Studies of Jet-Track Correlations in PbPb collisions with CMS

Hard Probes 2015

Dragos Velicanu, MIT

for the CMS Collaboration

Questions this talk will address

- How are charged particles distributed around jets?
- What happens to these distributions when we compare leading and subleading jets?
- How many particles are there around these jets as a function of p_T and centrality ?
- What are effects of the QGP medium created in PbPb collisions that doesn't appear in pp?

Compact Muon Solenoid

Jets and tracks

Tracks

Standard CMS HI track selection

- <u>|η|</u><2.4
- 1.0 > p_T > 2.0 GeV/c
- $2.0 > p_T > 3.0 \text{ GeV/c}$
- $3.0 > p_T > 4.0 \text{ GeV/c}$
- $4.0 > p_T > 8.0 \text{ GeV/c}$

Standard CMS HI jet selection

- Anti k_{T} jets with R = 0.3
- | η | < 1.6
- Jet $p_T > 120 \text{ GeV/c}$
- Fully efficient from a triggered dataset corresponding to 166 ub⁻¹

 $N_{trig} d\Delta \eta d\Delta \phi$

"Away-side" ($\Delta \phi \sim \pi$) correlations from particles around the other jet

"Near-side" ($\Delta \phi$, $\Delta \eta \sim 0$) correlations from particles around a jet

Long range nearside jet correlations (weak in this example)

"Away-side" ($\Delta \phi \sim \pi$) correlations from particles around the other jet

"Near-side" ($\Delta \phi$, $\Delta \eta \sim 0$) correlations from particles around a jet

Study the jet peak

Long range nearside jet correlations (weak in this example)

"Away-side" ($\Delta \phi \sim \pi$) back-to-back jet correlations

Subtract combinatorial and long range bkg

CMS Preliminary

Construct the $|\Delta \phi|$ projection from the correlation region $1.5 < |\Delta \eta| < 3.0$

Subtract combinatorial and long range bkg

CMS Preliminary PbPb 166 μb⁻¹ (2.76 TeV) p_{T,jet} >120 GeV/c Centrality 0-10% 1<p_{assoc} <2GeV/c — Sideband Background — Background Fit — Systematic Uncertainty 38

Subtract it from the original correlation function

Fit a constant + the first 2 Fourier cosine terms and a Gaussian for the away side

 $\Delta \phi$

$$B(\Delta\phi) = B_0 \left(1 + 2V_1 \cos(\Delta\phi) + 2V_2 \cos(2\Delta\phi) + A_{AS} \exp\left(-\left(\frac{|\Delta\phi| - \pi}{\alpha}\right)^{\beta}\right) \right)$$

Subtract combinatorial and long range bkg

Zoom in on the jet peak after subtracting

Project into Δη

Repeat for pp

Δη versus Centrality

Subtract pp from PbPb

Leading vs Subleading

 Look at leading and subleading in dijet events

- beam
- Standard CMS HI dijet selection
 - Reconstruct all jets with $|\eta| < 2.0$
 - Leading and subleading reside $|\eta| < 1.6$
 - $|dijet \Delta \phi| > 5\pi/6$
 - Leading jet $p_T > 120 \text{ GeV/c}$
 - Subleading jet $p_T > 50 \text{ GeV/c}$

Vary centrality for Leading Jet

Vary centrality for Leading & Subl Jet

Subtract pp from PbPb for Lead and Subl

6/30/2015

Yield in Leading vs Subleading Jets

Integrate to find excess yield

Yield in Leading vs Subleading Jets

Integrate to find excess yield

Yield in Leading vs Subleading Jets

Vary associate track p_{τ} :

- $1.0 > p_T > 2.0 \text{ GeV/c}$
- $2.0 > p_T > 3.0 \text{ GeV/c}$
- $3.0 > p_T > 4.0 \text{ GeV/c}$
- $4.0 > p_T > 8.0 \text{ GeV/c}$

Less excess particles at higher p_T

Width of the Leading vs Subleading Jet

Fit the distribution with the sum of two Gaussians centered at zero

$$f(\Delta \eta) = a_1 \exp\left[\frac{-\Delta \eta^2}{2\sigma_1^2}\right] + a_2 \exp\left[\frac{-\Delta \eta^2}{2\sigma_2^2}\right]$$

Width $\equiv |\Delta\eta|$ range that contains 67% of the total correlated yield

|Δη| Width Leading vs Subleading Jet

Summary

- Jet track correlations were measured for leading and subleading jets
- Inclusive jets are pp-like in peripheral collisions but have an excess yield in central collisions at low p_T
- Subleading jets have greater excess yield compared to pp than leading jets
- Leading and subleading jets in PbPb are broader for low track p_T compared to pp, effect goes away at high p_T, no strong centrality dependence

Backup

Vary Centrality | Δφ |

Vary Centrality Leading & Subleading | Δφ |

Leading |Δφ| width

Subleading |Δφ| width

Missing p_T comparison

- Missing-pT analysis: projects all tracks onto average dijet axis, takes subleading minus leading hemispheres
- Jet-track analysis: could do the same from correlation just weight by p_T^{assoc}cos(Δφ)

Cross-check shown perfect consistency between

the two studies

Missing-p_T phase space:

- Δη-Δφ area integrated into each
 Δr bin (cartoon for illustration)
- Last Δr bin shown is catch-all for Δr>1.8

ALICE Jet Broadening Statement

PLB 712 (2012) 176

