Board 1

North Deals
None Vul

A AK 5
○A9865
$\diamond 2$
\& K Q 93

West	North Andrew	East	South Pete
	$1 \boldsymbol{0}$	Pass	$1 \boldsymbol{\sim}$
Pass	$1 \mathbf{N T}^{1}$	Pass	$2 \boldsymbol{\wedge}^{2}$
Pass	$4 \boldsymbol{\uparrow}$	All pass	

1. Exactly three spades, intended as forcing.
2. Four decent spades or any 5.

4 A by South
Made 6 - NS +480

The Tucker system addresses the Flannery problem ($5+\boldsymbol{\sim} \& 4+\odot$), the major nightmare $(6+\odot \& 3+\boldsymbol{\uparrow})$ and North's shape on this hand. It applies after a 10 opening bid:

1. The $1 \boldsymbol{A}$ response shows any four or more spades, but is seldom made with values to drive to game. Opener's 1 NT shows exactly 3 -card spade support. Responder only passes with exactly $4=1=4=4$ shape, minimum values, and bad spades. Responder has no artificial forcing bids; a minor shows a suit of $5+$ cards, a singleton or void in hearts, bad spades and a weak hand.
2. The $2 \boldsymbol{A}$ response shows $5+$ spades in a game-forcing hand; there are special continuations. Whether playing Tucker or not, I strongly recommend: with only four spades and game values, responder bids two of a minor; over that, opener bids any 4-card spade suit immediately, which does not show extra values.

North chose a heavy 10 opening bid (playing Precision, 1% is opened when holding an unbalanced hand with $16+$ HCP). Over the Tucker 1 NT rebid by North, South, holding mostly soft values, rebid only 2 A; an invitational $3 \boldsymbol{A}$ would have been acceptable. No problem, North had heard enough to bid the cold game.

The Precision $1 \boldsymbol{\&}$ opening gets to game without further gadgets: $1 \boldsymbol{\&}-1 \boldsymbol{A}[5+\boldsymbol{A}, 8+\mathrm{HCP}] ; 2 \boldsymbol{A} \ldots 4 \boldsymbol{A}$.
In standard bidding: $10-1 \boldsymbol{A} ; 2 \boldsymbol{\infty}$ - ? Not so easy. 2 NT makes some sense, but are these really invitational values? $2 \boldsymbol{A}$ could land in a $5-1$ fit, and $2 \diamond$ probably will. If $2 \diamond$ is an artificial game force, passing $2 \boldsymbol{*}$ looks quite reasonable. Much of the field failed to get to game on this hand. Maybe $10-1 \boldsymbol{A} ; 2 \boldsymbol{A}-$?

Here is a simple method that helps on such deals: require that a $1 \uparrow$ response provide $\mathbb{A} \mathrm{Q} 10 \mathrm{x} \times$ or better (or any five cards). With this in place, the auction becomes easy: 10-1 $\boldsymbol{A} ; \boldsymbol{\sim} \boldsymbol{A}$ [can play 4-3] - $4 \boldsymbol{A}$. My analysis shows this method provides about half the advantages of the Flannery $2 \diamond$ opening, without having to cope with it. Tucker provides about twice the advantages of Flannery, about half for each of $1 \boldsymbol{A}$ and $2 \boldsymbol{A}$ responses.

