administrator. The address will consist of two parts – a
network ID (8 bit) and a node ID (8 bit). The network ID
defines a network that the node is a part of; all nodes in the
network have the same network ID. The node ID must be
unique within a network.

A special network ID (all bits 1) and node ID (all bits 1)
are defined as a broadcast address. This address may be used
in primitives that support broadcast. The network ID and
node ID with all bits 0 are reserved and must not be assigned
to any network or node.

The UNA does not define any method for dynamic
assignment of addresses to new nodes. It may be expanded
later to explicitly address this requirement.

C. Transport Layer

The transport layer specifications support two modes of
communications – connection oriented and datagram. A
connection oriented mode allows for persistent reliable
connection with the open, write and close primitives and
incoming data notifications. The datagram mode allows for
reliable or unreliable delivery of datagrams via send
primitives and incoming datagram notifications. In case of
reliable datagram service, an undelivered datagram must be
reported to the client layer. To enable multiple applications,
the transport layer must provide the concept of ports for both
modes of communication. Ports allow the transport layer to
divert incoming data to multiple applications. All ports are
open for connections or datagram receipts. If no application
processes the data on these ports, the data is simply lost.

The transport layer defines messages for the several
primitives for the connection oriented protocol – Open REQ,
Close REQ, Write REQ, Connection Established NTF,
Connection Lost NTF and Incoming Data NTF. It also
defines messages for the primitives for the datagram protocol
– Send Reliable Datagram REQ, Send Unreliable Datagram
REQ and Incoming Datagram NTF. The requests, responses
and notifications are summarized in Table 1 and Table 2.

D. Network Layer

The network layer provides routing capability to the
protocol stack. It provides an unreliable packet delivery
service over the routes. However, the layer may optionally
implement some degree of reliability via retransmits. If the
layer knows that a packet could not be delivered due to a
lack of available route, it may inform the client layer via the
no route notification.

The network layer defines messages for basic multi-hop
communication primitives – Send Packet REQ and Incoming
Packet NTF. It also defines messages to enable query of
routing information for use in the application or transport
layers. These primitives include Get Route REQ and No
Route NTF. All network layer primitives are summarized in
Table 3.

E. Data Link Layer

The data link layer provides single hop data transmission
capability; it will not be able to transmit a packet
successfully if the destination node is not directly accessible
from the source node. It may include some degree of
reliability. It may also provide error detection capability (e.g.
CRC check). In case of a shared medium, the data link layer
must include the medium access control (MAC) sub-layer. If
carrier sensing, power control, etc. are desired, this
functionality should be supported by the physical layer via
the extension framework (defined in Section G).

Physical layer parameters may be tuned for optimal
performance. If such functionality is included, it should
reside in the Data Link layer as a sub-layer. The physical
layer should support parameter recommendation primitives if
this feature is to be implemented.

The primitives defined by the data link layer include
Send Packet REQ and Incoming Packet NTF, as summarized
in Table 4.

Table 1. Connection-oriented service primitives

Requests Responses

Open REQ Connection Established RSP
Error RSP

Write REQ Write Successful RSP
Error RSP

Close REQ Connection Closed RSP
Error RSP

Notifications

Connection Established NTF

Connection Lost NTF

Incoming Data NTF

Table 2. Datagram service primitives

Requests Responses

Send Reliable Datagram
REQ

Datagram Delivered RSP
Error RSP

Send Unreliable Datagram
REQ

Datagram Accepted RSP
Error RSP

Notifications

Incoming Datagram NTF

Table 3. Network layer primitives

Requests Responses

3

Send Packet REQ Packet Transmitted RSP
Error RSP

Get Route REQ Route Info RSP
Error RSP

Notifications

Incoming Packet NTF

No Route NTF

Table 4. Data link layer primitives

Requests Responses

Send Packet REQ Packet Transmitted RSP
Error RSP

Notifications

Incoming Packet NTF

No Route NTF

F. Physical Layer

The physical layer provides framing, modulation and
error correction capability (via FEC). It provides primitives
for sending and receiving packets. It may also provide
additional functionality such as parameter settings, parameter
recommendation, carrier sensing, etc.

The send packet primitives at the physical layer do not
use destination addresses. In case of orthogonal channels, a
parameter in the physical layer may be set to define the
channel to be used. Then the send packet primitive may be
used for the transmission. Incoming packets may be
monitored on all or a few channels simultaneously. A
parameter in the incoming packet notification may be
included to denote the source address.

The primitives defined by the physical layer (see Table 5)
are Send Packet REQ and Incoming Packet NTF.
Additionally, a Recommend Parameters REQ enables higher
layers to query the physical layer to help optimize the
protocol parameters.

Table 5.Physical layer primitives

Requests Responses

Send Packet REQ Packet Transmitted RSP
Error RSP

Recommend Parameters
REQ

Recommended Parameters
RSP
No Recommendation RSP

Notifications

Incoming Packet NTF

No Route NTF

G. Extension Framework

The extension framework allows capability query,
arbitrary parameters and information to be passed around the
layers for cross-layer optimization. This may include
capability query such as broadcast capability and specific
parameters (e.g. transmission frequency, data rate, etc.) It
may also include generic data like BER, SNR, link quality,
etc.

The extension framework is common across all layers. It
is implemented using generic primitives – Set Parameter
REQ, Get Parameter REQ and Check Capability REQ. If a
Set Parameter REQ provides an invalid value for a
parameter, the old value is retained and returned via the
Parameter RSP. Alternatively, a value close to the requested
value may be set and returned via the Parameter RSP.

Table 6.Extension framework primitives

Requests Responses

Set Parameter REQ Parameter RSP
Error RSP

Get Parameter REQ Parameter RSP
Error RSP

Check Capability REQ Capability Implemented RSP
Capability Not Implemented
RSP

H. UNA Framework API

The UNA FAPI provides a C API with layer registration,
message queue and timer functionality. This API provides an
abstraction to the hardware and OS, allowing the
implementation of each layer to be portable. Table 7
provides a summary of the C prototypes for FAPI.

The FAPI includes a function for registering layer
implementations – FAPI_registerLayer. Layers registered
with the FAPI may communicate with each other and utilize
FAPI services. Possible values for the FAPI layer include
LAYER_PHYSICAL (1), LAYER_DATALINK (2),
LAYER_NETWORK (3) and LAYER_TRANSPORT (4).

FAPI supports message queues, which form the basis for
communication between layers. The message queues are
based on an event handling model, where a message handler
callback in a layer is called when a message is available for it
to process. This enables the FAPI to be easily implemented
on operating platforms without multi-threading support.
Messages are sent via a FAPI_sendMessage function. All

4

messages are considered to be of equal priority and are
delivered in a first-in-first-out manner.

It is common for protocols to implement timeouts. This
requires timer support from the operating platform. This
support is encapsulated in the FAPI timer API using the
FAPI_setTimer function. When a timer expires, a Timer
Expired NTF is sent to the appropriate layer. Although the
time out in the API is specified in milliseconds, some
platforms may not be able to support this accuracy. In such
cases, the FAPI implementation should provide as close a
timeout as possible on the platform. Unexpired timers may
be cancelled using the FAPI_cancelTimer function.

Table 7. UNA Framework API C Prototypes

Layer Registration
int FAPI_registerLayer(int layer, MessageHandler handler);
Message Queues
void MessageHandler(Message msg, int sender);
int FAPI_sendMessage(Message msg, int destination);
Timer
int FAPI_setTimer(int me, int ref, long timeout);
int FAPI_cancelTimer(int me, int ref);

III. CONCLUSIONS

We have outlined the UNA specifications in this paper.
The primary aim of the specifications is to define a common
framework that the underwater networking community
(researchers and industry) may use. This would allow
implementations of layers from different sources to
interoperate and improve the pace of advances in the field.

The current specifications are based on commonly
encountered requirements in underwater systems. With
inputs from researchers at the Acoustic Research Laboratory
(Singapore), Woods Hole Oceanographic Institution and the
Massachusetts Institute of Technology, we have an initial
draft of the specifications. We hope to further improve the
specifications through interaction with other groups working
in the area of underwater networking, or wishing to use the
technology.

REFERENCES

[1] A. B. Baggeroer, "Acoustic telemetry - An overview,"
IEEE Journal of Oceanic Engineering, vol. 9, pp. 229-
235, 1984.

[2] M. Stojanovic, "Recent advances in high-speed
underwater acoustic communications," IEEE Journal of
Oceanic Engineering, vol. 21, no. 2, pp. 125-136, 1996.

[3] D. B. Kilfoyle and A. B. Baggeroer, "The state of the
art in underwater acoustic telemetry," IEEE Journal of
Oceanic Engineering, vol. 25, no. 1, pp. 4-27, 2000.

[4] E. M. Sozer, M. Stojanovic, and J. G. Proakis,
"Underwater acoustic networks," IEEE Journal of
Oceanic Engineering, vol. 25, no. 1, pp. 72-83, 2000.

[5] S. Shahabudeen and M. Chitre, "Design of networking
protocols for shallow water peer-to-peer acoustic
networks," in Proceedings of IEEE Oceans'05 Europe,
Brest, France, 2005.

[6] "ISO 7498: Open Systems Interconnection - Basic
Reference Model,"1984.

5

