Renewable Energy and Fuel from Waste

Thermochemical Pathways

Prof. Isam Janajreh
Prof. Ahmed Ghoniem

Reacting Gas Dynamics Lab, Department of Mechanical Engineering, MIT

Gasification Overview

What Is Gasification?
1. Gasification is a thermochemical conversion process in which any carbonaceous feedstock is converted into a combustible gas through partial oxidation; essentially into a mixture of CO and H₂.
2. Feedstock experience: Heating and drying, pyrolysis, devolatilization, and combustion
3. C₅H₁₀ + n/2 O₂ = n CO + m/2 H₂ is the overall reaction
4. Gasifier is a high capital cost device ($50,000,000-500,000,000) and is the main unit in the IGCC plant

Why Gasification?
- Ability to recover 72% - 85% of the chemical energy stored in the dirty feedstock into clean gas
- Feedstock flexibility: refinery residuals, coal, biomass, as well as:
 - Municipal Waste
 - Industrial Waste
 - Domestic Waste
 - Sawdust Sludge
 - Rubber
 - Contaminated Water

Product flexibility:
- Fuel, chemicals, and fertilizers
- Plausible environmental impact: Amenable for pollutant and gas clean up, CO₂ capture for EOR
- Added power station efficiency due to higher operating temperature

Current Technology & Objective

Gasification Technology:
- Three primary technologies are distributed: Sasol-Lurgi: 34%, GE 31% and Shell at 28%
- 1) fixed/moving bed gasifiers
- 2) fluidized/bubbling bed gasifiers
- 3) Entrained flow gasifiers

Current focus: Two-stage, upflow with multiple feed-inlets high conversion rate (>99%), high throughput, and high HV

Work in Progress

1) Characterizing the physical and chemical properties of feedstock using traditional proximate and ultimate analysis method: Examining the physics and chemistry of gasification as applied to a wide variety of feedstock, from refinery residue to industrial, agricultural and/or municipal waste, to biosolids.
2) Carrying out “systematic” zero-dimension analysis:
- Composition, Heating Value, and gasifier reactions:
 - Biomass =⇒ CH₄, CO, Δ H = 131MJ/kg
 - Cellulose =⇒ CH₄, CO, Δ H = 131MJ/kg
 - Peat =⇒ CH₄, CO, Δ H = 131MJ/kg
 - Coal =⇒ CH₄, CO, Δ H = 131MJ/kg
 - Tire waste =⇒ CH₄, CO

World gasification database (NETL 2007):
- Current gasification capacity has grown to 56,238MMth with a total of 144 plants operating 427 gasifiers.
- Located in 27 countries, Asia/Australia at 34% and Africa/Middle East at 27% of this capacity.
- Consumption rate: Coal 55%, petroleum 33%. Others 12% natural gas, pet coke, and biomass/wastes.
- Syngas usage: Chemicals 45%, Fisher-Tropsch 28%, power generation 19%, and gaseous fuel 8%.