
A Sparser Johnson-Lindenstrauss Transform

Daniel M. Kane∗ Jelani Nelson†

Abstract

We give a Johnson-Lindenstrauss transform with column sparsity s = Θ(ε−1 log(1/δ)) into
optimal dimension k = O(ε−2 log(1/δ)) to achieve distortion 1±ε with success probability 1−δ.
This is the first distribution to provide an asymptotic improvement over the Θ(k) sparsity
bound for all values of ε, δ. Previous work of [Dasgupta-Kumar-Sarlós, STOC 2010] gave a
distribution with s = Õ(ε−1 log3(1/δ))1, with tighter analyses later in [Kane-Nelson, CoRR
abs/1006.3585] and [Braverman-Ostrovsky-Rabani, CoRR abs/1011.2590] showing that their
construction achieves s = Õ(ε−1 log2(1/δ)). As in the previous work, our scheme only requires
limited independence hash functions. In fact, potentially one of our hash functions could be
made deterministic given an explicit construction of a sufficiently good error-correcting code.

Our linear dependence on log(1/δ) in the sparsity allows us to plug our construction into al-
gorithms of [Clarkson-Woodruff, STOC 2009] to achieve the fastest known streaming algorithms
for numerical linear algebra problems such as approximate linear regression and best rank-k ap-
proximation. Their reductions to the Johnson-Lindenstrauss lemma require exponentially small
δ, and thus a superlinear dependence on log(1/δ) in s leads to significantly slower algorithms.

1 Introduction

The Johnson-Lindenstrauss lemma states:

Lemma 1 (JL Lemma [14]). For any integer d > 0, and any 0 < ε, δ < 1/2, there exists a
probability distribution on k × d real matrices for k = Θ(ε−2 log(1/δ)) such that for any x ∈ Rd
with ‖x‖2 = 1,

PrA[|‖Ax‖22 − 1| > ε] < δ.

Proofs of the JL lemma can be found in [1, 2, 3, 8, 10, 12, 14, 15, 17]. The value of k in
the JL lemma is known to be optimal [13] (also see a later proof in [15]). Standard proofs of the
JL lemma take a distribution over dense matrices (e.g. i.i.d. Gaussian or Bernoulli entries), and
thus performing the embedding näıvely takes O(k · ‖x‖0) time where x has ‖x‖0 non-zero entries.
Recently Dasgupta, Kumar, and Sarlós gave a distribution over matrices where each column has at
most s = Õ(ε−1 log3(1/δ)) non-zero entries [7], thus speeding up the embedding time to O(s ·‖x‖0).
Their distribution requires O(ds log k) bits of random seed to sample a matrix. They left open two

∗Harvard University, Department of Mathematics. dankane@math.harvard.edu. Supported by an NSF Graduate
Research Fellowship.
†MIT Computer Science and Artificial Intelligence Laboratory. minilek@mit.edu. Supported by a Xerox-MIT

Fellowship, and in part by the Center for Massive Data Algorithmics (MADALGO) - a center of the Danish National
Research Foundation.

1We say g = Ω̃(f) when g = Ω(f/polylog(f)), and g = Õ(f) when g = O(f · polylog(f)).

1

main directions: (1) understand the sparsity parameter s that can be achieved in a JL distribution,
and (2) devise a sparse JL transform distribution which requires few random bits to sample from,
for streaming applications where storing a long random seed requires prohibitively large memory.

The previous work [15] of the current authors made progress on both these questions by showing
Õ(ε−2 log2(1/δ)) sparsity was achievable by giving an alternative analysis of the scheme of [7]
which also only required O(log(k/δ) log d) seed length. Braverman, Ostrovsky, and Rabani later
gave an even tighter analysis which improved the sparsity and seed length further by log(1/ε) and
log log(1/δ) factors [3]. For a discussion of other previous work concerning the JL lemma see [15].

Main Contribution: In this work, we give a new construction which achieves sparsity s =
Θ(ε−1 log(1/δ)) for `2 embedding into optimal dimension k = O(ε−2 log(1/δ). This is the first
sparsity bound which is always asymptotically smaller than k, regardless of how ε and δ are related.

We also describe another construction with sparsity Õ(ε−1 log(1/δ)), but which has a much
simpler analysis requiring only a page long proof. We analyze the simpler construction in Section 3,
and we describe our main contribution in Section 4. For our main contribution, we also show in
Section 4 that our analysis is tight, so any further improvement would require a different scheme
and not merely a tighter analysis.

In Section 5 we discuss how to use our new scheme to speed up the numerical linear algebra
algorithms in [6] for approximate linear regression and best rank-k approximation in the streaming
model of computation. We first show that any JL distribution automatically provides approximate
matrix sketches as defined by Sarlós [19]. While Sarlós also showed this, he lost a logarithmic factor
in the target dimension due to a union bound in his reduction; Clarkson and Woodruff avoided
this loss in [6], but only for the JL distribution of random Bernoulli matrices. We show a simple
general reduction for any JL distribution which incurs no loss in parameters. We then plug in our
sparse JL transform to yield faster algorithms using the same space.

2 Conventions and Notation

Definition 2. For A ∈ Rn×n, we define the Frobenius norm of A as ‖A‖F =
√∑

i,j A
2
i,j.

Definition 3. For A ∈ Rn×n, we define the operator norm of A as

‖A‖2 = sup
‖x‖2=1

‖Ax‖2.

In the case A has all real eigenvalues (e.g. it is symmetric), we also have that ‖A‖2 is the largest
magnitude of an eigenvalue of A.

Henceforth, all logarithms are base-2 unless explicitly stated otherwise. Also, for a positive
integer n we use [n] to denote the set {1, . . . , n}. Sd−1 denotes the set of y ∈ Rd with ‖y‖2 = 1. We
also assume ‖x‖2 = 1, which is without loss of generality since our embedding is linear. All vectors
v are assumed to be column vectors, and vT denotes its transpose. We often implicitly assume that
various quantities are powers of 2 or 4 (such as 1/δ), which is without loss of generality. Whenever
we discuss space complexity (as in Section 5), we always measure space in bits.

Definition 4. The Hamming distance ∆(u, v) of two vectors u, v is |{i : ui 6= vi}|. An (n, k, d)q
code is a set of qk vectors in [q]n with all pairwise Hamming distances at least d.

2

3 A simple construction

Define k = C · ε−2 log(1/δ) for sufficiently large constant C. Let s be some integer dividing k
satisfying s ≥ 2ε−1 log(1/δ). Let C = {C1, . . . , Cd} be any (s, logk/s d, s−O(s2/k))k/s code.

We specify our JL family by describing the embedded vector y. Define hash functions σ :
[d] × [s] → {−1, 1} and h : [d] × [s] → [k/s]. The former is drawn at random from a 2 log(1/δ)-
wise independent family, and the latter has h(i, j) being the jth entry of the ith codeword in
C. We conceptually view y ∈ Rk as being in Rs×(k/s). Our embedded vector then has yi,j =∑

h(r,i)=j σ(r, i)xr/
√
s. This describes our JL family, which is indexed by σ. Note the sparsity is s.

Analysis of simple construction: We first note

‖Ax‖22 = ‖x‖22 +
1

s

∑
i 6=j

s∑
r=1

ηi,j,rxixjσ(i, r)σ(j, r),

where ηi,j,r is 1 if h(i, r) = h(j, r), and ηi,j,r = 0 otherwise. We thus would like that

Z =
1

s

∑
i 6=j

s∑
r=1

ηi,j,rxixjσ(i, r)σ(j, r) (1)

is concentrated about 0. Note Z is a quadratic form in σ which can be written as σTTσ for an
sd× sd block-diagonal matrix T . There are s blocks, each d× d, where in the rth block Tr we have
(Tr)i,j = xixjηi,j,r/s for i 6= j and (Tr)i,i = 0 for all i. Now, Pr[|Z| > ε] = Pr[|σTTσ| > ε]. To
bound this probability, we use the Hanson-Wright inequality combined with a Markov bound.

Theorem 5 (Hanson-Wright inequality [11]). Let z = (z1, . . . , zn) be a vector of i.i.d. Bernoulli
±1 random variables. Then for any symmetric B ∈ Rn×n and integer ` ≥ 2 a power of 2,

E
[(
zTBz − trace(B)

)`] ≤ 64` ·max
{√

` · ‖B‖F , ` · ‖B‖2
}`
.

The proof of the Hanson-Wright inequality with constant 64 can be found in [9]. We prove our
construction satisfies the JL lemma by applying Theorem 5 with z = σ, T = B.

Lemma 6. ‖T‖2F = O(1/k).

Proof.

‖T‖2F =
1

s2
·
∑
i 6=j

x2
ix

2
j ·

(
s∑
r=1

ηi,j,r

)
=

1

s2
·
∑
i 6=j

x2
ix

2
j · (s−∆(Ci, Cj)) ≤ O(1/k) · ‖x‖42 = O(1/k).

�

Lemma 7. ‖T‖2 ≤ 1/s.

Proof. Since T is block-diagonal, its eigenvalues are the eigenvalues of each block. For a block Tr,
write Tr = (1/s) · (Sr −D). D is diagonal with Di,i = x2

i , and (Sr)i,j = xixjηi,j,r, including when
i = j. Since Sr and D are both positive semidefinite, we have ‖T‖2 ≤ (1/s) ·max{‖Sr‖2, ‖D‖2}.
We have ‖D‖2 = ‖x‖2∞ ≤ 1. For Sr, define ut for t ∈ [k/s] by (ut)i = xi if h(i, r) = t, and (ut)i = 0
otherwise. Then u1, . . . , uk/s are eigenvectors of Sr each with eigenvalue ‖ut‖22, and furthermore
they span the image of Sr. Thus ‖Sr‖2 = maxt ‖ut‖22 ≤ ‖x‖22 = 1. �

3

Theorem 8. Prσ[|‖Ax‖22 − 1| > ε] < δ.

Proof. By a Markov bound applied to Z` for ` an even integer,

Prσ[|Z| > ε] < ε−` ·Eσ[Z`].

Since Z = σTTσ and trace(T) = 0, applying Theorem 5 with B = T , z = σ, and ` ≤ log(1/δ) gives

Prσ[|Z| > ε] < 64` ·max

{
O(ε−1) ·

√
`

k
, ε−1 `

s

}`
. (2)

since the `th moment is determined by 2 log(1/δ)-wise independence of σ. We conclude the proof
by noting that the expression in Eq. (2) is at most δ for ` = log(1/δ) and our choices for s, k. �

Remark 9. Only using that C has sufficiently high minimum distance, it is impossible to improve
our analysis further. For example, for any (s, logk/s d, s − O(s2/k))k/s code C, create a new code
C′ which simply replaces the first letter of each codeword with “1”; C′ then still has roughly the
same minimum distance. However, in our construction this corresponds to all indices colliding in
the first chunk of k/s coordinates, which creates an error term of (1/s) ·

∑
i 6=j xixjσ(i, r)σ(j, r).

Now, suppose x consists of t = (1/2) · log(1/δ) entries each with value 1/
√
t. Then, with probability√

δ � δ, all these entries receive the same sign under σ and contribute a total error of Ω(t/s) in
the first chunk alone. We thus need t/s = O(ε), which implies s = Ω(ε−1 log(1/δ)).

Remark 10. It is of course important to know whether an (s, logk/s d, s − O(s2/k))k/s code
exists. By picking h at random from an O(log(d/δ))-wise independent family and setting s ≥
Ω(ε−1

√
log(d/δ) log(1/δ)), it is not too hard to show via the Chernoff bound (or more accurately,

Markov’s bound applied with the O(log(d/δ))th moment bound implied by integrating the Chernoff
bound) followed by a union bound over all pairs of

(
d
2

)
vectors that h defines a good code with

probability 1− δ. We do not perform this analysis here since Section 4 obtains better parameters.
We also point out that we may assume without loss of generality that d = O(ε−2/δ). This is because
there exists an embedding into this dimension with sparsity 1 using only 4-wise independence with
distortion (1+ε) and success probability 1−δ [5, 20]. It is worth noting that in the construction in
this section, potentially h could be deterministic given an explicit code with our desired parameters.

4 An Improved Construction

Our improved construction is the same as in Section 3, except rather than let C be an arbitrary code,
we let the underlying hash function h : [d]× [s]→ [k/s] be drawn at random from a 2 log(1/δ)-wise
independent hash family. Note the seed length is O(log(1/δ) log d).

We perform our analysis by bounding the `th moment of Z from first principles for ` = log(1/δ)
an even integer (for this particular scheme, it seems the Hanson-Wright inequality does not simplify
any details of the proof). We then use Markov’s inequality to say Prh,σ[|Z| > ε] < ε−` ·Eh,σ[Z`].

Let Zr =
∑

i 6=j ηi,j,rxixjσ(i, r)σ(j, r) so that Z = (1/s) ·
∑s

r=1 Zr. We first bound the tth
moment of each Zr for 1 ≤ t ≤ `. As in the Frobenius norm moment bound of [15], and also used
later in [3], the main idea is to observe that monomials appearing in the expansion of Ztr can be
thought of in correspondence with graphs. Notice

Ztr =
∑

i1 6=j1,...,it 6=jt

t∏
u=1

ηiu,ju,rxiuxjuσ(iu, r)σ(ju, r) (3)

4

Each monomial corresponds to a directed multigraph with labeled edges whose vertices correspond
to the distinct iu and ju. An xiuxju term corresponds to a directed edge with label u from the
vertex corresponding to iu to the vertex corresponding to ju. The main idea to bound Eh,σ[Ztr] is
then to group monomials whose corresponding graphs are isomorphic, then do some combinatorics.

Lemma 11. For t ≤ log(1/δ), Eh,σ[Ztr] ≤ 2O(t) ·

{
s/k t < log(k/s)

(t/ log(k/s))t otherwise
.

Proof. Let Gt be the set of isomorphism classes of directed multigraphs with t labeled edges with
distinct labels in [t], where each edge has positive and even degree (the sum of in- and out-degrees),
and the number of vertices is between 2 and t. Let G′t be similar, but with labeled vertices and
connected components as well, where vertices have distinct labels between 1 and the number of
vertices, and components have distinct labels between 1 and the number of components. Let f
map the monomials appearing in Eq. (3) to the corresponding graph isomorphism class. By 2t-wise
independence of σ, any monomial in Eq. (3) whose corresponding graph does not have all even
degrees has expectation 0. For a graph G, we let v denote the number of vertices, m the number
of connected components, ni the number of vertices of degree i, and vi the number of vertices in
the ith component. Let dv denote the degree of a vertex v. Then,

Eh,σ[Ztr] =
∑

i1 6=j1,...,it 6=jt

(
t∏

u=1

xiuxju

)
·E

[
t∏

u=1

ηiu,ju,r

]

=
∑
G∈Gt

∑
i1 6=j1,...,it 6=jt

f((iu,ju)tu=1)=G

(
t∏

u=1

xiuxju

)
·E

[
t∏

u=1

ηiu,ju,r

]

=
∑
G∈Gt

∑
i1 6=j1,...,it 6=jt

f((iu,ju)tu=1)=G

(s
k

)v−m
·

(
t∏

u=1

xiuxju

)
(4)

≤
∑
G∈Gt

(s
k

)v−m
·

(
t∏
i=2

ni!

)
· 1(

t
d1/2,...,dv/2

) (5)

≤
∑
G∈Gt

(s
k

)v−m
· v! · 1(

t
d1/2,...,dv/2

) (6)

≤
∑
G∈G′t

(s
k

)v−m
· 1

m!
· 1(

t
d1/2,...,dv/2

) . (7)

We now justify these inequalities. The justification of Eq. (4) is similar to that in the Frobenius
norm bound in [15]. That is,

∏t
u=1 ηiu,ju,r is determined by h(iu, r), h(ju, r) for each u ∈ [t], and

hence its expectation is determined by 2t-wise independence of h. This product is 1 if iu and ju
hash to the same element for each u and is 0 otherwise. Each iu, ju pair hash to the same element if
and only if for each connected component of G, all elements of {i1, . . . , it, j1, . . . , jt} corresponding
to vertices in that component hash to the same value. We can choose one element of [k/s] for
each component to be hashed to, thus giving (k/s)m possibilities. The probability of any particular
hashing is (k/s)−v, and this gives that the expectation of the product is (s/k)v−m.

5

For Eq. (5), note that (‖x‖22)t = 1, and the coefficient of
∏v
u=1 x

du
au in its expansion for

∑
u du = t

is
(

t
d1/2,...,dv/2

)
. Meanwhile, the coefficient of this monomial that arises when summing over all

i1 6= j1, . . . , it 6= jt for a particular G ∈ G` is
∏t
i=2 ni!, since we may permute the assignment from

indices in x to vertices in G, and this would yield the same monomial if and only if the vertices are
of equal degree. Eq. (6) then follows since allowing all permutations only provides an upper bound.

For Eq. (7), we move from isomorphism classes in Gt to those in G′t. For any isomorphism class
in Gt, there are v! ways to label vertices and m! ways to label connected components.

Fix v1, . . . , vm, t1, . . . , tm (where there are ti edges in the ith component Ci), and the assignment
of vertex and edge labels to connected components. We now upper bound the summation in Eq. (7)
by considering building the graph G edge by edge, starting with 0 edges. Let the initial graph be
G0, so that we form G = Gt by adding edges in increasing label order. We then want to bound the
sum of 1/

(
t

d1/2,...,dv/2

)
over G ∈ G′` which satisfy the quantities we have fixed. Note 1/

(
t

d1/2,...,dv/2

)
equals t−t ·

∏v
u=1 ·

(√
du

du
)

up to a 2O(t) factor. Initially, when t = 0, our sum is S0 = 1. When

considering all ways to add the next edge to Gu+1 from Gu, an edge i→ j contributes Su ·
√
didj/t

to Su+1. Summing over all vertices i 6= j,

∑
i 6=j

√
didj/t ≤

1

t
·
m∑
w=1

(∑
i∈Cw

√
di

)2

≤ 1

t
·
m∑
i=1

tivi,

by Cauchy-Schwarz. Since there are
(

v
v1,...,vm

)
·
(

t
t1,...,tm

)
ways to assign edge and vertex labels to

components, Eq. (7) gives

Eh,σ[Ztr] ≤ 2O(t) ·
t∑

v=2

v/2∑
m=1

∑
v1,...,vm

∑
t1,...,tm

(s
k

)v−m
· 1

mm
·
(

v

v1, . . . , vm

)
·
(

t

t1, . . . , tm

)
·
(∏m

i=1(viti)
ti
)

tt

≤ 2O(t) ·
t∑

v=2

v/2∑
m=1

v−2m+2∑
vmax=2

(s
k

)v−m
·
(
vv

mm

)
· vt−vmax (8)

≤ 2O(t) ·
t∑

v=2

v/2∑
m=1

v−2m+2∑
vmax=2

(s
k

)v−m
· (v −m)t (9)

≤ 2O(t) ·
t∑

v=2

v/2∑
q=1

(s
k

)q
· qt

where vmax = maxi vi. Eq. (8) holds since there are at most 2v+t ways to choose the vi, ti and
ti ≥ vi. Eq. (9) follows since v ≥ 2m and thus v, vmax = O(v−m). Setting q = v−m and under the
constraint q ≥ 1, (s/k)q · qt is maximized when q = max{1,Θ(t/ log(k/s))}. The lemma follows. �

Theorem 12. Our construction in this section gives a JL family with sparsity s = O(ε−1 ·log(1/δ)).

Proof. For ` = log(1/δ) an even integer and by 2`-wise independence of h, σ,

6

s` ·Eh,σ[Z`] =
∑

i1<...<ir
∀j tj>1∑

j tj=r

r∏
j=1

Eh,σ[Z
tj
ij

]

≤ 2O(`) ·
∑̀
`′=1
q=`−`′

(
`

q

)
·

 `′/2∑
r′=1

(s
k

)r′
·
(
s

r′

)
· r′`
 (10)

×

bq/ log(k/s)c∑

r=1

∑
(`1,...,`r)

∀i `i≥log(k/s)∑
i `i=q

(
s

r

)
·
(

q

`1, . . . , `r

)
·

(
r∏
i=1

``ii

)
· log−q(k/s)

≤ 2O(`) ·

∑̀
`′=1

[
max

1≤r′≤`′/2

{
r′
`′ ·
(
s2

kr′

)r′}
· max

1≤r≤q/ log(k/s)

{(s
r

)r
· qq · log−q(k/s)

}]
.

Eq. (10) follows by separately considering the tj < log(k/s) (in which case E[Z
tj
ij

] = 2O(tj) · s/k)

and the tj ≥ log(k/s) (in which case E[Z
tj
ij

] = 2O(tj) · (t/ log(k/s))tj). The value r′ represents

the number of distinct ij such that tj < log(k/s), and r represents the number of distinct ij with
tj ≥ log(k/s). In the former case, we have

(
s
r′

)
choices of ij , then as we expand Z`, for each of the

`′ times we pick a Zij from amongst these we have at most r′ choices. We also have
(
`
q

)
choices

of which variables belong to this case when expanding Z`. For the latter case, for any vector of
exponents (`1, . . . , `r), we have at most

(
s
r

)
choices of Zij and

(
q

`1,...,`r

)
ways to form the monomial

while still maintaining the same vector of exponents.
Now, by Markov’s inequality Prh,σ[|Z| > ε] ≤ ε−` · Eh,σ[Z`]. Plugging this into the above and

writing s = Cε−1` and k = Cε−2` for C a sufficiently large constant,

Prh,σ[|Z| > ε] < 2O(`) ·
∑̀
`′=1

[
max

1≤r′≤`′/2

{
(sε)−`

′
r′
`′ ·
(
s2

kr′

)r′}

× · max
1≤r≤q/ log(k/s)

{
(sε)−q

(s
r

)r
· qq · log−q(k/s)

}]
(11)

= 2O(`) · max
1≤`′≤`

{
max

1≤r′≤`′/2

{
(C`)−`

′
r′
`′ ·
(
C2`

Cr′

)r′}

× max
1≤r≤q/ log(k/s)

{
(C`)−q

(s
r

)r
· qq · log−q(1/ε)

}}

≤ 2O(`) · C−`′/2 · (C`)−q ·
(
` · log(1/ε)

Cεq

)q/ log(1/ε)

· qq · log−q(1/ε)

≤ 2O(`) · C−`′/2 · C−q · log−q(1/ε)

< δ

�

7

Remark 13. It is worth noting that if one wants distortion 1 ± εi with probability 1 − δi si-
multaneously for all i in some set S, it suffices to set s = C · supi∈S ε

−1
i log(1/δi) and k =

C · supi∈S ε
−2
i log(1/δi). Then, for any particular i, we can write s = C · ε−1

i log(1/δi) · ti and
k = C · ε−2

i log(1/δi) · t′i with ti, t
′
i ≥ 1. Then, the bound for the first max term in Eq. (11) is

identical, except for an extra multiplicative term (t2i /t
′
i)
r′ · t−`′i ≤ 1. For the second max term in

Eq. (11), define α = log(k/s) so that ti = ε−1 ·2−α, where α ≥ 3 (we can assume α ≥ 3 since we can
assume supi∈S εi < 1/8 without loss of generality). Then, this term’s contribution to the moment
is at most C−q ·2αq · εq(1−2/α). Then, f(α) = 2αq · εq(1−2/α) is 2O(q) for α = 3 and α ≥ log(1/ε), and
taking derivatives there is only one extremum for f in the interval [3, log(1/ε)]. This extremum
occurs at some α = Θ(

√
log(1/ε)), for which one can verify that again f(α) = 2O(q) at this point.

We now show our analysis is tight. First we note the following standard inequality.

Fact 14 ([18, Proposition B.3]). For all t, n ∈ R with n ≥ 1 and |t| ≤ n,

et(1− t2/n) ≤ (1 + t/n)n ≤ et.

Theorem 15. For δ smaller than a universal constant (which depends on C where k = Cε−2 log(1/δ)),
our scheme requires s = Ω(ε−1 log(1/δ)) to obtain distortion 1± ε with probability 1− δ.

Proof. First suppose s ≤ 1/(2ε). Consider a vector with t = b1/(sε)c non-zero coordinates each
of value 1/

√
t. If there is exactly one set i, j, r with i 6= j such that h(i, r) = h(j, r) (i.e. exactly

one collision), then the total error is 2/(ts) ≥ 2ε. It just remains to show that this happens with
probability larger than δ.

The probability of exactly one collision is

s ·

[
t! ·
(
k/s
t

)
(k/s)t

]s−1

·
(
t

2

)
·
(
k

s

)
·

[
(t− 2)! ·

(
k/s−1
t−2

)
(k/s)t

]
≥ s ·

(
1− st

k

)t(s−1)

·
(
t

2

)
·
(s
k

)(
1− st

k

)t−2

=
s2t(t− 1)

2k
·
(

1− st

k

)st−2

≥ s2t(t− 1)

2k
· e−s2t2/k ·

(
1−

(
s2t2

k

)2
)

(12)

= Ω(1/ log(1/δ)),

which is larger than δ for δ smaller than a universal constant. Eq. (12) follows from Fact 14.
Now consider 1/(2ε) < s < c · ε−1 log(1/δ) for some small constant c. Consider the vector

x = (1/
√

2, 1/
√

2, 0, . . . , 0). Suppose there are exactly 2sε collisions, i.e. 2sε distinct values of r
such that h(1, r) = h(2, r) (to avoid tedium we disregard floors and ceilings and just assume sε is
an integer). Also, suppose that in each colliding chunk r we have σ(1, r) = σ(2, r). Then, the total
error would be 2ε. It just remains to show that this happens with probability larger than δ. The
probability of signs agreeing in exactly 2εs chunks is 2−2εs > 2−2c log(1/δ), which is larger than

√
δ

for c < 1/4. The probability of exactly 2εs collisions is(
s

2εs

)(s
k

)2εs (
1− s

k

)(1−2ε)s
≥
(s

2εk

)2εs (
1− s

k

)(1−2ε)s

8

It suffices for the right hand side to be at least
√
δ since h is independent of σ, and thus the

total probability of error larger than 2ε would be greater than
√
δ

2
= δ. Taking natural logarithms,

it suffices to have

2εs ln

(
2εk

s

)
− (1− 2ε)s ln

(
1− s

k

)
≤ ln(1/δ)/2.

Writing s = q/ε and a = 2C log(1/δ), the left hand side is 2q ln(a/q) + Θ(s2/k)(1− 2ε). Taking a
derivative shows 2q ln(a/q) is monotonically increasing for q < a/e. Thus as long as q < ca for a
sufficiently small constant c, 2q ln(a/q) < ln(1/δ)/4. Also, the Θ(s2/k) term is at most ln(1/δ)/4
for c sufficiently small. �

5 Faster numerical linear algebra streaming algorithms

The works of [6, 19] gave algorithms to solve various approximate numerical linear algebra problems
given small memory and a only one or few passes over the matrix. They considered models where
one only sees a row or column at a time of some matrix A ∈ Rd×n. Another update model
considered was the turnstile streaming model. In this model, the matrix A starts off as 0. One
then sees a sequence of m updates (i1, j1, v1), . . . , (im, jm, vm), where each update (i, j, v) triggers
the change Ai,j ← Ai,j + v. The goal in all these models is to compute some functions of A at
the end of seeing all rows, columns, or turnstile updates. The algorithm should use little memory
(much less than what is required to store A explicitly). Both works [6, 19] solved problems such
as approximate linear regression and best rank-k approximation by reducing to the problem of
sketches for approximate matrix products. Before delving further, first we give a definition.

Definition 16. A distribution over Rk×d has (ε, δ)-JL moments if for ` = log(1/δ) and ∀x ∈ Sd−1,

ES

[∣∣‖Sx‖22 − 1
∣∣`] ≤ (ε/2)`.

Now, the following theorem is a generalization of [6, Theorem 2.1]. The theorem states that any
distribution with JL moments also provides a sketch for approximate matrix products. A similar
statement was made in [19, Lemma 6], but that statement was slightly weaker in its parameters
because it resorted to a union bound, which we avoid using Minkowski’s inequality.

Theorem 17. Given 0 < ε, δ < 1/2, let D be any distribution over matrices with d columns with
the (ε, δ)-JL moment property. Then for A,B any real matrices with d rows and ‖A‖F = ‖B‖F = 1,

PrS∼D
[
‖ATSTSB −ATB‖F > 3ε/2

]
< δ.

Proof. Let x, y ∈ Rd each have `2 norm 1. Then

〈Sx, Sy〉 =
‖Sx‖22 + ‖Sy‖22 − ‖S(x− y)‖22

2

so that

E
[
|〈Sx, Sy〉 − 〈x, y〉|`

]
=

1

2`
·
(
E
[∣∣(‖Sx‖22 − 1) + (‖Sy‖22 − 1)− (‖S(x− y)‖22 − ‖x− y‖22)

∣∣`])
≤ 3`

2`
·max

{
E
[∣∣‖Sx‖22 − 1

∣∣`] ,E [∣∣‖Sy‖22 − 1
∣∣`] ,E [∣∣‖S(x− y)‖22 − ‖x− y‖22

∣∣`]}
≤
(

3ε

4

)`
9

with the middle inequality following by Minkowski’s inequality. Now, if A has n columns and B has
m columns, label the columns of A as x1, . . . , xn ∈ Rd and the columns of B as y1, . . . , ym ∈ Rd.
Define the random variable Xi,j = 1/(‖xi‖2‖yj‖2) · (〈Sxi, Syj〉 − 〈xi, yj〉). Then ‖ATSTSB −
ATB‖2F =

∑
i 6=j ‖xi‖22 · ‖yj‖22 ·X2

i,j . Then again by Minkowski’s inequality,

E
[(
‖ATSSB −ATB‖2F

)`/2]
= E

∣∣∣∣∣∣
∑
i 6=j
‖xi‖22 · ‖yj‖22 ·X2

i,j

∣∣∣∣∣∣
`/2

≤

∑
i 6=j
‖xi‖22 · ‖yj‖22 ·E[|Xi,j |`]2/`

`/2

≤

∑
i 6=j
‖xi‖22 · ‖yj‖22 · (3ε/4)2

`/2

≤ (3ε/4)` · (‖A‖2F · ‖B‖2F)`/2

= (3ε/4)`.

For ` = log(1/δ), Pr
[
‖ATSSB −ATB‖F > 3ε

/
2] < (2ε/3)−` ·E

[
‖ATSSB −ATB‖`F

]
≤ δ. �

Remark 18. Often when one constructs a JL distribution D over k× d matrices, it is shown that

∀x ∈ Sd−1 ∀ε > 1/
√
k PrS∼D

[∣∣‖Sx‖22 − 1
∣∣ > ε

]
< e−Θ(ε2k)

Any such distribution automatically satisfies the (ε, e−Θ(ε2k))-JL moment property for any ε > 1/
√
k

by converting the tail bound into a moment bound via integration by parts.

Now we arrive at the main point of this section. Several algorithms for approximate linear
regression and best rank-k approximation in [6] simply maintain SA as A is updated, where S
comes from the JL distribution with Ω(log(1/δ))-wise independent ±1/

√
k entries. In fact though,

their analyses of their algorithms only use the fact that this distribution satisfies the approximate
matrix product sketch guarantees of Theorem 17. Due to Theorem 17 though, we know that any
distribution satisfying the (ε, δ)-JL moment condition gives an approximate matrix product sketch.
Thus, random Bernoulli matrices may be replaced with our sparse JL distribution of Section 4.
We now state some of the algorithmic results given in [6] and describe how our scheme provides
improvements in the update time (the time to process new columns, rows, or turnstile updates).

As in [6], when stating our results we will ignore the space and time complexities of storing and
evaluating the hash functions in our JL distribution. We deal with this later in Remark 21.

5.1 Linear regression

In this problem we have a A ∈ Rd×n and b ∈ Rd. We would like to compute a vector x̃ such that
‖Ax̃− b‖F ≤ (1 + ε) ·minx∗ ‖Ax∗− b‖F with probability 1− δ. In [6], it is assumed that the entries
of A, b require O(log(nd)) bits of precision to store precisely. Both A, b receive turnstile updates.

Theorem 3.2 of [6] proves that such an x̃ can be computed with probability 1− δ from SA and
Sb, where S is drawn from a distribution that simultaneously satisfies both the (1/2, η−rδ) and

10

(
√
ε/r, δ)-JL moment properties for some fixed constant η > 1, and where rank(A) ≤ r ≤ n. Thus

due to Remark 13, we have the following.

Theorem 19. There is a one-pass streaming algorithm for linear regression in the turnstile model
where one maintains a sketch of size O(n2ε−1 log(1/δ) log(nd)). Processing each update requires
O(n+

√
n/ε · log(1/δ)) arithmetic operations and hash function evaluations.

Theorem 19 improves the update complexity of [6], which was O(nε−1 log(1/δ)).

5.2 Low rank approximation

In this problem, we have an A ∈ Rd×n of rank ρ with entries that require precision O(log(nd)) to

store. We would like to compute the best rank-r approximation Ar to A. We define ∆r
def
= ‖A−Ar‖F

as the error of Ar. We relax the problem by only requiring that we compute a matrix A′r such that
‖A−A′r‖F ≤ (1 + ε)∆r with probability 1− δ over the randomness of the algorithm.

Two-pass algorithm: Theorem 4.4 of [6] gives a 2-pass algorithm where in the first pass, one
maintains SA where S is drawn from a distribution that simultaneously satisfies both the (1/2, η−rδ)
and (

√
ε/r, δ)-JL moment properties. It is also assumed that ρ ≥ 2r + 1. The first pass is thus

sped up again as in Theorem 19.

One-pass algorithm for column/row-wise updates: Theorem 4.5 of [6] gives a one-pass
algorithm in the case that A is seen either one whole column or row at a time. The algorithm
maintains both SA and SAAT where S is drawn from a distribution that simultaneously satisfies
both the (1/2, η−rδ) and (

√
ε/r, δ)-JL moment properties. This implies the following.

Theorem 20. There is a one-pass streaming algorithm for approximate low rank approximation
with row/column-wise updates where one maintains a sketch of size O(rε−1(n+d) log(1/δ) log(nd)).
Processing each update requires O(r +

√
r/ε · log(1/δ)) amortized arithmetic operations and hash

function evaluations per entry of A.

Theorem 20 improves the amortized update complexity of [6], which was O(rε−1 log(1/δ)).

Three-pass algorithm for row-wise updates: Theorem 4.6 of [6] gives a three-pass algorithm
using less space in the case that A is seen one row at a time. Again, the first pass simply maintains
SA where S is drawn from a distribution that satisfies both the (1/2, η−rδ) and (

√
ε/r, δ)-JL

moment properties. This pass is sped up using our sparser JL distribution.

Remark 21. In the algorithms above, we counted the number of hash function evaluations that
must be performed. Standard constructions of t-wise independent hash functions over universes
with elements fitting in a machine word require O(t) time to evaluate [4]. In our case, this would
blow up our update time by factors such as n or r, which could be large. Instead, we use fast
multipoint evaluation of polynomials. The standard construction [4] of our desired hash functions
mapping some domain [z] onto itself for z a power of 2 takes a degree-(t − 1) polynomial p with
random coefficients in Fz. The hash function evaluation at some point y is then the evaluation
p(y) over Fz. Theorem 22 below states that p can be evaluated at t points in total time Õ(t). We
note that in the theorems above, we are always required to evaluate some t-wise independent hash

11

function on many more than t points per stream update. Thus, we can group these evaluation
points into groups of size t then perform fast multipoint evaluation for each group. We borrow this
idea from [16], which used it to give a fast algorithm for moment estimation in data streams.

Theorem 22 ([21, Ch. 10]). Let R be a ring, and let q ∈ R[x] be a degree-t polynomial. Then, given
distinct x1, . . . , xt ∈ R, all the values q(x1), . . . , q(xt) can be computed using O(t log2 t log log t)
operations over R.

Acknowledgments

We thank Venkat Chandar, Venkatesan Guruswami, Swastik Kopparty, and Madhu Sudan for
useful discussions about error-correcting codes. We thank David Woodruff for answering several
questions about [6].

References

[1] Dimitris Achlioptas. Database-friendly random projections: Johnson-Lindenstrauss with bi-
nary coins. J. Comput. Syst. Sci., 66(4):671–687, 2003.

[2] Rosa I. Arriaga and Santosh Vempala. An algorithmic theory of learning: Robust concepts
and random projection. Machine Learning, 63(2):161–182, 2006.

[3] Vladimir Braverman, Rafail Ostrovsky, and Yuval Rabani. Rademacher chaos, random Eule-
rian graphs and the sparse Johnson-Lindenstrauss transform. CoRR, abs/1011.2590, 2010.

[4] J. Lawrence Carter and Mark N. Wegman. Universal classes of hash functions. J. Comput.
Syst. Sci., 18(2):143–154, 1979.

[5] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data
streams. In Proceedings of the 29th International Colloquium on Automata, Languages and
Programming (ICALP), pages 693–703, 2002.

[6] Kenneth L. Clarkson and David P. Woodruff. Numerical linear algebra in the streaming model.
In Proceedings of the 41st ACM Symposium on Theory of Computing (STOC), pages 205–214,
2009.

[7] Anirban Dasgupta, Ravi Kumar, and Tamás Sarlós. A sparse Johnson-Lindenstrauss trans-
form. In Proceedings of the 42nd ACM Symposium on Theory of Computing (STOC), pages
341–350, 2010.

[8] Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of Johnson and
Lindenstrauss. Random Struct. Algorithms, 22(1):60–65, 2003.

[9] Ilias Diakonikolas, Daniel M. Kane, and Jelani Nelson. Bounded independence fools degree-2
threshold functions. In Proceedings of the 51st Annual IEEE Symposium on Foundations of
Computer Science (FOCS), to appear (see also CoRR abs/0911.3389), 2010.

[10] Peter Frankl and Hiroshi Maehara. The Johnson-Lindenstrauss lemma and the sphericity of
some graphs. J. Comb. Theory. Ser. B, 44(3):355–362, 1988.

12

[11] David Lee Hanson and Farroll Tim Wright. A bound on tail probabilities for quadratic forms
in independent random variables. Ann. Math. Statist., 42(3):1079–1083, 1971.

[12] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the
curse of dimensionality. In Proceedings of the 30th ACM Symposium on Theory of Computing
(STOC), pages 604–613, 1998.

[13] T. S. Jayram and David P. Woodruff. Optimal bounds for Johnson-Lindenstrauss transforms
and streaming problems with low error. In Proceedings of the 22nd Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), to appear, 2011.

[14] William B. Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert
space. Contemporary Mathematics, 26:189–206, 1984.

[15] Daniel M. Kane and Jelani Nelson. A derandomized sparse Johnson-Lindenstrauss transform.
CoRR, abs/1006.3585, 2010.

[16] Daniel M. Kane, Jelani Nelson, Ely Porat, and David P. Woodruff. Fast moment estimation
in data streams in optimal space. CoRR, abs/1007.4191, 2010.

[17] Jiŕı Matousek. On variants of the Johnson-Lindenstrauss lemma. Random Struct. Algorithms,
33(2):142–156, 2008.

[18] Rajeev Motwani and Prabakar Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

[19] Tamás Sarlós. Improved approximation algorithms for large matrices via random projections.
In Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 143–152, 2006.

[20] Mikkel Thorup and Yin Zhang. Tabulation based 4-universal hashing with applications to
second moment estimation. In Proceedings of the 15th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 615–624, 2004.

[21] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra. Cambridge Univer-
sity Press, 1999.

13

