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Abstract – As electromagnetic waves do not propagate 
well underwater, acoustics plays a key role in underwater 
communication. Due to significant differences in the 
characteristics of electromagnetic and acoustic channels, 
networking protocols for underwater systems differ from 
those developed for wired and wireless radio networks. 
Various schemes have been proposed for one or many 
aspects of underwater networks. However, no widely 
accepted common framework exists for underwater 
acoustics to unify these proposed schemes into a 
functional underwater network. The availability of such a 
framework will enable easy integration of independently 
developed techniques and thus accelerate the pace of 
research in underwater acoustic networking. 

In order for a common framework to be successful, it 
needs to have a wide acceptance. To gain such an 
acceptance, a framework needs to take into account a 
wide variety of different constraints and requirements for 
various underwater applications. This requires inputs 
from various research groups and end users. To help 
define the use cases and a common framework for 
underwater networking, a joint effort has been initiated 
between acoustic communication research groups at the 
Acoustic Research Laboratory (National University of 
Singapore), Woods Hole Oceanographic Institution and 
the Massachusetts Institute of Technology. In this paper, 
we discuss the first draft of the framework specifications 
from this effort. We welcome feedback from the 
underwater acoustic research community and potential 
end users of underwater networking systems. 

I. INTRODUCTION 

Communication between a set of underwater systems 
such as remote sensors, autonomous underwater vehicles and 
control vessels would enhance the effective use of such 
systems tremendously. As electromagnetic waves do not 
propagate well underwater, acoustics plays a key role in 
underwater communication. Due to significant differences in 
the characteristics of electromagnetic and acoustic channels, 
networking protocols for underwater systems differ from 
those developed for wired and wireless radio networks. As 
the sound waves are much slower than the electromagnetic 
waves, the latency in communication is typically much 
higher. Due to the multi-path propagation and ambient noise, 
the effective data rates are lower and packet loss rate is 
usually much greater. Comprehensive reviews of underwater 
acoustic communications are presented in [1][2][3]. 

In order to develop a fully functional network, several 
aspects of a protocol need to be defined. This typically 
includes modulation, synchronization, packet formatting, 
error correction, medium access control, addressing, routing, 
etc. Over the past few decades, various schemes have been 
proposed for one or many of these aspects of underwater 
networks (e.g. [4][5]). However, no widely accepted 
common framework exists for underwater acoustics to unify 
these proposed schemes into a functional underwater 
network. The availability of such a framework will enable 
easy integration of independently developed techniques and 
thus accelerate the pace of research in underwater acoustic 
networking. 
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In order for a common framework to be successful, it 
needs to have a wide acceptance. To gain such an 
acceptance, a framework needs to take into account a wide 
variety of different constraints and requirements for various 
underwater applications. This requires inputs from various 
research groups and end users. To help define the use cases 
and a common framework for underwater networking, a joint 
effort has been initiated between acoustic communication 
research groups at the Acoustic Research Laboratory 
(National University of Singapore), Woods Hole 
Oceanographic Institution and the Massachusetts Institute of 
Technology. 

Many traditional approaches to network design are based 
on the Open System Interconnection (OSI) model [6] or its 
variants. We define an underwater networking framework 
loosely based on the OSI model – the Underwater Network 
Architecture (UNA). The primary goal of the initiative is to 
define a layered architecture for underwater networking 
research. 

In this paper, we discuss the first draft of the 
specifications from this effort. We welcome feedback from 
the underwater acoustic research community and potential 
end users of underwater networking systems. 

II. UNDERWATER NETWORK ARCHITECTURE 

A.  Overview 

The UNA takes into account underwater networking 
needs and is specific enough to allow easy integration 
between implementations of different layers by different 
research groups. At the same time, the architecture is flexible 
enough to accommodate different application requirements 
and new ideas. In addition to defining a layered architecture, 
the architecture definition specifies the primitives that define 
communication between layers. Additionally, a UNA 
Framework Application Programming Interface (FAPI) is 
defined to enable layer implementations to be easily 
incorporated into various stacks. To ensure flexibility, the 
architecture also defines an extension framework so that the 
architecture can be expanded and cross-layer optimization 
can be taken into account. 

The UNA is based on a five-layer model. Each of the 
nodes consists of the layers shown in Fig. 1. The application 
layer is not defined in the UNA specifications, but is rather a 
client of the four layers (transport, network, data link and 
physical) defined in the UNA. The UNA does not define the 
algorithms used in each of the four layers. It only defines the 
service access point interface (SAPI) to be implemented by 
each of the layers. 
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Fig. 1. Layers in the UNA 

As typical underwater systems have limited processing 
capability, the protocol has been kept as simple as possible 
without significantly compromising performance. The UNA 
specifications currently do not include any recommendations 
for authentication and encryption. These may be easily 
implemented at the application layer or via a spreading 
scheme at the physical layer. The UNA will be expanded 
later to explicitly address these requirements. 

Each layer is described by a SAPI. The SAPI is defined 
in terms of messages being passed to and from the layer. The 
clients (usually higher layers) of a layer invoke the layer via 
a request (REQ). The layer responds to each REQ by a 
response (RSP). Errors are reported via an ERR RSP with 
error codes. If the layer needs to send unsolicited messages 
to the client, it does so via a notification (NTF). A layer 
communicates logically with its peer layer via protocol data 
units (PDU). As the peer-to-peer communication is 
symmetric, a layer may send a REQ PDU to its peer layer at 
any time. It would optionally respond to such a PDU with a 
RSP PDU. This is logically depicted in Fig. 2. 

 
 

Layer X Peer Layer X 
PDU (REQ) 

PDU (RSP) 

NTF REQ RSP 

 
Fig. 2. Message Nomenclature in the UNA 

 
It may be desirable in some cases, that non-neighboring 

layers communicate with each other to achieve cross-layer 
optimization. This may be implemented by allowing REQ 
and RSP PDUs between any two layers in the protocol stack. 

The UNA specifications define detailed message 
structures for all SAPI messages. These message structures 
include message identifiers, data formats to be used, 
parameters and their possible values. In the interest of 
keeping this paper brief, we concentrate on the messages and 
not the detailed message structures in the following sections. 
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B. Addressing 

Each node must be issued a unique address by the 
administrator. The address will consist of two parts – a 
network ID (8 bit) and a node ID (8 bit). The network ID 
defines a network that the node is a part of; all nodes in the 
network have the same network ID. The node ID must be 
unique within a network. 

A special network ID (all bits 1) and node ID (all bits 1) 
are defined as a broadcast address. This address may be used 
in primitives that support broadcast. The network ID and 
node ID with all bits 0 are reserved and must not be assigned 
to any network or node. 

The UNA does not define any method for dynamic 
assignment of addresses to new nodes. It may be expanded 
later to explicitly address this requirement. 

C. Transport Layer 

The transport layer specifications support two modes of 
communications – connection oriented and datagram. A 
connection oriented mode allows for persistent reliable 
connection with the open, write and close primitives and 
incoming data notifications. The datagram mode allows for 
reliable or unreliable delivery of datagrams via send 
primitives and incoming datagram notifications. In case of 
reliable datagram service, an undelivered datagram must be 
reported to the client layer. To enable multiple applications, 
the transport layer must provide the concept of ports for both 
modes of communication. Ports allow the transport layer to 
divert incoming data to multiple applications. All ports are 
open for connections or datagram receipts. If no application 
processes the data on these ports, the data is simply lost. 

The transport layer defines messages for the several 
primitives for the connection oriented protocol – Open REQ, 
Close REQ, Write REQ, Connection Established NTF, 
Connection Lost NTF and Incoming Data NTF. It also 
defines messages for the primitives for the datagram protocol 
– Send Reliable Datagram REQ, Send Unreliable Datagram 
REQ and Incoming Datagram NTF. The requests, responses 
and notifications are summarized in Table 1 and Table 2. 

D. Network Layer 

The network layer provides routing capability to the 
protocol stack. It provides an unreliable packet delivery 
service over the routes. However, the layer may optionally 
implement some degree of reliability via retransmits. If the 
layer knows that a packet could not be delivered due to a 
lack of available route, it may inform the client layer via the 
no route notification. 

The network layer defines messages for basic multi-hop 
communication primitives – Send Packet REQ and Incoming 
Packet NTF. It also defines messages to enable query of 
routing information for use in the application or transport 
layers. These primitives include Get Route REQ and No 
Route NTF. All network layer primitives are summarized in 
Table 3. 

E. Data Link Layer 

The data link layer provides single hop data transmission 
capability; it will not be able to transmit a packet 
successfully if the destination node is not directly accessible 
from the source node. It may include some degree of 
reliability. It may also provide error detection capability (e.g. 
CRC check). In case of a shared medium, the data link layer 
must include the medium access control (MAC) sub-layer. If 
carrier sensing, power control, etc. are desired, this 
functionality should be supported by the physical layer via 
the extension framework (defined in Section G). 

Physical layer parameters may be tuned for optimal 
performance. If such functionality is included, it should 
reside in the Data Link layer as a sub-layer. The physical 
layer should support parameter recommendation primitives if 
this feature is to be implemented. 

The primitives defined by the data link layer include 
Send Packet REQ and Incoming Packet NTF, as summarized 
in Table 4. 

 

Table 1. Connection-oriented service primitives 

Requests Responses 

Open REQ Connection Established RSP 
Error RSP 

Write REQ Write Successful RSP 
Error RSP 

Close REQ Connection Closed RSP 
Error RSP 

Notifications  

Connection Established NTF  

Connection Lost NTF  

Incoming Data NTF  
 

Table 2. Datagram service primitives 

Requests Responses 

Send Reliable Datagram 
REQ 

Datagram Delivered RSP 
Error RSP 

Send Unreliable Datagram 
REQ 

Datagram Accepted RSP 
Error RSP 

Notifications  

Incoming Datagram NTF  
 

Table 3. Network layer primitives 

Requests Responses 
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Send Packet REQ Packet Transmitted RSP 
Error RSP 

Get Route REQ Route Info RSP 
Error RSP 

Notifications  

Incoming Packet NTF  

No Route NTF  
 

Table 4. Data link layer primitives 

Requests Responses 

Send Packet REQ Packet Transmitted RSP 
Error RSP 

Notifications  

Incoming Packet NTF  

No Route NTF  
 

F. Physical Layer 

The physical layer provides framing, modulation and 
error correction capability (via FEC). It provides primitives 
for sending and receiving packets. It may also provide 
additional functionality such as parameter settings, parameter 
recommendation, carrier sensing, etc. 

The send packet primitives at the physical layer do not 
use destination addresses. In case of orthogonal channels, a 
parameter in the physical layer may be set to define the 
channel to be used. Then the send packet primitive may be 
used for the transmission. Incoming packets may be 
monitored on all or a few channels simultaneously. A 
parameter in the incoming packet notification may be 
included to denote the source address. 

The primitives defined by the physical layer (see Table 5) 
are Send Packet REQ and Incoming Packet NTF. 
Additionally, a Recommend Parameters REQ enables higher 
layers to query the physical layer to help optimize the 
protocol parameters. 

 

Table 5.Physical layer primitives 

Requests Responses 

Send Packet REQ Packet Transmitted RSP 
Error RSP 

Recommend Parameters 
REQ 

Recommended Parameters 
RSP 
No Recommendation RSP 

Notifications  

Incoming Packet NTF  

No Route NTF  
 

G. Extension Framework 

The extension framework allows capability query, 
arbitrary parameters and information to be passed around the 
layers for cross-layer optimization. This may include 
capability query such as broadcast capability and specific 
parameters (e.g. transmission frequency, data rate, etc.) It 
may also include generic data like BER, SNR, link quality, 
etc. 

The extension framework is common across all layers. It 
is implemented using generic primitives – Set Parameter 
REQ, Get Parameter REQ and Check Capability REQ. If a 
Set Parameter REQ provides an invalid value for a 
parameter, the old value is retained and returned via the 
Parameter RSP. Alternatively, a value close to the requested 
value may be set and returned via the Parameter RSP. 

 

Table 6.Extension framework primitives 

Requests Responses 

Set Parameter REQ Parameter RSP 
Error RSP 

Get Parameter REQ Parameter RSP 
Error RSP 

Check Capability REQ Capability Implemented RSP 
Capability Not Implemented 
RSP 

 

H. UNA Framework API 

The UNA FAPI provides a C API with layer registration, 
message queue and timer functionality. This API provides an 
abstraction to the hardware and OS, allowing the 
implementation of each layer to be portable. Table 7 
provides a summary of the C prototypes for FAPI. 

The FAPI includes a function for registering layer 
implementations – FAPI_registerLayer. Layers registered 
with the FAPI may communicate with each other and utilize 
FAPI services. Possible values for the FAPI layer include 
LAYER_PHYSICAL (1), LAYER_DATALINK (2), 
LAYER_NETWORK (3) and LAYER_TRANSPORT (4). 

FAPI supports message queues, which form the basis for 
communication between layers. The message queues are 
based on an event handling model, where a message handler 
callback in a layer is called when a message is available for it 
to process. This enables the FAPI to be easily implemented 
on operating platforms without multi-threading support. 
Messages are sent via a FAPI_sendMessage function. All 
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messages are considered to be of equal priority and are 
delivered in a first-in-first-out manner. 

It is common for protocols to implement timeouts. This 
requires timer support from the operating platform. This 
support is encapsulated in the FAPI timer API using the 
FAPI_setTimer function. When a timer expires, a Timer 
Expired NTF is sent to the appropriate layer. Although the 
time out in the API is specified in milliseconds, some 
platforms may not be able to support this accuracy. In such 
cases, the FAPI implementation should provide as close a 
timeout as possible on the platform. Unexpired timers may 
be cancelled using the FAPI_cancelTimer function. 

 

Table 7. UNA Framework API  C Prototypes 

Layer Registration 
int FAPI_registerLayer(int layer, MessageHandler handler); 
Message Queues 
void MessageHandler(Message msg, int sender); 
int FAPI_sendMessage(Message msg, int destination); 
Timer 
int FAPI_setTimer(int me, int ref, long timeout); 
int FAPI_cancelTimer(int me, int ref); 

III. CONCLUSIONS 

We have outlined the UNA specifications in this paper. 
The primary aim of the specifications is to define a common 
framework that the underwater networking community 
(researchers and industry) may use. This would allow 
implementations of layers from different sources to 
interoperate and improve the pace of advances in the field. 

The current specifications are based on commonly 
encountered requirements in underwater systems. With 
inputs from researchers at the Acoustic Research Laboratory 
(Singapore), Woods Hole Oceanographic Institution and the 
Massachusetts Institute of Technology, we have an initial 
draft of the specifications. We hope to further improve the 
specifications through interaction with other groups working 
in the area of underwater networking, or wishing to use the 
technology. 
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