Ridge correlation structure in high multiplicity pp collisions with CMS

Dragos Velicanu

for the CMS Collaboration

Results from High Multiplicity pp

Trigger on High Multiplicity pp

JHEP 1009:091, 2010

Total integrated luminosity: 980nb⁻¹

Two HLT thresholds:

- Nonline > 70
- Nonline > 85

Nonline > 85 trigger un-prescaled for full 980nb⁻¹ data set

~350K top multiplicity events (N>110) out of 50 billion collisions

Angular Correlation Technique

Divide signal by background

Intermediate p_T: 1-3 GeV/c

High multiplicity pp (N>110)

Intermediate p_T: 1-3 GeV/c

Intermediate p_T: 1-3 GeV/c

Striking "ridge-like" structure extending over $\Delta\eta$ at $\Delta\phi \sim 0$

Intermediate p_T: 1-3 GeV/c

Striking "ridge-like" structure extending over $\Delta\eta$ at $\Delta\phi \sim 0$

(not observed before in hadron collisions or MC models)

High multiplicity MC

Minbias pp

(b) MinBias, 1.0GeV/c<p $_{_{\mathrm{T}}}$ <3.0GeV/c

Intermediate p_T: 1-3 GeV/c

Striking "ridge-like" structure extending over $\Delta\eta$ at $\Delta\varphi\sim0$

High multiplicity pp (N>110)

Intermediate p_T: 1-3 GeV/c

Striking "ridge-like" structure extending over $\Delta\eta$

arXiv:1105.2438

at $\Delta \phi \sim 0$

(Similarity to Heavy Ion)

High multiplicity pp (N>110)

CMS PbPb 2.76 TeV

Ridge in high multiplicity pp

Interpretations:

Multi-jet correlations

Jet-Jet color connections

Jet-proton remnant color connections

59 citations (link to SPIRES)

Jet

Phys. Lett. B697:21-25, 2011

New Results

- 2x as much data
 - $|\Delta\eta|$ dependence
 - p_T dependence
 - Multiplicity dependence

New Results

- 2x as much data
 - |Δη| dependence
 - p_T dependence
 - Multiplicity dependence

Ridge goes away at high p_T

$|\Delta\eta|$ dependence of the ridge

$\Delta \phi$ projections in various p_T ranges

$\Delta \phi$ projections in bins of p_T

p_T dependence of the ridge

Ridge in pp and PbPb

CMS pp 7 TeV, N ≥ 110

CMS PbPb 2.76 TeV, 0-5%

Dragos Velicanu (MIT)

Near-side yield vs p_T

Ridge first increases with p_T, and then drops at high p_T

Near-side yield vs p_T

Ridge first increases with p_T, and then drops at high p_T

Near-side yield vs Multiplicity

Jet region ($|\Delta \eta|$ <1)

Ridge region ($2<|\Delta\eta|<4$)

Ridge in pp turns on around N \sim 50-60 (4x MinBias) smoothly (<N> \sim 15 in MinBias pp events)

Near-side yield vs Multiplicity

Ridge region $(2<|\Delta\eta|<4)$

Ridge in pp turns on around N \sim 50-60 (4x MinBias) smoothly (<N> \sim 15 in MinBias pp events)

Summary

- Surprising new effect in pp
- pt, $|\Delta\eta|$, multiplicity dependence
- New testing ground for high density QCD physics
- Outlook
 - pt distribution, global properties, PID correlations...
 - Check more HI observables (jet quenching, dijet asymetry, low pt PID spectra...)

CMS pp 7 TeV, N ≥ 110

Backups

Understanding the Correlation Structure

p_⊤ inclusive

What was used in PHOBOS, ISR, UA5

$$R(\Delta \eta, \Delta \varphi) = \left\langle (N-1) \left(\frac{S_N(\Delta \eta, \Delta \varphi)}{B_N(\Delta \eta, \Delta \varphi)} - 1 \right) \right\rangle$$

Understanding the Correlation Structure

Comparing to various MC

(b) MinBias, 1.0GeV/c<p_<3.0GeV/c

PYTHIA8, v8.135

(c) N>110, p_T>0.1GeV/c

(d) N>110, 1.0GeV/c<p_<3.0GeV/c

More MC models

Cross Check: Event Pileup

Compare different run periods

Change in pileup fraction by factor 4-5 has almost no effect on ridge signal

Cross Check: Event Pileup

Correlate tracks from high multiplicity vertex with tracks from different collision (vertex) in same bunch crossing

No background or noise effects seen in cross-collision correlations

Cross Check: Analysis Code

Independent code Same definition of *R* Same input file (skim)

Independent code
Different definition of *R*Different input file (skim)

Ridge is seen with three independent analysis codes

Cross Check: Trigger

Min-bias trigger vs high mult trigger

Ridge is seen using min bias trigger + offline selection

No trigger bias seen from comparison of trigger paths

Cross Check: ECAL photons

Use ECAL "photon" signal Mostly single photons from π^0 's No efficiency, and p_T , ϕ smearing corrections

Track-photon correlations

Note: photons reconstructed using "particle flow" event reconstruction technique

Cross Check: ECAL photons

Use ECAL "photon" signal Mostly single photons from π^0 's No efficiency, and p_T , ϕ smearing corrections

Photon-photon correlations

Qualitative confirmation

Independent detector, independent reconstruction

Particle density in high Mult pp

 Similar particle densities in these pp collisions as were seen in CuCu at RHIC

CMS Experiment

Hadron Calorimeter (HCAL) EM Calorimeter (ECAL) Beam Scintillator Counters (BSC) Forward Calorimeter (HF) **Tracker** (Pixels and Strips) Large coverage ($|\Delta \eta| < 5.0$) 50 µm vertex resolution Muon system

Trigger on High Multiplicity pp

Level-1:

High-Level trigger:

number of tracks with $p_T>0.4$ GeV/c, $|\eta|<2$ from a **single** vertex