Studies of High Transverse Momentum Phenomena in Heavy Ion Collisions Using the PHOBOS Detector

by

Edward Wenger

B.A., Dartmouth College (2002)

Submitted to the Department of Physics in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2008

© Massachusetts Institute of Technology 2008. All rights reserved.
Studies of High Transverse Momentum Phenomena in Heavy Ion Collisions Using the PHOBOS Detector

by

Edward Wenger

Submitted to the Department of Physics on August 19th, 2008, in partial fulfillment of the requirements for the degree of Doctor of Philosophy

Abstract

The use of high-p_T particles as calibrated probes has proven to be an effective tool for understanding the properties of the system produced in relativistic heavy ion collisions. In this thesis, two such measurements are presented using the PHOBOS detector at the Relativistic Heavy Ion Collider (RHIC):

1. The transverse momentum spectra of charged particles produced near mid-rapidity in Cu+Cu collisions with center-of-mass energies of 62.4 and 200 GeV per nucleon pair

2. Two-particle correlations with a high transverse momentum trigger particle ($p_T > 2.5$ GeV/c) in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV over the broad longitudinal acceptance of the PHOBOS detector ($-4 < \Delta \eta < 2$)

In central Au+Au collisions at 200 GeV, the single-particle yields are suppressed at high-p_T by a factor of about five compared to p+p collisions scaled by the number of binary collisions. This is typically understood to be a consequence of energy loss by high-p_T partons in the dense QCD medium, as such a suppression is absent in d+Au collisions.

In Cu+Cu collisions, the nuclear modification factor, R_{AA}, has been measured relative to p+p data as a function of collision centrality. For the same number of participating nucleons (N_{part}), R_{AA} is essentially the same for the Cu+Cu and Au+Au systems over the measured range of p_T, in spite of the significantly different geometries. At high-p_T, the similarity between the two systems can be described by simple, geometric models of parton energy loss.

Two-particle angular correlations are a more powerful tool for examining how high-p_T jets lose energy and how the medium is modified by the deposited energy. In central Au+Au collisions, particle production correlated with a high-p_T trigger is strongly modified compared to p+p. Not only is the away-side yield much broader in $\Delta \phi$, the near-side peak of jet fragments now sits atop an unmistakable ‘ridge’ of correlated partners extending continuously and undiminished all the way to $\Delta \eta = 4$.

Thesis Supervisor: Gunther Roland
Title: Associate Professor of Physics
This work is dedicated to the memory of my grandfathers, Dennis and Donald.
Contents

1. **Introduction** 11
 1.1 Quarks 11
 1.2 Color 12
 1.3 Gluons 13
 1.4 Asymptotic Freedom and Quark Confinement 14
 1.5 The QCD Phase Diagram 16
 1.6 Heavy Ion Collisions 18
 1.6.1 Energy Density 18
 1.6.2 Azimuthal Anisotropy 19
 1.6.3 Transverse Momentum Distributions 20
 1.6.4 Two-Particle Correlations 21
 1.7 Goal of this Thesis 22

2. **The PHOBOS Experiment** 25
 2.1 Relativistic Heavy Ion Collider 25
 2.2 PHOBOS Detector 26
 2.2.1 Multiplicity and Vertex Detectors 27
 2.2.2 Spectrometer Detectors 29
 2.2.3 Calorimeters 32
 2.2.4 Trigger Detectors 35
 2.2.5 Data Acquisition 36

3. **Silicon Signal Processing** 39
 3.1 Silicon Sensor Design and Readout 39
 3.2 Pedestal, Noise and Gain Calibrations 41
 3.3 Dead and Hot Channels 43

4. **Event Characterization** 47
 4.1 Collision Trigger 47
 4.2 Event Selection 48
 4.3 Centrality Determination 49
 4.3.1 Calculating the Efficiency 49
 4.3.2 Making Cuts on Fractional Cross-section 50
 4.3.3 Estimating Centrality Variables 51
 4.4 Vertex Reconstruction 53
 4.4.1 Au+Au Vertex Finding 53
 4.4.2 Cu+Cu Vertex Finding 54
1 Introduction

Quantum Chromodynamics (QCD) is a theory that describes the interaction of quarks, the fundamental building blocks of hadronic matter (e.g. protons and neutrons), with gluons, the mediators of the strong force. An expected property of strongly interacting matter is that at sufficiently high temperatures, there exists a phase known as the Quark Gluon Plasma (QGP), in which quarks and gluons are no longer confined within hadrons, but rather are free to move over larger distances. Such extreme conditions may be accessed experimentally by relativistic collisions of heavy ions. By measuring the momentum spectra and the correlations between particles in heavy ion collisions, we hope to better understand the properties of the short-lived ‘fireball’ that is created.

1.1 Quarks

With the advent of high-energy particle accelerators and new detector technologies in the 1950's, many new resonances were discovered (e.g. Δ, Λ, Σ, K⁰). The realization that these could not all be elementary particles motivated various classification schemes. Murray Gell-Mann and Yuval Ne’eman independently suggested that the various hadrons could be grouped according to the ‘Eightfold Way’, a name Gell-Mann borrowed from Buddhism, to describe the arrangement of mesons and baryons into octets with similar properties (see Fig. 1.1).

It was proposed that the symmetries manifested in these arrangements of hadrons could be understood by the introduction of three ‘flavors’ – up, down, and strange – of fractionally-charged, spin-1/2 particles named ‘quarks’ by Gell-Mann. (Zweig originally referred to them as ‘aces’.) In the quark model, mesons are bound states of a quark with an anti-quark (e.g. π⁺ = u_d), while baryons are bound states of three quarks (e.g. Λ⁰ = u_d_s). The prediction of a baryon with spin=3/2 and strangeness=-3, the Ω⁻, and its subsequent discovery at Brookhaven’s Alternating Gradient Synchrotron (AGS) earned the quark model widespread acceptance.

By the late 1960’s, experiments using the Deep-Inelastic Scattering (DIS) of electrons off of protons began to probe the inner structure of the nucleon, much as Rutherford had used the scattering of α-particles from gold foil to discover the atomic nucleus. At large momentum transfers, the DIS results exhibited a feature known as ‘Bjorken scal-

1 At typical energy scales, the strong force is the most powerful of the four fundamental forces, the others in order of diminishing strength being the electromagnetic, weak and gravitational forces (see Appendix A). The strong force is powerful enough to bind protons together in the nucleus, overcoming their intense electromagnetic repulsion, via residual effects of pion exchange that are analogous to the induced-dipole Van der Waals' forces that attract electrically neutral molecules.
1 Introduction

(a) Meson Nonet
(b) Baryon Octet
(c) Baryon Decuplet

Figure 1.1: The arrangement of hadrons by strangeness (S) and charge (Q) according to the Eightfold Way for (a) the spin-0 mesons [9], (b) the spin-1/2 baryons [10], and (c) the spin-3/2 baryons [11].

ing’ [13], which implied that the electrons were scattering from point-like, spin-1/2 fermions. Later experiments confirmed that these ‘partons’ (as they were generically named) carried the fractional charges of the quarks (i.e. +2/3, -1/3). Tables of fundamental particle properties can be found in Appendix A.

1.2 Color

Quarks must satisfy the Pauli Exclusion principle, which forbids identical fermions (particles with half-integer spin) from occupying the same quantum state. An apparent problem in the quark model appears for the \(\Delta^{++} \). First, the three valence quarks all have the same flavor \(uuu \). Next, the experimentally measured spin of 3/2 requires that each spin-1/2 quark be in the same spin state \(\uparrow \uparrow \uparrow \). Finally, the positive parity of the \(\Delta^{++} \) means that the spatial wavefunction is also symmetric.

A hidden, three-valued property of quarks is required [14] for three otherwise identical quarks to coexist within a baryon. This property is named color by analogy to white light, whereby red, green, and blue quarks combine to form a ‘colorless’ baryon. Each color has a corresponding anti-color, so a meson might consist of a \(r\bar{r} \) pair.

The convenient introduction of color is supported experimentally by the measurement of cross-sections in high-energy \(e^+e^- \) collisions. For energies much larger than the \(q\bar{q} \) mass threshold and away from resonances, the cross-section for \(e^+e^- \rightarrow q\bar{q} \) is proportional to that for \(e^+e^- \rightarrow \mu^+\mu^- \). Accounting for the number of different quark flavors and the electric charge on each, there is still a factor of three between the predicted and measured values of the ratio

\[
\frac{\sigma(e^+e^- \rightarrow q\bar{q} \rightarrow \text{hadrons})}{\sigma(e^+e^- \rightarrow \mu^+\mu^-)}
\]

(1.1)

until the introduction of color [15]. This demonstrates that color is an intrinsic property of quarks, namely the production of an \(r\bar{r} \) pair is distinct from a \(g\bar{g} \) pair.
1.3 Gluons

Quantum Chromodynamics (QCD) is a relativistic field theory that describes the strong interactions of quarks and gluons. Field theories in particle physics are based on fundamental symmetries of nature. For QCD, this symmetry is in color. An arbitrary rotation of the three colors, for example swapping red and green, does not affect any observable physical quantity. The requirement of local gauge invariance, that is allowing the global symmetry to act independently at all points in space, was used first in Quantum Electrodynamics (QED), where it introduced into the theory a massless vector field that was identified as the photon. The fact that QCD has three colors rather than just a single charge introduces more complexity into the theory. When color charge is required to be locally invariant under gauge transformations, eight massless vector bosons called 'gluons' appear. Unlike the neutral photon, the gluons themselves carry color, the 'charge' of QCD. Each of the eight gluons carries both a color charge and an anticolor charge, which can be represented as

\[
\begin{align*}
 & r\bar{b}, r\bar{g}, b\bar{g}, b\bar{r}, g\bar{b}, g\bar{r}, \frac{r\bar{r} - b\bar{b}}{\sqrt{2}}, \frac{r\bar{r} + b\bar{b} - 2g\bar{g}}{\sqrt{6}}.
\end{align*}
\] (1.2)

As an example, the exchange of a \(g\bar{b} \) gluon between a quark and antiquark is shown in Fig. 1.2.

The best evidence for the existence of gluons comes from the study of three-jet events, first seen in \(e^+ e^- \) collisions at PETRA in 1979, where one particle from the produced \(q\bar{q} \) pair radiates a high-energy gluon \[17\]. Quantitative studies of DIS results, which only probe the charged constituents of the proton, had previously inferred the existence of gluons indirectly, since the total fraction of the proton momentum carried by the quarks is only about 50%.

\[2\]The eight gluon states arise from the three colors in exactly the same fashion as the meson octet arises from approximate SU(3) flavor symmetry. However, the colorless singlet gluon state, \(\frac{r\bar{r} + b\bar{b} + g\bar{g}}{\sqrt{3}} \), does not exist. With no net color, this gluon would be able to mediate the strong force over macroscopic distances between other colorless objects (e.g. electrons, protons), which clearly does not happen.
1 Introduction

![Diagram of gluon-gluon interactions](image)

Figure 1.3: Examples of the different classes of gluon-gluon interaction. (a) Interaction via quark exchange. (b) Interaction via gluon exchange. (c) Direct interaction.

1.4 Asymptotic Freedom and Quark Confinement

The modification of the effective electromagnetic coupling strength as a function of distance (or equivalently momentum transfer Q) is a well-known property of QED that can be understood by the effect of screening from pairs of virtual electrons and positrons. Consider the vacuum surrounding an electron where short-lived e^+e^- pairs are constantly being created and annihilated. The presence of the electron polarizes this cloud of virtual particles, so that the charge felt by a distant test particle is decreased. As the test particle is brought closer to the electron, it feels less of the polarized vacuum; thus the effective charge increases.

A similar effect is seen in QCD where virtual $q\bar{q}$ pairs tend to screen the color charge in much the same way. However, there is one very important difference in QCD: the gluons themselves carry color charge. Unlike the photon, which can only interact with charged particles and not other neutral photons, gluons are able to interact directly with each other as shown in Fig. 1.3(b) and 1.3(c).

The polarization of virtual gluons in the vacuum actually has the opposite effect of polarized $q\bar{q}$ pairs. It enhances the color field, a phenomenon known as ‘antiscreening’\(^3\). The effective coupling strength in the ‘one-loop’ approximation – valid for small α_s or alternatively large Q – is as follows \(^{19–21}\):

$$\alpha_s^{\text{eff}}(Q^2) \approx \frac{4\pi}{(11 - \frac{2}{3}n_f)\ln\left(Q^2/\Lambda^2\right)}, \quad (1.3)$$

where Q is the momentum transfer, n_f is the number of quark flavors, and $\Lambda \approx 200$ MeV is a dimensional parameter that defines the QCD scale.

The number of quark flavors is sufficiently few ($n_f = 6$) that the antiscreening behavior of the gluons wins out over the screening of the quarks\(^4\). For larger momentum

\(^3\)An intuitive way to qualitatively understand antiscreening is to consider the color magnetic properties of the gluon. As spin-1 particles, colored gluons act as permanent magnetic dipoles that align themselves to an applied field. Because of the relation $\epsilon \mu = 1$ (in units where $c = 1$) between the dielectric constant, ϵ, and the magnetic permeability, μ, paramagnetism ($\mu > 1$) implies antiscreening ($\epsilon < 1$).

\(^4\)At RHIC energies, only up, down, and strange quarks contribute significantly in thermal equilibrium.
1.4 Asymptotic Freedom and Quark Confinement

Figure 1.4: A summary of existing measurements of the strong coupling constant as a function of energy scale, taken from [22]. Open and closed symbols use NLO and NNLO calculations, respectively, to extract α_s from their analysis.

transfers, which correspond to shorter distances probed, the effective coupling strength approaches zero, see Fig. 1.4. This essential property of the strong force, referred to as ‘asymptotic freedom’ [20, 21], implies that for extremely high-energy collisions, the scattered quarks within the nucleon may be treated as free, non-interacting particles.

The flip-side of asymptotic freedom is confinement, meaning that for increasingly large separations between quarks, the force between them never goes to zero. Confinement is believed to be responsible for the continued failure of searches for individual, free quarks, as the energy required to separate them would be infinite. While the non-perturbative ($\alpha_s > 1$) nature of this regime makes analytical proof of confinement untenable, it is possible to formulate QCD on a discrete set of space-time points (known as the lattice [23]) to calculate the force in the strong-coupling limit [24].

When a quark and antiquark are pulled apart, for example in an accelerator environment by their own kinetic energy, the gluon fields between them stretch into narrow tubes (known as strings) until eventually the potential energy in the field is greater than the mass of a $q\bar{q}$ pair. When it is energetically favorable, new $q\bar{q}$ pairs are produced and all particles remain confined to colorless mesons and baryons. This hadronization

Charm is suppressed by a factor of $e^{-m_c/T}$, where m_c is the mass of the charm quark (see Appendix A) and T is the temperature.
process, referred to alternatively as fragmentation or string breaking, is responsible for the 'jets' of hadrons that show up in particle detectors instead of the originally scattered quarks.

1.5 The QCD Phase Diagram

The properties of the strong force give rise to a rich structure with distinct phases of QCD matter, shown in Fig. 1.5 as a function of temperature (T) and baryon chemical potential (μ_B)5. At low temperatures, partons (quarks and gluons) are confined within composite structures (protons and neutrons), which are collectively bound into nuclei. Under normal conditions, strongly interacting matter is in a mixed phase, with droplets of nuclear matter surrounded by regions of vacuum. At temperatures above the nuclear binding energy ($\approx 1 - 10$ MeV), or at values of μ_B below the phase transition, the nuclear matter evaporates into a hadron gas. Because of the similarity between the (residual) strong force between nucleons and the Van der Waals' attraction between molecules in a liquid, the transition is expected to be first-order at low temperatures6 [25].

Starting in the lower left corner of Fig. 1.5 and increasing μ_B at low temperature, one first crosses the liquid-gas transition into nuclear matter. Increasing μ_B further corresponds to more and more compressed nuclear matter, until at some point, one crosses over to quark matter. This quark matter is superconducting due to the formation of diquark 'Cooper pairs', analogous to the pairing of electrons into 'quasi-bosons' that is responsible for superconductivity in solid-state physics. The fact that diquarks are necessarily colored objects means that the resulting condensate gives mass to the gluons via the Anderson-Higgs mechanism [26, 27]. Thus, the system is referred to as a 'color superconductor'.

In fact, Fig. 1.5 is really a simplification of the rich phase structure at high density. Because quarks come in three colors and three light flavors (up, down and strange), the different possible pairings of quarks into Cooper pairs can lead to quite different behaviors. At very high densities ($\mu_B >> m_s$) where SU(3) flavor symmetry is restored and the interaction strength is weak due to asymptotic freedom, reliable calculations show that the favored pairings are invariant under the simultaneous transformation of color and flavor. This phase is referred to as Color-Flavor Locked (CFL) [28]. At lower densities where the strange quark mass must be taken into account ($m_s > m_{u,d} \neq 0$), the phase structure is less certain and a number of different phases may exist. See [29] for a review of the phase structure of quark matter.

The most promising chance for observing quark matter at such high densities is in

5Increasing baryon chemical potential (μ_B) increases the net baryon density. μ_B corresponds to the amount of energy that would be added with the addition of one baryon to a system held at constant volume and entropy. In nuclear matter, where the density is empirically shown to be nearly constant, the energy of adding one nucleon is just the nucleon mass minus the binding energy ($\approx 930 - 940$ MeV).

6First-order phase transitions are characterized by 'latent heat', an amount of energy absorbed or released in crossing the transition.
1.5 The QCD Phase Diagram

Figure 1.5: A simplified representation of the QCD phase diagram. The vertical axis is temperature (T) and the horizontal axis is baryon chemical potential (μ_B).

the cores of neutron stars that have collapsed under their own gravity. A review of theoretical developments and observational data related to compact stars can be found in [30].

Returning to the origin at $\mu = T = 0$ in Fig. 1.5 and heating the vacuum without preference for quarks over antiquarks (i.e. moving vertically along the temperature axis), a gas of mostly pions is first formed. The low temperature system is characterized by a number of order parameters (e.g. chiral symmetry breaking, confinement). With rising temperature, entropy eventually wins out, and one crosses into a state, known as the Quark Gluon Plasma (QGP) [31, 32], where this ordering melts away. The existence of a transition from a hadronic to a partonic phase is supported by lattice calculations performed at finite temperature and $\mu_B = 0$. The results point to a rapid cross-over, at a critical temperature of $T_c \approx 170$ MeV, for thermodynamic variables related to the degrees of freedom of the system [33, 34]. Heating the vacuum to sufficiently high temperatures should result in a relativistic gas of weakly interacting quarks and gluons, as a consequence of asymptotic freedom. It is believed that the entire universe existed in a weakly interacting QGP state around the first few microseconds after the Big Bang. While the QGP at very high temperatures is weakly interacting, this is not the case near the cross-over, where results from heavy ion collisions suggest the interactions are quite strong [35–38].

At non-zero μ_B, the current consensus is that the phase boundary changes from a cross-over to a first-order transition at a critical end-point, in the vicinity of which large fluctuations in thermodynamic variables should be observable. Lattice calculations at finite densities are complicated by the ‘fermion sign problem’ [39], and the precise loca-
1 Introduction

The location of the critical point is very dependent on the value of the quark mass \(m_q \). There is hope from initial studies of Pb+Pb collisions \(^{41}\) in the range \(\sqrt{s_{_{NN}}} = 5 - 15 \) GeV that the location of the critical point can be discovered experimentally. At present, a low-energy scan in 2010 is planned at RHIC to further investigate this topic. Future critical end-point searches are also planned for the CBM experiment at FAIR and the NA49 experiment at SPS.

1.6 Heavy Ion Collisions

The only known technique for exploring the properties of QCD matter at high temperatures in the laboratory is the collision of heavy nuclei. A sizeable fraction of the kinetic energy of the two relativistic \((E \gg m_0)\) nuclei is released into a small region from the near simultaneous collisions of many nucleons.

Fixed target experiments at Brookhaven’s AGS and CERN’s Super Proton Synchrotron (SPS) have recorded collisions of light ions up to Au+Au and Pb+Pb at center-of-mass energies per nucleon \((\sqrt{s_{_{NN}}}) \) from 2 to 17 GeV. The highest energies achieved to date have been at RHIC, where billions of d+Au, Cu+Cu, and Au+Au collisions have been recorded at energies up to \(\sqrt{s_{_{NN}}} = 200 \) GeV. Pb+Pb collisions at CERN’s Large Hadron Collider (LHC) are expected to begin in 2009 at energies up to \(\sqrt{s_{_{NN}}} = 5.5 \) TeV.

A vast collection of experimental observables has been measured, relating detectable signals to the properties of the matter produced in heavy ion collisions. While no unambiguous signal of color deconfinement has been seen, the preponderance of evidence suggests the system produced in RHIC collisions has an extremely high energy density that is inappropriate to describe in terms of hadronic degrees of freedom. Additionally, the constituents of this system appear to interact very strongly within the produced medium.

For a thorough overview of recent experimental and theoretical developments in heavy ion collisions, see the proceedings of the ‘Quark Matter’ conference series \(^{42} - ^{44}\) and the ‘White Papers’ from the four RHIC experiments \(^{35} - ^{38}\).

1.6.1 Energy Density

The energy density of the system produced in Au+Au collisions can be estimated using the approach pioneered by Bjorken \(^{15}\) and previously formulated in \(^{16}\). Energy density is just the amount of energy contained in some volume. That volume for a head-on collision can be taken as a cylinder with transverse area equal to that of the gold nucleus, \(A \). The length of the cylinder will grow with time as the system expands longitudinally due to the large initial momenta of the nuclei. As such, the choice of length is actually a choice of the time at which the system can be considered to reach local thermodynamic equilibrium. At one extreme, one could choose the longitudinal extent immediately after the two Lorentz-contracted nuclei collide (of order 0.1 fm). However, there is no reason to think that the system has approached any sort of equilibrium at
1.6 Heavy Ion Collisions

that instant \[35\]. Instead, the measured magnitude of elliptic flow (see Sect. 1.6.2) can place an upper limit on the equilibration time of \(\tau_0 \lesssim 1 \rightarrow 2 \text{ fm}/c\) \[46\].

Now that the volume of the initial system is known, it is necessary to estimate the energy contained within it. The relevant energy is not that carried initially by the colliding nuclei, but rather the energy of the produced particles. It is natural, therefore, to choose the hadrons produced roughly transverse to the collision for the estimate. The energy density can be estimated as

\[
\epsilon_0 \approx \frac{\langle E_T \rangle dN/dy \Delta y}{2 \tau_0 \cdot \phi} \approx \frac{\sqrt{(0.500 \text{ GeV})^2 + m_{\pi}^2 (700)(3/2)}}{(1 \rightarrow 2 \text{ fm}) \pi (6.5 \text{ fm})^2} \approx 4 \rightarrow 2 \text{ GeV/fm}^3
\]

(1.4)

where \(\langle E_T \rangle\) is the average transverse energy of hadrons and \(dN/dy \Delta y\) is the number of hadrons produced in the mid-rapidity\(^7\) interval \(-1 < \eta < 1\). It is assumed that the majority of hadrons are pions\[^{47}\] with an average transverse momentum \(\langle p_T \rangle = 500 \text{ MeV}/c\)\[^{35}\], and with positive, negative, and neutral pions equally represented. To estimate the total number of mid-rapidity particles using the measured charged hadron multiplicity\[^{48}\], one must account for the undetected neutral pions, hence \((700)(3/2)\). The radius of the gold nucleus is taken to be 6.5 fm.

Even this conservative\(^8\) lower-bound on the initial energy density exceeds the value predicted by lattice calculations at the cross-over \((\sim 1 \text{ GeV/fm}^3)\) \[^{34}\]. Furthermore, it is an order of magnitude greater than the energy density of the gold nucleus \((\sim 160 \text{ MeV/fm}^3)\) and at least five times greater than that of the proton \((\sim 450 \text{ MeV/fm}^3\), using \(r_p = 0.8 \text{ fm}\)). Therefore, this system is likely better described in terms of quark, antiquark and gluon degrees of freedom, as opposed to hadronic degrees of freedom. After all, how is one to understand five protons occupying the same space?

1.6.2 Azimuthal Anisotropy

For off-center collisions of gold nuclei, the overlapping region that is the source of particle production has a pronounced initial state anisotropy, see Fig. 1.6(a). If the particles did not interact after their initial production, the azimuthal distribution of outgoing particles would leave no trace of this asymmetrical source. The magnitude of the final state azimuthal anisotropy \(v_2 = \langle \cos 2\phi \rangle\) or ‘elliptic flow’ is shown in Fig. 1.6(b) as a function of collision centrality. The presence of flow is evidence that the constituents of the system are interacting in the earliest moments after the collision, since any isotropic expansion of the source acts to diminish the spatial asymmetry. Based on this reasoning, an upper-limit for the equilibration time was derived, which was used in the previous section to estimate the initial energy density of the system.

The unexpectedly large elliptic flow implies that the produced system is interacting at early times in a manner more closely resembling the conditions of a liquid than a gas.

\[^{7}\text{Rapidity is a measure of longitudinal velocity. Particles at mid-rapidity are produced roughly transverse to the collision axis. See Appendix B for a detailed discussion of kinematic variables.}\]

\[^{8}\text{Any work done by the expanding system is neglected in the summation over final-state hadrons.}\]
The ordering of v_2 according to the mass of particle species (i.e. π, K, p, Λ) is compelling evidence that the early system undergoes a collective, pressure-driven expansion [52]. The agreement between ideal hydrodynamic models and measured flow results appears to be optimized for very early thermalization and an expansion characterized by a partonic equation of state [41]. The early equilibration time and the large initial energy density estimated in the previous section are suggestive of collective motion prior to hadronization. This interpretation is further supported by the intriguing observation that $v_2(p_T)$ appears to scale with constituent quark number ($n_q = 2$ for mesons and 3 for baryons) over the p_T region where hydrodynamics is applicable [53].

1.6.3 Transverse Momentum Distributions

Further evidence that the system in Au+Au collisions at RHIC energies is extremely dense and strongly interacting, comes from the study of the transverse momentum (p_T) distributions of charged hadrons. In the collision of heavy ions, hard scattering events (i.e. large momentum transfers between partons) take place just as in p+p collisions, but the number of such scatterings scales with the number of binary nucleon-nucleon collisions (N_{coll}). This assertion is supported by the fact that the direct production of photons, which do not interact via the strong force, scales with N_{coll} in Au+Au compared to p+p [56], as seen in Fig. 1.7(a).

The ratio of the charged hadron yield in Au+Au compared to the expectation of binary scaling – the nuclear modification factor R_{AA} – is found to be suppressed by a factor of about 5 at high-p_T [57–59]. This suppression is understood to be a consequence of final-state energy loss – ‘jet quenching’ – given the absence of the effect from d+Au collisions, where no hot, dense medium is created [55, 60, 61] (see Fig. 1.7(b)). In heavy ion collisions, a dense partonic medium is produced, causing high-p_T partons to lose...
1.6 Heavy Ion Collisions

Figure 1.7: (a) PHENIX measurements of the nuclear modification factor \(R_{AA} \) for \(\eta \) and \(\pi^0 \) compared to direct photons, taken from [54]. (b) PHOBOS measurements of the nuclear modification in 0-20% central d+Au and 0-6% central Au+Au collisions [55].

energy in the form of induced gluon radiation, which eventually fragments into hadrons with much lower transverse momentum.

To better understand the energy loss mechanism and to constrain the properties of the medium, it is desirable to vary the path length traversed by produced jets. This can be achieved by studying the dependence of \(R_{AA} \) on collision centrality, on the angle relative to the reaction plane [62], and on the size of the colliding nuclei [63]. Various models have attempted to describe the centrality dependence of \(R_{AA} \) in Au+Au collisions, taking into account the initial geometry of the system. Because the geometry differs between Au+Au and the smaller Cu+Cu system, the centrality dependence of the Cu+Cu spectra presented in Ch. 7 provide an important test of our understanding of medium-induced energy loss.

1.6.4 Two-Particle Correlations

Dihadron correlations are a powerful tool for probing the properties of the medium produced in heavy ion collisions, particularly how it modifies the signature of back-to-back jets. Figure 1.8(a) [36] shows the azimuthal distribution of hadrons with \(p_T > 2 \text{ GeV} \) correlated to a trigger particle with \(p_T > 4 \text{ GeV} \). Pairs taken from the same jet show up as a correlation at \(\Delta \phi \approx 0 \), while pairs taken from back-to-back jets result in a correlation at \(\Delta \phi \approx \pi \). While the near-side correlation structure is similar for the p+p, d+Au, and Au+Au systems, the away-side correlation is strikingly absent in central Au+Au events [65]. The survival of the near-side correlation is a consequence of the requirement of a high-\(p_T \) trigger particle, which introduces a bias towards detecting those scatterings that occur near the surface. The disappearance of the away-side is likely due to the interaction of hard-scattered partons traversing a nearly opaque medium.

The energy and momentum of the away-side jet, however, must be present in the fi-
1 Introduction

Figure 1.8: (a) Azimuthal correlations between pairs of high-p_T hadrons in p+p, d+Au, and Au+Au collisions [36]. (b) Raw correlation function in $\Delta \eta$ and $\Delta \phi$ for $3 < p_T^{\text{trig}} < 4$ GeV/c and $p_T^{\text{assoc}} > 2$ GeV/c [64]. Notice the extended ridge structure on the near side ($\Delta \phi \sim 0$).

1.7 Goal of this Thesis

This thesis presents results on charged hadron transverse momentum distributions in Cu+Cu and Au+Au collisions, as well as long-range, p_T-triggered, two-particle correlations in Au+Au collisions. The measurement of high-p_T yields in the new Cu+Cu collision system will be used to clarify the jet quenching mechanism, in particular the dependence on the size and shape of the produced medium. The measurement of triggered correlations provides important data to constrain possible mechanisms for the distribution of jet energy deposited in the medium. In particular, the much broader pseudorapidity acceptance of the new PHOBOS measurement will be used to test proposed theoretical explanations of the ridge correlation.
1.7 Goal of this Thesis

The analyses presented herein primarily used the multiplicity array, which recorded the angular positions of particles over a broad acceptance in a single layer of silicon, and the multi-layer Spectrometer arms, which measured the momentum of a small fraction of produced particles by tracking their trajectories through a magnetic field. The layout of the PHOBOS detector apparatus is described in Ch. [2]; the procedures for processing the raw silicon signals are detailed in Ch. [3].

One of the main challenges in the smaller Cu+Cu system was the low multiplicity of produced particles. Special care was required to estimate the efficiency of the collision trigger for the accurate determination of event centrality. The procedures used to characterize collision events are described in Ch. [4]. This includes the essential introduction of a new vertexing algorithm that was both efficient at low multiplicities and accurate enough for track finding.

Using a single layer of silicon to measure associated particles in the correlations analysis presented another challenge. While secondary tracks in the multi-layer Spectrometer could be rejected based on their deviation from the primary event vertex, secondary hits in the single-layer Octagon were only partially rejected using cuts on deposited energy. The remaining contribution suppressed the observed correlation, requiring a correction. Additionally, in central Au+Au events, the high hit density in the mid-rapidity Octagon necessitated a procedure to weight hits by the local occupancy. The techniques for dealing with secondaries and occupancy are detailed in Ch. [5], along with the reconstruction algorithms for hits and tracks from the energy deposited in detector pads.
2 The PHOBOS Experiment

The data presented in this thesis were collected by PHOBOS, one of four experiments at the Relativistic Heavy Ion Collider (RHIC). First collisions were provided by RHIC on June 12th, 2000; a few weeks later, PHOBOS submitted the first results on charged particle multiplicities at RHIC energies. In the following years, collisions of \(p+p \), \(d+Au \), Cu+Cu, and Au+Au were recorded over a broad range of center-of-mass energies. As from 2006, the experiment stopped taking new data. The collaboration is now focusing its efforts entirely on data analysis.

2.1 Relativistic Heavy Ion Collider

The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Lab (BNL) was designed to collide heavy ions at center-of-mass energies up to 200 GeV per nucleon. Four experiments (STAR, PHENIX, PHOBOS, and BRAHMS) were built to study these collisions. The production and acceleration of beams of gold ions involves much of the existing infrastructure at BNL, as shown in Fig. 2.1.

![AGS-RHIC Complex](image)

Figure 2.1: A diagram of the AGS-RHIC complex taken from [71]. \(Au^{+77} \) ions exit the AGS ring at U. Stripped of their final two electrons at W, \(Au^{+79} \) ions are injected into the two RHIC rings at X and Y respectively. See text for a description of the Tandem Van de Graaff. Energetic protons for the study of \(p+p \) or \(p+A \) collisions are supplied by the Linear Accelerator (Linac).
2 The PHOBOS Experiment

The process begins with the production of negatively charged $Au^-\,$ ions from a pulsed sputter source at the Tandem Van de Graaff accelerator, which consists of two static potentials arranged in sequence. The negative ions are accelerated by the first potential (+15 MV) through a thin foil which strips them of some of their electrons. The now-positively charged ions then enter the second potential (-15 MV) where they are accelerated up to 1 MeV per nucleon. Stripped again upon exiting the Tandem Van de Graaff, ions with charge +32 are magnetically selected and transferred to the Booster synchrotron, where they are accelerated up to 95 MeV per nucleon. Another electron stripping is performed after exiting the Booster. The $Au^{+77}\,$ ions are then injected into the Alternating Gradient Synchrotron (AGS) and accelerated to the RHIC injection energy of 10.8 GeV per nucleon. Leaving the AGS, ions are stripped of their final two electrons and transferred to RHIC for a final acceleration.

To carry the counter-rotating beams of heavy ions, RHIC consists of two quasi-circular rings, 3.8 km in circumference. Each ring is made up of six arc sections and six straight sections. Liquid helium-cooled, superconducting dipole magnets with a strength of 3.458 T bend the beam around the arc sections, while quadrupole magnets keep the beam tightly focused. In the middle of the straight sections lie the six interaction points. On either side of each interaction point, the two beams are brought together into a single beam-pipe by a pair of D0 magnets. Two DX magnets then steer the beams such that they cross at the interaction point.

Particles travel around the beam in bunches of $\sim 10^9\,$ ions. Two RF systems are used at RHIC: one at 28 MHz to accelerate the bunches captured from AGS and another at 197 MHz to ‘rebucket’ the ions into a tighter longitudinal profile ($\sigma_L \approx 25\,$ cm). As the bucket size is much smaller than the distance between bunches, many buckets are empty. For this reason, a ‘crossing clock’ is used to let experiments know when two filled buckets should be colliding.

2.2 PHOBOS Detector

The PHOBOS detector consisted of two main components: an array of multiplicity detectors covering almost the entire solid angle of produced particles, and a two-arm magnetic Spectrometer to study the detailed properties of a small fraction of these particles ($\sim 2\%$). Both components utilized silicon pad technology to detect charged particles. By minimizing the amount of material between the beam and the first silicon layer, PHOBOS was able to detect particles with very low momentum [72]. Although the design was optimized to search for signals of new physics at very low-p_T [73], the PHOBOS detector has proven quite capable of studying high-p_T phenomena as well. Additional subdetectors were added to aid in particle identification, event triggering and centrality determination. A diagram of the complete detector setup is shown in Fig. 2.2.

1 Buckets refer to the positions along the beam at which particles can ‘ride’ the Radio Frequency wave.
2.2 PHOBOS Detector

2.2.1 Multiplicity and Vertex Detectors

The PHOBOS multiplicity array used single layers of silicon to measure the number and angular distribution of charged particles. Those particles produced at $|\eta| < 3.2$ were detected in the Octagon, a single-layer of silicon pad sensors that surrounded the beam-pipe in an octagonal barrel. Particles emitted at more forward angles were detected by six Ring counters, mounted perpendicular to the beam-pipe, extending the pseudorapidity coverage to $|\eta| < 5.4$. Above and below the interaction region, two layers of finely segmented silicon provided precision vertex resolution.

To maximize the precision of the very forward measurements, where particles traverse more beam-pipe material due to their small angle, the three sections of steel beam-pipe nearest the interaction region were replaced with lighter beryllium. The only noticeable gaps in the multiplicity array were from an attempt to reduce the material off of which low-momentum particles might scatter before detection in the Spectrometer.

Octagon Detector

The Octagon detector, shown in Fig. 2.3, was 1.1 m long with a face-to-face diameter of 90 mm. Eight rows of thirteen silicon pad sensors were supported on a lightweight aluminum frame, through which cold water was run to cool the readout electronics. Sensors were removed from four faces in the regions immediately between the nominal...
vertex position and the Vertex and Spectrometer detectors. The thickness of the Octagon sensors, like all the silicon in PHOBOS, was specified to within 300 and 340 µm. Each 84 mm x 36 mm sensor was divided into four rows of 30 pads each. Despite the relatively large size of the pads (2.708 mm x 8.710 mm), the Octagon sensors achieved a signal-to-noise ratio comfortably above the design goal of 12-to-1.

Ring Detectors

The Ring detectors were used to detect charged particles at very forward angles (large pseudorapidity). The six Ring detectors were supported by carbon fiber mounts along with their readout electronics at distances of ±1.13 m, ±2.35 m, and ±5.05 m from the nominal interaction point. Each detector consisted of eight trapezoidal sensors arranged in a ring extending 12 cm radially outward from an inner diameter of 10 cm (see Fig. 2.3). Each trapezoidal sensor had 64 pads arranged in eight rows of eight radial columns. Unlike the rectangular Octagon pads, those in the Rings were designed such that each would have approximately the same pseudorapidity coverage (∆η ≈ 0.1). As such, the pad sizes ranged from 3.8 mm x 5.1 mm at small radii to 10.2 mm x 10.2 mm at the largest radii. The average signal-to-noise for Ring sensors was comparable to the Octagon.

Vertex Detector

The Vertex detector was designed to measure the location of the primary collision vertex within the range |νz| < 10 cm to an accuracy of 0.2 mm in high multiplicity Au+Au events. The accuracy of the vertex position is important to parts of many PHOBOS analyses, for instance as a seed for the tracking algorithm in the Spectrometer. The detector consisted of two layers of finely segmented silicon pad sensors mounted on the Octagon frame, both above and below the interaction point. The collision position could then be reconstructed from two-point tracks that pointed back to a common vertex. While this
2.2 PHOBOS Detector

was the preferred method in Au+Au events, different vertexing algorithms were used in lower multiplicity environments such as Cu+Cu and d+Au collisions (see Sect. 4.4).

The layers closer to the collision \((y = \pm 5.6 \text{ cm})\), known as the ‘Inner Vertex’, had four sensors laid out in a line along the beam direction. The pads on each Inner Vertex sensor were arranged in four columns of 128 pads. In the azimuthal direction, the 12 mm long pads were similar in dimension to the Octagon. However, much greater precision was required along the beam direction, so the pads were only 0.473 mm wide.

The Outer Vertex layers \((y = \pm 11.8 \text{ cm})\) each had two adjacent sets of four sensors aligned as before. On each sensor, the pads \((24 \text{ mm} \times 0.473 \text{ mm})\) were laid out in two columns of 128 pads. Because of their smaller pad size, the Vertex sensors achieved a higher signal-to-noise than the Octagon sensors.

In addition to providing vertex information, these detectors were used to determine the charged particle multiplicities within a solid angle corresponding approximately to the removed Octagon sensors. For collisions at the nominal vertex position, the Inner Vertex covered \(|\eta| < 1.54\) and the Outer Vertex covered \(|\eta| < 0.92\). Both layers had an azimuthal extent of \(\Delta \phi = 42.7^\circ\). The upper 4 x 2 array of Outer Vertex sensors can be seen in Fig. 2.3.

2.2.2 Spectrometer Detectors

For a small fraction of the particles produced in a collision, the momentum could be reconstructed using the PHOBOS two-arm Spectrometer. The multi-layered silicon pad detector tracked particles bending through a 2 T magnetic field. At lower momentum, the velocity-dependent energy loss of tracks was used to determine particle species (e.g. \(\pi, K, p\)). The Time-of-Flight (TOF) walls, together with the Time-Zero Counter (T0) detectors, extended this capability to higher momenta.

PHOBOS Magnet

The PHOBOS magnet was a conventional, room-temperature dipole magnet with vertical fields of opposite polarity on either side of the beam-pipe. The roughly 2 T magnetic field was generated by a 3600 amp current in four sets of copper coils, two above the Spectrometer and two below. The gap between the poles measured 158 mm, and the total bending power was \(\approx 1.5 \text{ Tm}\). A photograph of the PHOBOS magnet before installation is shown in Fig. 2.4(a). Including the steel flux return yokes, the massive structure weighed about 45 tons.

The pole tips were shaped such that the first few layers of the Spectrometer resided in a region of very low magnetic field, see Fig. 2.4(b). Straight tracks from this region were used as seeds for the more complicated task of reconstructing the curved paths through the high-field region. The field was approximately constant and vertical in the high-field region, with a maximum value \(B_y = 2.18 \text{ T}\) and \(B_x\) and \(B_z\) components of less than 0.05 T.

\(^2\)This is approximately \(3/4\) the weight of an Abrams tank without the depleted Uranium armor upgrade.
It was possible to switch the polarity of the magnetic field by reversing the direction of the current through the coils. The magnet polarity was typically reversed after each beam dump, to ensure similar statistics in both polarities. This symmetry of the detector was used to minimize certain systematic uncertainties, particularly in the analysis of particle ratios \cite{74,75}.

Spectrometer Detector

The PHOBOS Spectrometer consisted of two arms on either side of the beam-pipe. Each arm consisted of 137 sensors arranged into sixteen layers and mounted on either side of eight water-cooled aluminum frames. As shown in Fig. 2.5(a) \cite{35}, the frames were attached to a carrying plate made of carbon-epoxy. This material was chosen because its non-conducting nature minimized vibrations from magnetic eddy currents. The carrying plate was mounted on rails so that the frames could be assembled outside the magnet and slid into place. The entire region between the magnetic poles was occupied by a light- and air-tight enclosure, which used circulating dry nitrogen to maintain a relative humidity < 10%.

The Spectrometer contained five different sensor types, the details of which are listed in Table 2.1. The spatial positioning of the Spectrometer layers and their respective sensor types are shown in Fig. 2.5(b) \cite{16}. The horizontal width of the silicon pads was kept small in all layers to maintain good resolution in the bending direction of tracks. The increased vertical dimension of the pads at large distances from the interaction point minimized the cost of the sensors at the expense of some decreased azimuthal resolution.

In total, the Spectrometer consisted of 135,168 separate channels. The algorithms that were used to process this volume of information into the trajectories of charged
2.2 PHOBOS Detector

Figure 2.5: (a) The PHOBOS silicon detectors in the proximity of the interaction point. The top yoke of the PHOBOS magnet has been removed [35]. (b) Sensor layout in one arm of the PHOBOS Spectrometer. Layers are numbered and the Type 3 sensors indicated with thick lines [16].

<table>
<thead>
<tr>
<th>Sensor Type</th>
<th>Number of Pads (horiz. x vert.)</th>
<th>Pad Size (mm x mm)</th>
<th>Sensor Placement (layer numbers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>70 x 22</td>
<td>1.000 x 1.0</td>
<td>1-4</td>
</tr>
<tr>
<td>2</td>
<td>100 x 5</td>
<td>0.427 x 6.0</td>
<td>5-8</td>
</tr>
<tr>
<td>3</td>
<td>64 x 8</td>
<td>0.667 x 7.5</td>
<td>9-16 (inner)</td>
</tr>
<tr>
<td>4</td>
<td>64 x 4</td>
<td>0.667 x 15.0</td>
<td>9-12</td>
</tr>
<tr>
<td>5</td>
<td>64 x 4</td>
<td>0.667 x 19.0</td>
<td>13-16</td>
</tr>
</tbody>
</table>

Table 2.1: Properties of the various Spectrometer sensor types. Type 3 sensors were only used in the region nearest the beam, see Fig. 2.5(b).

Particles are discussed in Sect. 5.2.

Time-of-Flight Wall

The Time-of-Flight (TOF) wall was installed to extend the PHOBOS Particle Identification (PID) capabilities to high transverse momentum. The wall consisted of two sections of 120 scintillators – wall 'B', aligned 45° to the beam at a distance of 5.4 m, and wall 'C', aligned parallel to the beam at a distance of 3.9 m [76]. Together the two sections covered a pseudorapidity range of 0 < η < 1.24.

The Bicron BC404 plastic scintillators were chosen for their good timing resolution (1.8 ns), moderate attenuation (1.6 m), and maximum emission wavelength (408 nm), which is close to the typical peak response wavelength (420 nm) of a fast Photomultiplier Tube (PMT). The scintillators were 20 cm in length with an 8 mm x 8 mm cross-sectional area.

Hamamatsu R5900 [PMTs] were connected to groupings of four scintillators at each end.
The PHOBOS Experiment

Figure 2.6: Schematic drawing of one TOF wall [35].

(see Fig. 2.6). The PMTs had a segmented 2 x 2 anode, but the four channels shared the same photocathode leading to some cross-talk between adjacent channels (< 10%). The anode signal from each PMT was split in two: one part was sent to an Analog-to-Digital Converter (ADC) after a 400 ns cable delay for a pulse-height reading, while the other part was sent to a leading-edge discriminator near the PMT. The discriminator signal was then sent to a Time-to-Digital Converter (TDC) for timing information with 25 ps/channel sensitivity. The simultaneous measurement of pulse height and timing allowed for slewing corrections, which improved the overall timing resolution of the TOF to better than 100 ps.

Since each scintillator was read out at both the top and bottom, vertical position information was available from the difference in timing signals and pulse heights. This information aided in the extrapolation of Spectrometer tracks to the TOF wall. The position resolution achieved in studies of cosmic rays and radioactive sources was 10 mm based on timing and 37 mm based on the ratio of pulse heights.

2.2.3 Calorimeters

In order to classify events based on the impact parameter of the colliding nuclei, detectors were designed to detect ‘spectators’, i.e. particles that did not directly participate in the collision. The energy of neutron spectators was measured with the Zero-Degree Calorimeter (ZDC) detectors placed directly downstream of the collisions. Adjacent to the ZDCs, in the region where protons were swept out of the beam-pipe, forward Proton Calorimeter (PCAL) detectors were installed to tag collisions with proton spectators [16].
2.2 PHOBOS Detector

Figure 2.7: Plan view (bottom) and “beam’s eye” view (top) of the ZDC location and the paths taken by gold ions, protons, and neutrons [77].

Not shown in Fig. 2.2, the Spectrometer Calorimeter (SpecCAL) was installed in 2004 using a similar design as the PCALs. Because its goal was to provide calorimetric information for reconstructed high-p_T tracks, the SpecCAL was located beyond the positive Spectrometer arm.

Zero-Degree Calorimeters

High-energy collisions of nuclei are known to cause neutron emission by ‘evaporation’ [77]. At the RHIC beam energy of 100 GeV per nucleon, these fragments diverge no more than 2 mrad from the beam direction. The region immediately behind the DX magnet is especially well-suited for the measurement of free neutrons, since all charged particles are swept away by the magnet. The design of the ZDC modules was restricted mostly by the limited space in the "zero-degree" region. As shown in the lower panel of Fig. 2.7 [77], the width of the calorimeter could not exceed 10 cm (∼ 1 interaction length (Λ_I) in tungsten). The calorimeters were designed to minimize energy loss from the transverse leakage of the shower. They were not segmented in the transverse direction, so no information on the transverse position of neutrons was available.

The ZDCs were hadron shower, sampling calorimeters that consisted of three identi-
Each module was constructed from single-layer ribbons of Poly-methylmethacrylate (PMMA) optical fibers (0.5 mm wide) sandwiched between 27 tungsten alloy plates (5 mm wide). The length of one module corresponded to two nuclear absorption lengths. The PMMA fibers sampled the Čerenkov radiation emitted by shower secondaries. The optical fibers were placed at a 45° inclination to coincide with the approximate Čerenkov angle for near-luminous particles in PMMA. The fibers from one module were collected and attached to a single PMT. The detailed design is illustrated in Fig. 2.8 [77].

Pairs of identical ZDC detectors were positioned roughly at ±18 m at each of the four RHIC experiments for use in triggering, event characterization, and luminosity monitoring for RHIC beam operators.
2.2 PHOBOS Detector

A number of different detectors were used by PHOBOS to trigger on collision events with desirable properties. The primary trigger detectors used in nucleus-nucleus collisions were the two Paddle counters and the ZDCs. The T0s were used to trigger on collision vertex in addition to providing a start-time for the TOF walls. Before the d+Au run, the Spectrometer Trigger (SpecTrig) was commissioned to increase the rate of events with a high-p_T track by selecting co-linear combinations of SpecTrig hits, TOF hits, and the real-time T0 vertex position. There were also Čerenkov detectors, two sets of 16 Lucite radiators arranged around the beam-pipe at ±5.5 m. However, they were no longer used after the installation of the superior T0s.

Paddle Counters

The Paddle counters were used as the primary event trigger in the Au+Au and Cu+Cu physics runs. The total energy deposited in the Paddles was also used to determine event centrality during these runs. The Paddle counters were two arrays of 16 wedge-shaped scintillators located at ±3.21 m from the nominal interaction point. They covered the pseudorapidity region $3 < |\eta| < 4.5$, with an active area of 99%. As a minimum bias trigger, plastic scintillators have a number of natural advantages. Their large dynamic range (from one Minimum Ionizing Particle (MIP) up to 50 per collision) allowed good energy resolution from the most peripheral to the most central collisions; good timing resolution meant they could be used to quickly select collisions from a desired vertex range; and high tolerance for radiation was essential given their proximity...
to the beam. A diagram of a Paddle counter is shown in Fig. 2.9(a).

Each scintillator was 18.6 cm long and 0.95 cm thick, growing in width from 1.9 cm to 9.5 cm from the inner to outer edge. While the scintillators sat perpendicular to the beam, the PMTs were aligned parallel. This necessitated a two-component light-guide, joined by an aluminized 45° mirror.

The full Paddle counters achieved a time resolution of about 1 ns, sufficient to distinguish between collision and background events (see Sect. 4.1). The Paddles had an efficiency of 100% in central and semi-peripheral Au+Au events, which made them effective in triggering without bias.

Time-Zero Counters

There were two Time-Zero Counters (T0s) positioned at \(z = \pm 5.3 \) m, each consisting of ten Bicron BC800 Čerenkov radiators arranged in a ring with diameter 151 mm. However, the positions of the T0s were not fixed. During the d+Au run, for example, the T0 on the lower multiplicity deuteron side was moved to 2.6 m from the interaction point. The Čerenkov radiators were 25 mm thick and 50 mm in diameter. They were coupled to fast Hamamatsu R2083 PMTs of the same diameter.

Because of their fast response time, the T0s provided a precise start-time measurement for the TOF, as well as real-time vertex information for use in triggering. The T0s had an intrinsic time resolution of 110 ps, allowing a much more precise determination of the event vertex than the Paddles. However, their smaller geometrical acceptance resulted in some loss in efficiency for very low multiplicity events. A diagram of one of the T0s is shown in Fig. 2.9(b).

2.2.5 Data Acquisition

The digitized signals from the trigger detectors were used to quickly decide whether to accept an event. A description of trigger algorithms can be found in Sect. 4.1. For events that passed the trigger, the full state of the PHOBOS detector was read-out and sent to the DAQ for processing. The various parts of the PHOBOS DAQ system are shown in Fig. 2.10.

The DAQ received data from over 135,000 silicon channels and 2,000 scintillator channels. The digitized silicon signals from the Front-End Controllers (FECs) (see Sect. 3.1) were transmitted via optical fibers to a 24-node processing farm, connected to a RACEway switching network and residing in a single VME crate. The main purpose of the farm was to check for consistency and compress the silicon data. Because corrections for Common-Mode Noise (CMN) and cross-talk between silicon channels were done offline after processing, the compression used a lossless Huffman algorithm. Leveraging the fact that most channels in the low-occupancy Spectrometer and Vertex detectors were empty in any given event, the algorithm achieved a compression factor of four-to-one.

The signals from the scintillators were digitized in one FASTBUS crate (Paddles, TOF, T0s, ZDCs) and one VME crate (PCAL, SpecCAL, SpecTrig). These signals were combined with
the processed silicon data by the Event Builder into 1 GB files referred to as ‘sequences’ (roughly 10,000 events). The Event Builder periodically distributed recent events to online monitoring computers for on-the-spot reconstruction.

A TK200 data recorder from the Conduant Corporation acted as a buffer between the output of the processor farm and a Gigabit ethernet transfer to High Performance Storage System (HPSS) tape. The TK200 had a 3.2 TB capacity corresponding to 22 hours of storage at maximum input. After the most recent upgrade in 2004, the DAO system reached a trigger rate of 575 Hz, a processing speed of 200 MB/s, and a data-sinking rate to HPSS of 50 MB/s [80].

Figure 2.10: Diagram of the PHOBOS Data Acquisition (DAQ) system from [80].
3 Silicon Signal Processing

After the electronic signals had been read-out from the PHOBOS silicon detectors, they still needed to be processed before they could be used to determine the positions and deposited energies of detected particles. This processing included the subtraction of pedestals and Common-Mode Noise (CMN), the calibration of gains, and the determination of dead channels.

![Cross-section of a silicon sensor used in PHOBOS](image)

Figure 3.1: Cross-section of a silicon sensor used in PHOBOS [83].

3.1 Silicon Sensor Design and Readout

Semiconducting materials, such as silicon, are characterized by a narrow energy gap between the valence electron band and the conduction band (of order 1 eV). Silicon can be ‘doped’ by the addition of impurities with different numbers of valence electrons. If the impurity has more valence electrons than silicon (e.g. arsenic), the resulting semiconductor is called \textit{n-type}, due to the excess of negative charge carriers. If the impurity instead has fewer valence electrons (e.g. boron), it is a donor of ‘holes’, vacancies in the valence band that can move through the semiconductor under the influence of an external field. Due to the excess of positively charged holes, this is called a \textit{p-type} semiconductor.

At the interface between two such types of semiconductor (known as a \textit{p-n junction}), excess electrons drift across the boundary and recombine with holes\footnote{Similarly holes drift into the n-type region to recombine with electrons, albeit with lower mobility.}, leading to a re-
3 Silicon Signal Processing

Figure 3.2: Photographs of four types of silicon sensor module.

gion that is free of charge carriers – the ‘depletion zone’. Applying a reverse bias voltage to the silicon allows the charge carriers to drift further across the interface, which increases the size of the depletion zone. For the 300 µm thick silicon sensors used in PHOBOS, the whole volume was depleted with an applied voltage of approximately 70 V.

The passage of a charged particle through the silicon excites electrons into the conduction band, leaving behind a hole in the valence band. Because the energy gap is small compared to the typical energy deposited by an incident particle, many electron-hole pairs are created, resulting in a very good energy resolution. Under the influence of the applied voltage, and because the region is free of other charge carriers with which to recombine, the produced electrons and holes drift to opposite ends of the sensor.

Figure 3.1 shows a cross-section of the sensor design used in PHOBOS. The silicon sensors were biased via polysilicon resistors (red), required to have at least 1 MΩ resistance. The p^+ implants were capacitively coupled to the aluminum pickup pads (green) via an 0.2 µm thick layer of silicon Oxide-Nitrous-Oxide (ONO_x) dielectric material (yellow). The induced current from each pad was read-out by its own metal line (blue) that led to the front-end electronics at the edge of the sensor. An advantage of the double metal-layer design was that the full surface of the detector could also be used for the routing of signals. The network of signal lines was separated from the aluminum pickups by a 1.2 µm thick ONO_x layer.

The read-out of the silicon channels was handled by commercially available chips.
3.2 Pedestal, Noise and Gain Calibrations

Besides the real signal of a particle hitting a pad, the digitized value in each detector channel, called the ADC signal, had three additional contributions that needed to be corrected for:

1. The constant offset in the ADC signal, called the 'pedestal', caused by a non-zero 'leakage current'.

2. Electronic and thermal noise, which caused the offset ADC value to fluctuate randomly about its average.

3. Random event-by-event shifts in the offset for all channels on a single chip, called Common-Mode Noise (CMN).

from the IDEAS company (http://www.ideas.no/), which integrated the collected signals from the silicon pads. Depending on the sensor pixelization, as many as sixteen, 64- or 128-channel VA-HDR-1 chips served a single module [84]. The detector modules consisted of one to four silicon sensors, and their associated read-out chips, mounted onto hybrids. Photographs of silicon sensor modules from four different PHOBOS sub-detectors are shown in Fig. 3.2.

Front-End Controllers (FECs) resided in crates a few meters from the detector modules, which they controlled, powered, and read-out via flex cable. The pre-amplified signals from the read-out chips were digitized by 12-bit ADCs in the FECs. The digitized signals were sent via a G-link interface to the Data Multiplexing Unit (DMU) in the Data Concentrator, where they were collated and transmitted over two optical fibers to the DAQ (see Sect. 2.2.5). A summary of the read-out chain can be seen in Fig. 3.3 [85]. For further details of the PHOBOS detector read-out, see [84, 85].
Figure 3.4: Pedestal-subtracted ADC signal distribution from a typical Ring sensor over many events. The width of the pedestal peak at zero corresponds to the noise. The peak at 40 ADC units corresponds to the 80 keV deposited by Minimum Ionizing Particles (MIPs).

For any given low-multiplicity event, most individual pads were not hit, due to low occupancy. Inspecting the signal in a given channel over many such events, the most common ADC value would indicate the location of the ‘pedestal’. While the locations of the pedestals did change over time, they were relatively stable over an individual running of the detector. For this reason, at the beginning of each running, the algorithm described below was performed in each channel to find the pedestals.

First, the average signal from the first 200 events was calculated and called the ‘pre-pedestal’. Then, in a window around the pre-pedestal location, the signals from the next 300 events were plotted and the peak location determined. If the peak-finding failed, more events were used until it was found. To determine the noise, the signals from the next 600 events were fitted with a Gaussian around the most probable value determined in the previous step. The extracted noise value corresponds to the width of the Gaussian at zero in Fig. 3.4.

In addition to the pedestal and noise contributions, all the channels on a given chip could experience random shifts in voltage. A CMN shift could be caused by a dip in the supplied voltage to a whole chip, in response to large current consumption in pads with large signals [84]. To correct for CMN, the pedestal-subtracted signals were collected for groups of channels event-by-event. Any non-zero offset in the single-event pedestal-subtracted signal distribution was attributed to CMN. By subtracting this component off of the raw ADC signal event-by-event, an improvement of about 20% was achieved in the noise level (see Fig. 3.5[16]).

Finally, it was necessary to relate the ADC value in a channel to the actual deposited energy (e.g. in keV). To this end, the silicon sensors were equipped with a gain calibration system that was used in dedicated calibration runs. A sequence of known Digital-

\[\text{Note that the statistics that went into this plot are much greater than were used in the pedestal and noise determinations.}\]
3.3 Dead and Hot Channels

Improperly functioning silicon channels needed to be identified and excluded from any physics analysis. The decision to declare a channel ‘dead’ was based on three numbers: the noise, the number of hits, and the average energy per hit.

Noisy channels were excluded by imposing a cut at 10 keV on the maximum allowed noise. In the Rings, this value was later increased to 15 keV for the 2005 physics run.

For this study, a hit was counted when the energy exceeded four times the pedestal width (i.e. the noise). The number of hits above this threshold, and their associated analog energy, were summed over many events until each channel had been hit many times. Channels that had many fewer hits than the average were considered dead. Also,

3 For these purposes, the term ‘dead’ encompasses actually dead channels as well as hot, noisy, and otherwise fishy channels.
Figure 3.6: The distribution of dead channels in the Octagon detector for the 2004 PHOBOS physics run.

those with many more hits were rejected, since such channels might have large non-
Gaussian tails in the noise. For channels with much more energy per hit or much less
than average, something was wrong with the gains, so the channel was considered dead.

In the multiplicity detectors, the positions of the cuts on these two variables were de-
termined for each sub-detector (e.g. second positive Ring). In the Spectrometer, how-
ever, the hit densities varied too much among the different layers to use the same cuts
for the whole detector. Instead, the cuts were determined separately for each module.
The percentage of dead channels in the multiplicity detectors and in each layer of the
Spectrometer can be found in Table 3.1. For illustration, a map of the dead channels
in the Octagon can be seen in Fig. 3.6. Whole rows of dead channels are likely a conse-
quence of noisy readout chips.
3.3 Dead and Hot Channels

<table>
<thead>
<tr>
<th>Subdetector</th>
<th>Percent Dead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Octagon</td>
<td>8.43</td>
</tr>
<tr>
<td>Top Vertex</td>
<td>5.08</td>
</tr>
<tr>
<td>Bottom Vertex</td>
<td>6.05</td>
</tr>
<tr>
<td>Negative Rings</td>
<td>4.49</td>
</tr>
<tr>
<td>Positive Rings</td>
<td>6.70</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spectrometer</th>
<th>Percent Dead</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer</td>
<td>Negative Arm</td>
</tr>
<tr>
<td>1</td>
<td>2.53</td>
</tr>
<tr>
<td>2</td>
<td>1.27</td>
</tr>
<tr>
<td>3</td>
<td>1.23</td>
</tr>
<tr>
<td>4</td>
<td>1.53</td>
</tr>
<tr>
<td>5</td>
<td>2.00</td>
</tr>
<tr>
<td>6</td>
<td>0.65</td>
</tr>
<tr>
<td>7</td>
<td>0.20</td>
</tr>
<tr>
<td>8</td>
<td>0.33</td>
</tr>
<tr>
<td>9</td>
<td>0.33</td>
</tr>
<tr>
<td>10</td>
<td>3.94</td>
</tr>
<tr>
<td>11</td>
<td>1.49</td>
</tr>
<tr>
<td>12</td>
<td>3.39</td>
</tr>
<tr>
<td>13</td>
<td>5.11</td>
</tr>
<tr>
<td>14</td>
<td>2.31</td>
</tr>
<tr>
<td>15</td>
<td>2.08</td>
</tr>
<tr>
<td>16</td>
<td>4.38</td>
</tr>
</tbody>
</table>

Table 3.1: Percentage of dead channels in (a) the multiplicity detectors and (b) each layer of the PHOBOS Spectrometer for both the positive and negative arms.
4 Event Characterization

Collision triggers used the time and energy information in the fast detectors to determine if a particular event was useful and should be recorded. Further selection on the utility of recorded events was performed offline. Once the signals in the various detectors had been read out and processed, the properties of collision events could be determined, in particular the collision geometry and vertex position.

4.1 Collision Trigger

Triggering, the determination of whether a collision has occurred and whether its signal should be recorded, was one of the most important aspects of running the PHOBOS experiment. In principle, one could have just used the crossing-clock provided by RHIC to alert when the bunches in the beam should be colliding. However, this would have resulted in most of the data coming from undesirable beam-gas events, collisions between ions in the beam and gas in the beam-pipe. To determine when real nucleus-nucleus collisions had occurred, several types of triggers were employed, including Minimum Bias (MinBias) triggers and Vertex triggers. Additionally, during the d+Au run, triggering with the SpecTrig was employed to enhance high-p_T tracks. A detailed discussion of this trigger configuration can be found in [76].

MinBias triggers were designed to capture a large fraction of the total cross-section with minimal losses in efficiency in peripheral events. In lower multiplicity collision systems (e.g. p+p), the trigger condition was at least one hit slat in each of the positive and negative Paddles. For higher multiplicity systems (e.g. Au+Au), more than two hit slats were required in each Paddle.

Vertex triggers were employed to confine the recorded events to those lying within the useable region of detector. The time signals from the two T_0s were sent to a Time-to-Analog Converter (TAC), which calculated their time difference. An adjustable window was used to select only events with a T_0 time difference corresponding to the desired vertex range.

During the Au+Au and Cu+Cu runs in 2004 and 2005, a combination of high luminosity and lost beam particles grazing the beam pipe resulted in a cloud of desorbed electrons forming in the beam [86]. The prevalence of double Au$^+ + e^-$ events that appeared to come from the desired vertex range swamped the existing trigger. This phenomenon

\footnote{For the 2004 run, the vertex window was extended somewhat beyond the usual analysis range to $-40 < v_z < 20$ cm. It was thought that the very negative vertex positions might be useful to certain analyses (e.g. reconstruction of the ϕ meson via the two kaon decay channel).}
4 Event Characterization

Figure 4.1: The distribution of Paddle Time Difference (\(\text{PdlTDiff}\)) shows a peak near zero, corresponding to collisions, as well as two peaks from beam-gas events at \(\pm21\) ns [87].

varied in magnitude from run to run, so the decision was made to use a trigger that incorporated the ZDC information when there were high backgrounds. Requiring energy deposited in both ZDCs ensured that a heavy ion from each beam had participated in the collision. Nonetheless, the high backgrounds meant that a larger fraction of events had to be discarded later in event selection due to pile-up (more than one collision in the detector at the same time).

4.2 Event Selection

The offline selection of collision events for analysis relied largely on rejecting beam-gas events with cuts on the \(\text{PdlTDiff}\) and the ZDC timing. As seen in Fig. 4.1 [87], beam-gas events from the region outside the two Paddles left a characteristic time difference of \(\pm21\) ns, corresponding to the time it took a relativistic particle to travel the 6.4 m between the two Paddles. A hard cut on \(\text{PdlTDiff}\) was placed at \(\pm4\) ns to select collision events. Because the signals in the ZDCs came from spectator neutrons liberated in the collision of a nucleus, the energy and timing signals looked quite different for beam-gas and collision events. Requiring a valid ZDC time excluded beam-gas events from between the Paddles that were not rejected by the \(\text{PdlTDiff}\) cuts. Finally, recognizing that very central collisions, with few spectators, left little signal in the ZDCs, events were allowed to fail the ZDC timing cut if there were large signals in both Paddles. The offline event selection criteria were contained in a single flag, called Is Collision (IsCol), for use
4.3 Centrality Determination

Heavy-ion collision events come in all varieties; sometimes the nuclei collide head-on, while other times the collisions are more glancing. To study the underlying physics behind any measurement, it is essential that one can classify events based on the initial impact parameter of the two nuclei.

For all the different collision systems and energies measured by PHOBOS, the centrality classification procedure followed the same three basic steps. First, the ‘trigger efficiency’ (the fraction of the total cross-section to which the trigger is sensitive) was estimated by comparing measured distributions in data and Monte Carlo (MC). Next, using the known efficiency and a multiplicity variable with a monotonic dependence on centrality, the data were divided into bins of fractional cross-section. Finally, using MC simulations, the bins in fractional cross-section were related to the relevant variables of the collision geometry (e.g. impact parameter, average numbers of participants and collisions). These procedures and the various cross-checks on their validity are discussed in [87].

4.3.1 Calculating the Efficiency

To estimate the missing cross-section, the number of hit Paddle slats (between 0 and 32) was compared between data and HIJING as seen in Fig. 4.2. There is a relatively flat region between 15 and 22 hit Paddles, over which the different distributions were normalized. The final efficiency was then calculated as the ratio of events seen in data by the sum of data events with sixteen or more hit Paddles and MC events with fifteen or fewer hit Paddles.

\[
\text{Data}(0,32) \over \text{MC}(0,15) + \text{Data}(16,32)
\]

The data were only corrected in the inefficient region. This ensured that any discrepancy in the most central collisions, that might be sensitive to the particular parameters of the HIJING/MC, would not be included. The final efficiencies for the 200 GeV Au+Au data were 97% (n>0) and 88% (n>2). At 62.4 GeV, the same quantities were 91% and 81%.

The situation was slightly less certain for Cu+Cu collisions where the flat region in the hit Paddle distribution was neither as broad nor as flat. A ‘shape matching’ method was also tried in which the distributions in a given centrality variable were normalized such that the shapes matched between data and MC at high multiplicity. The efficiency was then just the ratio of the two integrals. This technique had previously been used in the low energy Au+Au run as well as the d+Au run. In the end, the Cu+Cu efficiencies...
4 Event Characterization

Figure 4.2: The distribution of the number of hit Paddles for HIJING (black line) and Au+Au data for the n > 0 (red points) and n > 2 (blue points) MinBias trigger requirements.

were taken as the average of many different measurements. The final values for the n > 2 sample were 84 ± 5 and 75 ± 5 for 200 and 62.4 GeV, respectively.

4.3.2 Making Cuts on Fractional Cross-section

Once the efficiencies had been determined, it was possible to define cuts that divided data events into bins of fractional cross-section. The multiplicity variable on which the cuts were made was only required to have a monotonic dependence on centrality. As such, many different variables were used over the PHOBOS lifetime depending on the collision system. These included the truncated mean of the energy in the Paddles (Paddle Mean (PdlMean)), the sum of the energy in the ZDCs (ZDCSum), the total energy in the symmetric regions of the Octagon (EOct), and the energy in all six Rings (ERing).

Figure 4.3(a) shows the clear monotonic relationship between PdlMean from a MC simulation and the number of participating nucleons (N_{part}) from a Glauber model. Using the previously calculated efficiency, cuts were made on the PdlMean distribution corresponding to bins of cross-section. For example, the most central bin shown in Fig. 4.3(b) corresponds to the 3% most central collisions.

For the analysis of the Cu+Cu spectra in Ch. 6, cuts made on the EOct variable were used to determine centrality. It was considered that a bias might be introduced by measuring the event centrality and the spectra in the same region of pseudorapidity. How-
4.3 Centrality Determination

Figure 4.3: (a) The relationship from a MC simulation between truncated mean signal in the Paddles and number of participating nucleons. (b) The positions of the fractional cross-section cuts on the PdlMean distribution. (c) Distribution of N_{part} in MC for the same bins shown in (b).

The final step in the centrality procedure was to relate the multiplicity signal in the data to the number of participating nucleons in the collision. As was already seen in Fig. 4.2, the shapes of the Paddle signal distributions were well-matched between data and HIJING. Because the full cross-section was present in the MC, it could simply be divided into bins; the data were first scaled by the efficiency before binning. The centrality information was accessible for every MC event, so the N_{part} distributions could be calculated for each cross-section bin (see Fig. 4.3(c)).

The average value of N_{coll} in a given cross-section bin was not directly taken from the HIJING. Rather, the relationship between N_{part} and N_{coll} was estimated using a Glauber model of nucleus-nucleus collisions (see Fig. 4.4(c)). In this model, each nucleus con-
4 Event Characterization

Figure 4.4: Illustration of collision event geometry. (a) View along the beam of two nuclei collide with impact parameter \(b \). The shaded region represents the participating nucleons \(N_{\text{part}} \). (b) Side view. A single nucleon (small circle) undergoes multiple collisions, determined by the thickness of the other nucleus (gray box). (c) \(N_{\text{coll}} \) and \(N_{\text{part}} \) from Glauber Model

sisted of nucleons randomly arranged according to a ‘Woods-Saxon’ probability distribution

\[
\rho(r) = \frac{\rho_0}{1 + e^{\frac{r-R}{d}}} \tag{4.2}
\]

where \(\rho(r) \) is the normalized nuclear density, \(R = 6.38 \text{ fm} \) is the nuclear radius, and \(d = 0.535 \text{ fm} \) is the surface thickness. The nucleons were assumed to travel in straight lines, with a chance of interaction given by the total inelastic p+p cross-section \((42 \pm 1 \text{ mb} \text{ at } 200 \text{ GeV} \text{ and } 36 \pm 1 \text{ mb} \text{ at } 62.4 \text{ GeV})\). As shown in Fig. 4.4(b), each nucleon was allowed to undergo any number of collisions without deflection.

For Cu+Cu and Au+Au collisions at \(\sqrt{s_{\text{NN}}} = 62.4 \text{ and } 200 \text{ GeV} \), tables containing the estimated \(N_{\text{part}} \) and \(N_{\text{coll}} \) values for each centrality bin, and the respective PdlMean or
Determination of the collision vertex was a critical first step for the interpretation of the signals in the detector. For instance, it was used as a starting point for the reconstruction of track candidates (see Sect. 5.2). Numerous different algorithms were used to find the event vertex, utilizing the various sub-detectors. Different sub-detectors had their own advantages when it came to vertex reconstruction. Using the time difference between the two Paddles, for example, provided a rather poor resolution of 15 cm, but it had a large vertex range and high efficiencies even down to very low multiplicity events.

4.4.1 Au+Au Vertex Finding

In Au+Au events, the vertex was determined by a combination of different algorithms. The variously reconstructed vertices were checked for consistency and the most accurate vertex position determined in all three spatial coordinates. To decide how to weight the different vertices based on their accuracy, reconstructed vertex positions were compared to the true position in MC events. A detailed description of the vertex-finding procedure can be found in [88]. For the analyses presented in this thesis, the z-vertex range was restricted to within -15 to 10 cm. In this range, the composite vertex position, known as RMSSelVertex, was selected from a combination of the three algorithms described below, taking into account their known resolutions in each dimension.

Using the Vertex Detector: $Z\text{Vertex}$

As expected from its name, the Vertex detector provided the most accurate determination of the collision vertex in the y and z coordinates. The algorithm began by clustering pads with deposited energy above a minimum threshold as described in Sect. 5.1.1. Then, straight lines joining combinations of hits in the Inner and Outer layers were projected back onto the $y = 0$ plane where the z positions were computed. The peak in the z distribution of these line segments corresponded to the vertex position. The quality of the reconstruction could be estimated by comparing the results of this algorithm performed separately for the upper and lower pairs of Vertex layers.

Projecting the lines from hit pairs instead to the $x = 0$ plane gave an estimate of the y-vertex position, albeit with somewhat worse resolution. The x position could also be determined, though due to the much larger pad sizes in this dimension (see Sect. 2.2.1), it was considerably less precise as shown in Table 4.1. To accurately determine the x-vertex position, information from the Spectrometer was required. Two different algorithms were developed, using straight track segments in the first few silicon layers. While using the Spectrometer allowed the determination of the vertex in three dimensions, these algorithms suffered particularly for low multiplicities due to the very small phase-space coverage.
4 Event Characterization

<table>
<thead>
<tr>
<th>Vertex Algorithm</th>
<th>X-resolution (µm)</th>
<th>Y-resolution (µm)</th>
<th>Z-resolution (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SpecVertex SpecPN</td>
<td>219 ± 3</td>
<td>297 ± 3</td>
<td>271 ± 4</td>
</tr>
<tr>
<td>SpecMainVertex</td>
<td>585 ± 7</td>
<td>385 ± 5</td>
<td>593 ± 10</td>
</tr>
<tr>
<td>ZVertex</td>
<td>2424 ± 32</td>
<td>163 ± 1</td>
<td>85 ± 1</td>
</tr>
<tr>
<td>RMSSelVertex</td>
<td>238 ± 4</td>
<td>182 ± 2</td>
<td>81 ± 1</td>
</tr>
</tbody>
</table>

Table 4.1: The vertex resolution for the different reconstruction algorithms in the three spatial coordinates. The resolutions were obtained for MC simulations of central Au+Au events [88].

Track Intercept Algorithm: SpecMainVertex

This method used the intersection points of pairs of straight tracks to determine the vertex position. First, straight tracks in the first four layers of the Spectrometer were constructed using the road-following technique described in Sect. 5.2.1, but without the vertex constraint. All tracks with χ^2 greater than 1% based on a straight-line fit were made into pairs. Pairs of tracks with a Distance of Closest Approach (DCA) less than 0.4 cm were retained; the vertex position for such pairs was considered to be the midpoint at their nearest approach. Each coordinate of the vertex position was separately averaged from the retained pairs. The quality of the vertex determination was calculated by comparing the DCA of the straight tracks to the average vertex position.

3-D Fit Algorithm: SpecVertex SpecPN

The SpecVertex procedure also used straight tracks, though in this case the road-following was continued out to the fifth and sixth layers. The vertex position was determined in three-dimensions by a MINUIT minimization of the DCA summed over all selected straight tracks. This routine was somewhat more computationally intensive than the others, but when a vertex was properly reconstructed, it was the most precise in three dimensions (see Table 4.1).

4.4.2 Cu+Cu Vertex Finding

One of the main goals of the Cu+Cu run was to compare experimental observables to Au+Au collisions for similar collision geometry (i.e. fractional cross-section). However, even very central Cu+Cu only had multiplicities comparable to semi-peripheral Au+Au [89]. Clearly, a more efficient vertexing method was required to analyze peripheral Cu+Cu collisions. The Octagon Probability Multiplicity (OctProbMult) algorithm was developed using hits in the single-layer Octagon detector to determine the vertex position.

Using the Octagon: OctProbMultVertex

Because the emission angle of a track determined the number of pads it would traverse, some information about the vertex could be determined from the number of adjacent
4.4 Vertex Reconstruction

Figure 4.5: The z-vertex resolution in the region $-10 < v_z < 10$ cm for the two methods introduced for the Cu+Cu run, OctProbMultVertex and OneTrackVertex. The resolutions are presented as a function of Paddle Mean, corresponding to the range of collision centralities in Cu+Cu collisions [87].

Pads with hit energy and their z-position. First, clusters were defined to be adjacent pads in a single row with hit energies each above 0.4 MIP and together above 0.6 MIP. For each cluster, the position and number of merged pads were used to construct the probability distribution of z-vertex position. Then, the triangular probability distributions for each cluster were summed together and a region selected where the probability distribution exceeded a set percentage of the maximum (by default the value was 60%). The final vertex position was then determined from one of three possible criteria: 1) the maximum value in this region, 2) the probability weighted mean over the region, or 3) the center of the region. During the 2005 Cu+Cu run, the first method was used.

Whereas the OctProbMultVertex algorithm was efficient down to very low multiplicities, it did not provide a particularly good vertex resolution (see Fig. 4.5). Since a precise initial vertex position was needed by the tracking procedure, another algorithm was developed by Richard Hollis [87] for this purpose, called OneTrackVertex.

Using Individual Tracklets: OneTrackVertex

The OneTrackVertex was so-named because it only required a single track to determine the event vertex. First, ‘tracklets’ were generated from all pairs of hits in the two vertex layers. Next, the straight tracks were traced backwards and a DCA cut applied on their nearest approach to the beam axis. While only one candidate track was required, if there were many, the average position of candidates within 1 cm of the most frequent vertex
4 Event Characterization

was used.

The same procedure was also repeated in the Spectrometer. The best vertex was selected by comparing the values determined in the Vertex and the Spectrometer to a third vertex, for example the OctProbMultVertex described in the previous section. If either of the two OneTrackVertex values agreed with the comparison vertex, or if the two values agreed with each other, the vertex finding was considered successful. The improvement in vertex resolution can be seen in Fig. 4.5. Only a 3% drop in efficiency was observed compared to OctProbMultVertex \[87\]; this allowed measurements in 200 GeV Cu+Cu collisions with as few as 20 participant nucleons. In the most central Cu+Cu events, fewer than 1% of tracks were lost due to the combined effects of vertex resolution and inefficiency compared to using RMSSoVVertex. This was considered an acceptable loss and was accounted for by the MC-based acceptance and efficiency correction, described in Sect. 6.3.1.
5 Particle Reconstruction

The trajectories of particles produced in collision events were characterized by the spatial position of the ‘hits’ they left in the detector. Merged hits were formed from the calibrated signals in the silicon pads using clustering algorithms. In the Spectrometer, merged hits from different layers were combined to form ‘tracks’ with reconstructed momenta based on the curvature in the magnetic field region.

5.1 Hit Selection

Particles would often pass through more than one silicon pad, especially where the angle of incidence between the sensor and the trajectory was small. To account for this effect, the deposited energies in adjacent pads were combined based on the selection criteria described in Sect. 5.1.1.

In the Octagon detector, additional cuts were applied based on the deposited energy, to reduce contamination from secondary particles. For the correlations analysis described in Ch. 8, hits in the first layer of the Vertex detector were projected onto the plane of the Octagon to ‘fill’ the holes in that detector. Because of the large number of tracks in a Au+Au event and the relatively large pad sizes in the Octagon, each hit was also weighted for occupancy (i.e. more than one particle hitting the same pad) based on the local density of hit pads.

5.1.1 Merging of Hit Pads

Before hit merging was run in the multiplicity detectors (i.e. Octagon and Vertex), channels identified as dead by the procedure in Sect. 3.3 were masked. The basic strategy of the merging algorithm had three steps. First, pads with energy above a noise threshold were selected as seeds. Next, the energy of adjacent pads was merged into candidate hits if the energy passed the merging threshold. Finally, hit candidates were required to have a total merged energy above a hit threshold. These thresholds for the various sub-detectors are listed in Table 5.1. Merging was only performed among neighboring columns not neighboring rows (i.e. in the direction of finer segmentation in the Vertex and Spectrometer detectors).

Octagon Hit Merging

Because the geometry of the Octagon was such that a track could traverse no more than three adjacent pads for events in the nominal vertex range (−10 < vz < 10 cm), this was
Table 5.1: A summary of the thresholds used in the merging algorithms for the different sub-detectors. One MIP corresponds to 80 keV for a 300 μm thick silicon pad.

<table>
<thead>
<tr>
<th></th>
<th>Octagon</th>
<th>Vertex</th>
<th>Spectrometer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise Threshold</td>
<td>19.2 keV</td>
<td>0.3 MIP</td>
<td>0.15 MIP</td>
</tr>
<tr>
<td>Merge Threshold</td>
<td>< 65 – 90 keV</td>
<td>> 0.3 MIP</td>
<td>> 0.15 MIP</td>
</tr>
<tr>
<td>Hit Threshold</td>
<td>30 keV</td>
<td>0.7 MIP</td>
<td>0.5 MIP</td>
</tr>
<tr>
<td>Maximum Pads to Merge</td>
<td>3</td>
<td>2 – 3</td>
<td>8</td>
</tr>
</tbody>
</table>
5.1 Hit Selection

Figure 5.1: The distribution of Octagon hits as a function of pseudorapidity and angle-corrected hit energy. The black line corresponds to the applied cut of 50.0 keV + 4.0 keV * $|\eta|$. The cutoff at 30 keV comes from the hit merging. Note the MIP peak around 80 keV and the concentrations of secondaries at large pseudorapidity and small angle-corrected energy. Faint, two-MIP peaks can be seen at 160 keV with a maximum shifted to mid-rapidity where the occupancy was higher. The paucity of hits at mid-rapidity is due to the Octagon holes.

5.1.2 Secondary Rejection

The deposited energy information was used to exclude many of the hits generated by secondary particles. Figure 5.1 shows the distribution of angle-corrected hit energy for hits in the Octagon as a function of pseudorapidity. The angle correction of hit energies assumed that all hits originated from the event vertex. At large pseudorapidity, primary tracks traverse the Octagon at a shallow angle, depositing significantly more energy than secondaries not coming from the event vertex. Such secondaries are responsible for the concentrations of hits in Fig. 5.1 at large pseudorapidity and small energies – well below the prominent MIP peaks around 80 keV. To exclude these secondaries, a ‘v-shaped’ pseudorapidity-dependent hit energy cut was applied at 50.0 keV + 4.0 keV * $|\eta|$.

5.1.3 Filling Octagon Holes with Vertex Hits

The Octagon detector had three sensors missing from both its top and bottom faces to allow particles to reach the Vertex detector unimpeded. The Inner Vertex layers covered
nearly the same phase space as the Octagon holes. To avoid counting hits twice in the slight overlap between detectors and to provide a more uniform hit density, hits in the Inner Vertex sensors were projected onto virtual sensors with the dimensions and granularity of the adjacent Octagon sensors as in [90]. In practice a projection map was constructed for every 1 mm in z-vertex position, describing the mapping between Vertex and Octagon columns. If the azimuthal angle ϕ of a Vertex hit fell into the acceptance of the Octagon, this hit was ignored as it would already have been counted. Because the Vertex was much more finely pixelized than the Octagon, it was possible that more than one hit would be projected onto a virtual pad. In this case, the energies were added and the spatial coordinates averaged to make a single Octagon hit. Unlike in [90], no attempt was made to insert random hits into the remaining gaps in the acceptance, a procedure that would no doubt have been problematic for a correlations measurement.

5.1.4 Occupancy Weighting

In the mid-rapidity Octagon, uncorrected correlations were very strongly affected by occupancy. At first thought one might think that occupancy should affect signal and mixed events by the same amount. However, in any given event, regions near the reaction plane had higher multiplicity, resulting in greater losses due to occupancy. Conversely out-of-plane regions had lower multiplicity, resulting in slightly less than average occupancy losses. It is clear that this would result in the diminution of the observed magnitude of flow.

To counteract the destructive influence of occupancy on correlations, the local multiplicity had to be determined event-by-event and the hits weighted accordingly. This was tried two different ways: a semi-analog method adapted from the analysis of forward-backward multiplicity correlations [91] and a digital method used in the flow analyses [90]. The semi-analog method, which determined the occupancy weight based on the hit energy and the average energy per hit, was ill-suited to the requirements of the correlations analysis presented in Ch. 8. In particular, it failed in the transition from the Octagon to the Vertex acceptance. On the other hand, the digital correction worked quite well in preserving the input correlations as can be seen in Fig. 8.2.

The digital correction was based on the number of occupied pads in the vicinity of a given hit. In a region of ± 10 columns and ± 2 rows centered on a given pad, the total number of live pads (n_{pads}) and the number of hit pads (n_{hit}) were counted. The number of pads without a hit was then $n_0 = n_{pads} - n_{hit}$. Assuming Poisson statistics, the probability that any pad is hit n times is:

$$P(n) = \frac{\mu^n e^{-\mu}}{n!}$$

where μ is the mean of the Poisson distribution. The probability that a pad is not hit at all can be written from Eq. 5.1 as follows:

$$\frac{n_0}{n_{pads}} = P(0) = e^{-\mu}$$
Thus the average number of times a pad is hit is:

\[\mu = \ln \left(\frac{n_{pads}}{n_0} \right) \]

(5.3)

The occupancy weight \(w \) that one should apply to a given hit corresponds to the average number of times hit pads are hit.

\[
\begin{align*}
 w &= \sum_{n=1}^{\infty} \frac{nP(n)}{1 - P(0)} \\
 &= \frac{1}{1 - P(0)} \sum_{n=0}^{\infty} nP(n) \\
 &= \frac{\mu}{1 - e^{-\mu}} = \mu \cdot \frac{n_{pads}}{n_{hit}}
\end{align*}
\]

(5.4)

(5.5)

(5.6)

5.2 Track Finding

The procedure for finding tracks in PHOBOS consisted of two parts: a straight-line road following algorithm in the first six layers, and a curved tracking algorithm based on Hough transformations in the magnetic field region. After matching the straight and curved segments, a momentum fit determined the best trajectory considering the full covariances between residuals in hit position.

5.2.1 Straight Track Finding

Due to the very low magnetic field in the region of the first six Spectrometer planes (see Fig. 2.4(b) on page 30), the tracks in this region were fit with straight lines. The straight line tracking used in Au+Au and Cu+Cu events relied upon the previous determination of the event vertex from the RMSSelVertex and OneTrackVertex algorithms, respectively (see Sect. 4.4). The angles \(\phi \) and \(\theta \) were calculated relative to the event vertex for each hit in the first two Spectrometer layers. For every combination of a hit in the first layer with a hit in the second layer, the relative angles \(d\phi \) and \(d\theta \) were compared to maximum allowed values \(d\phi^{max} \) and \(d\theta^{max} \). Those pairs that passed the cuts were kept as seeds to be extended through the next four layers.

Starting with these seeds the same procedure was performed for each subsequent layer with the last hit on the candidate track being compared to all the hits in the new layer. The values of the cuts, \(d\phi^{max} \) and \(d\theta^{max} \), were separately defined for each layer (see Table 5.2). If more than one hit in a new layer could be combined with a candidate track, the track was replicated and a copy with each possible hit propagated to the next
5 Particle Reconstruction

<table>
<thead>
<tr>
<th>Layer</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d\phi_{max}$</td>
<td>0.025</td>
<td>0.025</td>
<td>0.025</td>
<td>0.045</td>
<td>0.065</td>
</tr>
<tr>
<td>$d\theta_{max}$</td>
<td>0.012</td>
<td>0.010</td>
<td>0.008</td>
<td>0.007</td>
<td>0.004</td>
</tr>
</tbody>
</table>

Table 5.2: Maximum allowed angular differences for the addition of a hit to an existing straight track candidate. The layer numbers refer to the first of the consecutive layers compared.

layer. While hits were required in the first two layers, one layer could be missed in the next four layers.

After each new layer, the track candidates were fit with straight lines in the XZ and the YZ planes. The fit in the XZ plane included all layers, but the fit in the YZ plane never used the last two layers due to the increased vertical pad size (see Table 2.1). The χ^2 was constructed from the displacements of the hits from the straight line using the pad dimensions as weights. Because multiple scattering effects were not included in the χ^2 determination, a relatively loose cut on fit probability was applied ($prob > 0.0005$). When this procedure had been completed for all six layers, a final selection was made on tracks that shared hits; only the track with the best fit probability was retained.

5.2.2 Curved Track Finding

The direction and magnitude of the bending in the magnetic field determined particle momentum and charge sign. Since the field in the outer region of the Spectrometer was not uniform, particles did not follow simple, circular trajectories through the detector. This fact motivated the use of look-up tables to extract the momentum and polar angle (p, θ) of tracks via a ‘Hough transformation’ [92] from the location of two hits relative to the event vertex.

These so-called ‘Hough tables’ were generated by simulating single pions in one Spectrometer arm and measuring the two angles described in Fig. 5.2: α and γ, for different simulated values of inverse momentum $1/p$ and polar angle θ\(^1\). The $1/p$ and θ values were stored for twenty α-bins and twenty γ-bins for each combination of layers in both the central and outer wing regions of the Spectrometer (see Table 5.3). The tables were generated separately for the two bending directions and in 0.5 cm bins of z-vertex from $-15 < v_z < 10$ cm.

The first step in building a curved track was to construct all possible ‘Hough sticks’, pairs of hits from the adjacent layers described in Table 5.3. To interpolate the track parameters of these sticks from the discretely binned Hough tables, polynomial fits were used to extrapolate between the centers of the bins in α and γ [16]. Once all the Hough sticks had been created and their associated track parameters determined, the process of assembling sticks into ‘Hough chains’ could begin. Starting with layer 9 and working outwards one layer at a time, all sticks that shared a hit were considered for chain-building. Sticks belonging to a single track should have the same momentum param-

\(^1\)The inverse momentum, related to the bending radius, is the relevant variable in tracking.
5.2 Track Finding

Table 5.3: Layers used to form Hough sticks in the central and outer wing regions of the Spectrometer (see Fig. 5.2 for the layer pattern).

<table>
<thead>
<tr>
<th>Stick</th>
<th>Center</th>
<th>Outer Wing</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>9 - 10</td>
<td>9 - 10</td>
</tr>
<tr>
<td>B</td>
<td>10 - 11</td>
<td>10 - 11</td>
</tr>
<tr>
<td>C</td>
<td>11 - 13</td>
<td>11 - 13</td>
</tr>
<tr>
<td>D</td>
<td>13 - 14</td>
<td>13 - 15</td>
</tr>
<tr>
<td>E</td>
<td>14 - 15</td>
<td>15 - 16</td>
</tr>
</tbody>
</table>

Figure 5.2: A Hough stick between layers 14 and 15 is characterized by two angles: the polar angle between the beam pipe and the first hit, α, and the angle between the two hits, γ. The Hough tracking presumes the independent calculation of the event vertex v_1.
5 Particle Reconstruction

Figure 5.3: An example showing the reconstructed tracks in a central Au+Au event. The
gray dots are Spectrometer hits that do not belong to a found track. The hits
belonging to found tracks (black dots) are joined by straight line segments to
guide the eye [16].

eters; if the sticks had similar values of $1/p$ and θ, they were chained together. As in
the straight tracking, if more than one stick could be added to a chain, both candidates
were retained.

The final curved tracks were required to contain five sticks (i.e. hits in all six outer
layers). Additional cuts were made on fluctuations in the y-position and differences in
deposited energy. Finally, the χ^2 was calculated on deviations of hit positions from the
expected trajectory, to reject track candidates with low fit probability.

5.2.3 Full Track Momentum Determination

Once the straight and curved track segments had been constructed, they could be
joined into full tracks if they shared matching parameters. An illustration of recon-
structed full tracks in a central Au+Au event can be seen in Fig. 5.3. The full tracks
were then subjected to successive momentum fits, after which a final clean-up was per-
formed by rejecting duplicate tracks based on fit probability.

Track Matching

Several checks were performed on the combinations of straight tracks from the first six
layers and curved tracks from the layer 9 onwards to determine if they should be joined.
First, a consistent θ angle was required between the two segments ($\Delta \theta < 15$ mrad).
Next, a relatively loose cut was made on the average energy losses in the two segments.
It was required that the difference between the average energy losses be no more than 80% of the overall average. This was designed, for example, to prevent the joining of a low momentum proton track in the straight section with a pion track in the curved section. Finally, a straight line fit was performed on the vertical positions of the hits in the curved section using the slope from the straight track. If the χ^2 divided by the number of degrees of freedom (i.e. the six hits) was greater than five, the joined track was rejected. If the criteria were all met, a full track was created with a preliminary θ and ϕ angle from the straight track values, and a total momentum p from the curved track section.

Track Fitting

The usual method of determining the momentum of a track is to fit an analytical form to the collection of hits. However, as has already been mentioned several times, the dipole design of the PHOBOS magnet caused particles to experience non-uniform fields as they traversed the Spectrometer. Instead, the trajectory was determined by swimming a particle through the magnetic field, whose strength was measured at many points and stored in the field map shown in Fig. 2.4(b). Starting with the track origin and momentum direction, the trajectory was traced out in steps using a Runge-Kutta algorithm. To minimize the required computing time, rather large steps (e.g. 10 cm in the central region) were used in regions of uniform field strength. Where there were large gradients (1 Tesla/5 cm) the step size was reduced by a half.

Using this trajectory, the χ^2 of a track could be determined from the deviation of its hits from their expected positions. The ideal trajectory of a charged particle through a magnetic field does not, however, account for the effects of energy loss and multiple scattering undergone by real tracks passing through the silicon. The expected residuals were contained in the covariance or error matrices. The diagonal elements of these matrices corresponded to the residuals on hit positions in a single layer. Due to the fact that a large angle scattering in one layer would tend to produce correlated deviations in all subsequent layers, it was essential to estimate the off-diagonal elements of the covariance matrices.

Like the Hough tables, the covariance matrices were generated before data-taking to be looked up by the tracking. Matrices were generated separately for the two bending directions, 40 bins of $1/p$ ranging from $p = 0.1 - 10$ GeV, 60 bins in z-vertex from -20 to 10 cm, and 30 bins in polar angle (0.25 rad $< \theta < 1.75$ rad). The covariances were determined by first swimming a pion through the detector with the starting parameters of the particular bin $(q, v_z, \theta, 1/p)$, assuming an ideal trajectory, i.e. with energy loss and multiple scattering turned off. Then, 5000 pions were generated with energy loss and multiple scattering turned on. The deviations from the ideal trajectory were stored in that bin of the covariance matrix container for later look-up in the tracking.

The actual determination of the best fit entailed the iterative minimization of the χ^2 for five parameters describing the track $(1/p, \theta, \phi, z_0$ and $y_0)$. A simplex routine was used to find the χ^2 minimum. A simplex is a collection of points connected by line segments.
5 Particle Reconstruction

defining a surface in an n-dimensional space2. With initial positions randomly assigned near the input values from the track matching, the χ^2 was calculated at each vertex of the simplex, and the point with the largest value reflected through the opposite face. Repetition of this maneuver resulted in the simplex approaching the minimum until a user-defined cut on incremental improvement was reached. To avoid accidentally settling into a ‘local minimum’, the minimization procedure was repeated a number of times with different initial random settings.

Duplicate Rejection

The final step in the tracking process was to check tracks for shared hits. If a number of hits were shared by more than one track, it was likely that only one true track existed and that the other(s) were ghosts. To maximize the purity of the final sample, tracks were not allowed to share more than two hits. If they did, the track with the lower fit probability was assumed to be a fake and discarded.

2A two-dimensional simplex is a triangle. A three-dimensional simplex is a tetrahedron
6 Obtaining Charged Hadron Spectra

Tracks found in the Spectrometer are used to construct the charged hadron transverse momentum spectra, which are presented in terms of the 'invariant yield'. This quantity describes the number of particles \(N \) found in a particular momentum range \(\vec{p} = (\vec{p}, \vec{p} + d\vec{p}) \).

\[
E \frac{d^3N}{d^3\vec{p}} = E \frac{d^3N}{dp_x dp_y dp_z}
\]
(6.1)

Recast into cylindrical coordinates, the invariant yield can be integrated over the azimuthal angle \(\phi \), as the average single-particle spectra is symmetric in this variable.

\[
E \frac{d^3N}{d^3\vec{p}} = \frac{E}{p_T} \frac{d^3N}{dp_T d\phi dp_z} = \frac{E}{2\pi p_T} \frac{d^2N}{dp_T dp_z}
\]
(6.2)

Using the expressions \(E = m_T \cosh(y) \) and \(p_z = m_T \sinh(y) \) (see Appendix B), the invariant yield can be written in terms of rapidity \(y \).

\[
E \frac{d^3N}{d^3\vec{p}} = \frac{1}{2\pi p_T} \frac{d^2N}{dp_T dy} \approx \frac{1}{2\pi p_T} \frac{d^2N}{dp_T d\eta}
\]
(6.3)

Since rapidity transforms additively under Lorentz boosts \((y' = y + \text{const.}) \), it is clear that the invariant yield does not depend on reference frame \((dy' = dy) \). Because this analysis does not identify the mass of the charged hadrons, rapidity is replaced by pseudorapidity \((\eta) \). For relativistic particles \((E \gg m) \) this is a very good approximation.

Calculating the invariant yield becomes a matter of counting the number of collision events and the number of tracks found in those events. The criteria for selecting collision events are discussed in Sect. 6.1; the track selection procedure is discussed in Sect. 6.2; the various corrections to the raw spectra are explained in Sect. 6.3.

6.1 Event Selection

Even after events had passed the trigger conditions described in Sect. 4.1, additional cuts were made to ensure the rejection of beam-gas events in favor of true collisions. A list of these cuts can be found in Table 6.1. For the Cu+Cu run, the standard IsCol selection was not finalized until after data processing had begun. For this reason, many trigger bits were set manually in this analysis of the data.

First, the difference between the positive and negative Paddle times \(PdlTDiff \) was required to be less than 5.0 ns. This selected collisions from the center of the detector \((\pm 75 \text{ cm}) \), rejecting beam-gas events outside the Paddle region. Next, to avoid recording

Table 6.1: A summary of the event cuts used in the charged hadron spectra analysis of Cu+Cu collisions at $\sqrt{s_{NN}} = 62.4$ and 200 GeV.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1&0x0100</td>
<td>False</td>
<td>Remove heartbeat events</td>
</tr>
<tr>
<td>abs(PdtTDiff)</td>
<td>< 5.0 ns</td>
<td>Valid collision timing</td>
</tr>
<tr>
<td>TrgTExtra46</td>
<td>False</td>
<td>Exclude post-pileup events</td>
</tr>
<tr>
<td>TrgTExtra62</td>
<td>False</td>
<td>Exclude pre-pileup events</td>
</tr>
<tr>
<td>TrgTExtra7</td>
<td>True</td>
<td>Good L1 timing</td>
</tr>
<tr>
<td>OctProbMultVertex</td>
<td>Valid</td>
<td>Successful vertex reconstruction</td>
</tr>
<tr>
<td>OneTrackVertex</td>
<td>Valid</td>
<td>Successful vertex reconstruction</td>
</tr>
<tr>
<td>OctProbMultVertex</td>
<td>$-10 < v_z < 10$ cm</td>
<td>z-vertex within nominal range</td>
</tr>
</tbody>
</table>

Signals remaining in the detector from the previous collision, events that were triggered less than 5 μs after another event were flagged as ‘pre-pileup’. Similarly, to avoid recording signal from the following event before the current collision had finished reading out, events that were triggered less than 0.5 μs before another event were flagged as ‘post-pileup’. Finally, a good L1 timing required that when the previous event was rejected by the trigger logic, the fast clearing of the trigger signals had finished before the current event was recorded [87]. ‘Heartbeat’ events – periodic read-outs of the detector by the DAQ – also needed to be removed.

Events were also required to have a successfully reconstructed collision vertex in the range of the Spectrometer acceptance ($-10 < v_z < 10$ cm). OctProbMultVertex was used for the event vertex, but a valid OneTrackVertex was also required, since this vertex was used as a seed in the tracking algorithm.

The same vertex cuts were applied in the selection of MC events. The Paddle timing and pile-up cuts were not needed as there are no beam-gas or pile-up events in the MC.

6.2 Track Selection

Once collision events were selected, additional cuts were placed on tracks. Tracks were only taken from the pseudorapidity range $0.2 < \eta < 1.4$, within which the acceptance of the Spectrometer was relatively flat. This simplified the calculation of the differential yield in pseudorapidity (the $d\eta$ in Eq. 6.3), such that it only required dividing by the selected eta range ($1.4 - 0.2 = 1.2$).

Tracks with a very poor momentum fit probability were also rejected. The fit probability value corresponded to the likelihood that a track with the same properties would be assigned a higher χ^2 value in the track fitting procedure. For correctly calculated covariances of Gaussian-distributed measurements, a flat probability distribution would be expected. The large deviation from this expectation for tracks with fit probability below 4% indicated that the momentum of these tracks was not properly reconstructed (see Fig.6.1(a)). Since they were most likely ‘ghost’ tracks, constructed from incorrectly
Figure 6.1: (a) Fit probability distribution of found tracks. Notice the excess of 'ghosts' below 0.04 that are removed by the cut. (b) The distribution of DCA, the distance of closest approach of found tracks to the event vertex. The two lines are exponential fits in the regions dominated by primaries and secondaries. The cut is placed at 0.35 cm, where the secondary contribution begins to dominate.
6 Obtaining Charged Hadron Spectra

<table>
<thead>
<tr>
<th>Variable</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rapidity (y)</td>
<td>0.0</td>
<td>1.5</td>
</tr>
<tr>
<td>Transverse Momentum (p_T)</td>
<td>0.1 GeV/c</td>
<td>10.0 GeV/c</td>
</tr>
<tr>
<td>Azimuthal Angle (ϕ)</td>
<td>-0.2</td>
<td>+0.2</td>
</tr>
<tr>
<td>Vertex Position (v_z)</td>
<td>-15 cm</td>
<td>+10 cm</td>
</tr>
</tbody>
</table>

Table 6.2: The ranges over which single pions were simulated for determination of the acceptance and efficiency correction.

matched hits, tracks with fit probability less than 0.04 were excluded from the analysis. Secondary particles, that is those not originating from the Cu+Cu collision, were rejected using a cut on the Distance of Closest Approach (DCA). In the last stage of the momentum fit, tracks were not constrained to originate from the collision vertex. The value of DCA is defined as the closest distance between the fitted track trajectory and the collision vertex location. Because secondary tracks began to dominate above $DCA \sim 0.35$ cm, a cut was placed at that distance to maximize the fraction of primary tracks (see Fig. 6.1(b)).

6.3 Corrections to Raw Spectra

Ideally one would use a detector that perfectly reconstructs all the particles originating from a collision event. However, in the real world, a number of corrections must be applied to account for detector effects that make the number of reconstructed particles differ from the number of true particles. The largest single correction accounts for the limited acceptance of the detector and the track reconstruction efficiency. Additional factors correct for momentum resolution and finite p_T-binning, ‘ghost’ tracks, secondaries and feed-down decays, tracks lost due to high occupancy, and dead and hot Spectrometer pads.

6.3.1 Acceptance and Efficiency Correction

The combined correction for the acceptance of the detector and the efficiency of track reconstruction was estimated by swimming single-tracks through a simulation of the detector and calculating the fraction that were reconstructed using the same cuts as in the data. In total 35 million events were generated, each with a single single pion embedded into an empty event. Both magnet polarities, both track charge signs, and both Spectrometer arms were generated with equal statistics. Single pions were embedded with flat distributions in rapidity, transverse momentum, and azimuthal angle. The respective ranges are listed in Table 6.3. The event vertex was chosen randomly from a flat v_z distribution between -15 and +10 cm. The simulated ϕ range was chosen to cover the full Spectrometer acceptance, but not the complete 2π azimuthal angle. Therefore, an additional factor of $(2\pi/0.8 \approx 7.85)$ was applied to correct the raw results to the azimuthally averaged quantity in Eq. 6.3.
6.3 Corrections to Raw Spectra

The correction function was calculated separately for the two bending directions and for four vertex ranges \((-10 < v_z < -5 \text{ cm}, -5 < v_z < 0 \text{ cm}, 0 < v_z < +5 \text{ cm}, \text{ and } +5 < v_z < +10 \text{ cm})\). Each correction was constructed by dividing a histogram binned in \(p_T\) of reconstructed tracks that passed the DCA and fit probability cuts by a histogram of the embedded tracks. The resulting histograms were smoothed to remove statistical fluctuations except in the quickly changing part at low-\(p_T\). The correction functions for each vertex range and bending direction are shown as a function of \(p_T\) in Fig. 6.2. Particles with negative charge-polarity bend away from the beam, accounting for the larger acceptance at low momentum. (Recall that the tracking algorithm was not performed in the Inner Wing due to high hit densities – see Fig. 5.2 and 5.3.)

It should be noted that in both cases the tracks were binned based on the true momentum not the reconstructed momentum. The difference between the two is separately accounted for by the momentum resolution correction in Sect. 6.3.2. Ghost tracks

Figure 6.2: Correction factor for acceptance and efficiency as a function of transverse momentum for four vertex bins \((-10 < v_z < -5 \text{ cm}, -5 < v_z < 0 \text{ cm}, 0 < v_z < +5 \text{ cm}, \text{ and } +5 < v_z < +10 \text{ cm})\) and two bending directions (top row: positive charge-polarity, bottom row: negative charge-polarity). The corrections are averaged over the two Spectrometer arms.
and secondaries did not contribute to this correction, since if the simulation resulted in more than one ‘findable’ track or if more than one track was found, the whole event was rejected. This occurred in <1% of simulated events.

Whereas the tracking routine in these studies was given the exact vertex position from which the single tracks were generated, it was considered that the resolution of OneTrackVertex in the data might cause some inefficiency in the tracking that would not be accounted for by this correction. Studies of single-tracks reconstructed from smeared vertex positions concluded that no additional tracks were lost until the vertex strayed by more than ±7.5 mm. Since the resolution on OneTrackVertex ranges from 1 mm in central events to 3 mm in peripheral events, the calculated efficiencies should be sufficient.

6.3.2 Momentum Resolution and Binning

The combination of a steeply falling \(p_T \) spectrum and a finite resolution in the momentum determination results in an excess of particles at higher \(p_T \) in the raw spectra. Correcting for this effect required the precise determination of the momentum resolution as a function of transverse momentum. Shown in Fig. 6.3 is a comparison of the true generated momentum to the reconstructed momentum for the single-track sample discussed in Sect. 6.3.1.

The determination of the correction proceeded in a number of steps:

1. The measured raw \(p_T \) spectrum was fit with a functional form (see Fig. 6.4(a)).

2. The reconstructed \(p_T \) distribution in each true \(p_T \) bin was taken from Fig. 6.3 and normalized to the same integral.
6.3 Corrections to Raw Spectra

(a) Fit to Raw Spectra

(b) Smeared Spectra

(c) Re-binned Spectra

(d) Momentum Resolution Correction

Figure 6.4: (a) Power law + exponential fit to measured, raw p_T spectra with small polynomial correction to ensure fit quality better than 10%. (b) Spectra smeared by momentum resolution. (c) Smeared spectra re-binned in same bins as data. (d) Final correction is the ratio of (c) to (a) fit with a second-order polynomial plus a Gaussian to account for the change in bin width.

3. The reconstructed p_T distribution was weighted by the value of the fit evaluated at the center of each true p_T bin.

4. The weighted 2-D histogram was projected onto the reconstructed p_T axis and divided by bin width and $(2\pi p_T)^{-1}$ to get the smeared p_T spectra (see Fig. 6.4(b)).

5. The smeared p_T spectra were re-binned into the same binning as the data (see Fig. 6.4(c)).

6. The re-binned, smeared p_T spectra were divided by the fit to the raw spectra and the ratio fitted with a polynomial + Gaussian function (see Fig. 6.4(d)). This was the momentum resolution and binning correction that was applied to the measured spectra.

1Previous analyses did not account for bin width changes, covered by the assigned systematic error.
6.3.3 Ghost and Secondary Corrections

Besides correcting for tracks lost due to acceptance and efficiency, one must also account for a surplus of reconstructed tracks not belonging to any primary track. Whereas the acceptance correction could be estimated using single-tracks, estimating the non-primary contribution required full simulations of Cu+Cu events generated by HIJING; the statistics were limited by the size of the simulated HIJING sample. One source of non-primary tracks, called 'ghosts', came from the reconstruction of tracks from hits not belonging to any one track. Another source came from fully reconstructed secondary tracks, including feed-down from weak decays.

Determining the ghost and secondary fractions required matching reconstructed tracks to the known track trajectories from HIJING. If a simulated HIJING track deposited energy in the same silicon pad as a hit belonging to a reconstructed track, the hit was considered to be shared. The best track match was the one with the most shared hits. Secondaries were identified as reconstructed tracks with a non-primary best match. Ghosts were reconstructed tracks that did not share more than nine hits with any simulated particle.

The ghost fraction was simply the number of reconstructed tracks identified as ghosts divided by the total number. This ratio was first determined as a function of p_T for the average of all centrality bins and fitted with an exponential. Then, an exponential fit to the ghost fraction was separately performed in each centrality allowing only the ampli-
6.3 Corrections to Raw Spectra

Figure 6.6: Secondary and feed-down fraction for 200 GeV Cu+Cu for all centralities from 0-50%. The correction is an exponential plus constant offset fit to the non-primary fraction. The assigned systematic error is indicated by a dashed line.

Since the secondary fraction does not depend much on centrality, the correction was calculated as a function of p_T for all centralities together. The secondary correction is illustrated in Fig. 6.6, where it has been fit with an exponential plus a constant offset term. The inclusion of the constant offset, which was not present in earlier studies of secondaries [76], provided a better overall fit to the higher statistics HIJING sample used in this study. The systematic error on the non-primary fraction (i.e. secondary + feed-down) was chosen conservatively to reflect the relatively large uncertainty in weakly decaying parent distributions in HIJING.

6.3.4 Occupancy Correction

Because the efficiency correction in Sect. 6.3.1 was calculated using only single-tracks, it was necessary make an occupancy correction to account for the increased likelihood of losing tracks in a high multiplicity environment. To evaluate the correction, single-tracks were embedded with a flat p_T-distribution into real data events binned in cen-
Figure 6.7: Occupancy corrections in Au+Au and Cu+Cu plotted together versus the number of Spectrometer hits. The dashed lines represent a ±2% systematic error.

6.3.5 Dead and Hot Spectrometer Pads

One final correction was required to account for faulty Spectrometer channels. As described in Sect. 3.3, a map was created of all the dead, hot and noisy channels (collectively referred to here as simply ‘dead’). For practical considerations, the tracks in the data were reconstructed without masking out dead channels\(^2\). Also, the effect of dead channels was not considered in the acceptance and efficiency correction in Sect. 6.3.1. To properly account for dead channels, one would like to mask them out before track finding, both in the data and in the single track simulations used to estimate the efficiency.

\(^2\)First, the track reconstruction could proceed without waiting for a dead channel map, and second, the map could be changed at a later date, only affecting the correction.
6.4 Summary of Systematic Errors

\[
\text{Yield} \propto \frac{\text{Data Tracks (Masked)}}{\text{Single Track Efficiency (Masked)}}
\]
(6.4)

However, since neither the data nor the single tracks were reconstructed with the dead channels masked, the yields had to be multiplied by a correction factor equal to the following:

\[
\text{Correction} = \frac{\left(\frac{\text{Data Tracks (Masked)}}{\text{Data Tracks (Unmasked)}} \right)}{\left(\frac{\text{Single Tracks (Masked)}}{\text{Single Tracks (Unmasked)}} \right)}
\]
(6.5)

The correction was calculated from a sub-sample of the full data set, by counting the number of tracks found with and without applying the dead channel mask. It was computed as a function of transverse momentum, in consideration of the possibility that the spatial distribution of dead channels might affect the tracking differently at different momenta. Despite only a few percent of Spectrometer channels being dead, their effect on the efficiency was magnified by the large number of hits required to reconstruct a track (see Sect. 5.2). The ratios in Eq. 6.5 were found to equal 0.9146 in data and 0.8471 in MC, independent of \(p_T \). The applied correction was \(\frac{0.9146}{0.8471} = 1.080 \).

The magnitude of the above ratios can be understood by considering the two extreme limits. In the limit where all the masked channels are completely dead, the ratio of masked to unmasked samples in data would be one, since the masked channels would have recorded no hits. For the single tracks, the ratio of masked to unmasked samples would be some amount less than one corresponding to the lost acceptance. In the other limit, where none of the masked channels are dead, applying the mask simply corresponds to removing some acceptance from the detector. In this case, the ratio in data would be less than one by the same amount as the single tracks. In reality, the situation was somewhere between these two extremes. The fact that the ratio in data was significantly below unity reflects the hard cuts used in the creation of the dead channel map to ensure quality data.

Whereas for the \(d + Au \) run, there was a large discrepancy in the number of dead channels between the positive and negative Spectrometer arms\(^3\), the situation was much more symmetric in the later \(Au + Au \) and \(Cu + Cu \) runs. For this reason, the same correction was applied for both arms, with the possibility of a slight difference being covered by the 4% systematic error assigned to this correction.

\(^3\)The concentration of channels classified as dead in the fifth layer of the negative arm exacerbated the discrepancy.

6.4 Summary of Systematic Errors

The systematic errors assigned to each correction are shown in Fig. 6.8. The largest single uncertainty, arising from the acceptance and efficiency correction, was quantified by comparing the yields in different sub-samples of the data. This included the yields calculated separately for the two different magnet polarities, the two Spectrometer arms,
and the four z-vertex bins. The particular p_T dependence of the acceptance and efficiency error was chosen to cover the variation observed in each of these sub-samples.

The systematic error assigned to the momentum resolution and binning correction comes from two sources. First, an error of $1.6\% + 0.4\% \cdot p_T$ was estimated for the non-commutativity of the momentum smearing and tracking efficiency. Second, a 10% error on the fit to the spectral shape and a 10% error on the momentum resolution combined to give a 15% error on the size of the final correction.

The errors assigned to the other corrections are discussed in the preceding sections. As shown in Fig. 6.8, the final quoted systematic error consisted of the separate errors added in quadrature.
6.4 Summary of Systematic Errors

Figure 6.8: The various contributions to the systematic error in 200 GeV Cu+Cu and their sum in quadrature, corresponding to the final quoted error.
7 Cu+Cu Spectra Results and Discussion

Using the analysis methods described in the previous chapter, the Cu+Cu spectra have been measured at $\sqrt{s_{NN}} = 62.4$ and 200 GeV. These measurements were motivated by previous spectra results from Au+Au collisions at $\sqrt{s_{NN}} = 62.4$, 130, and 200 GeV, which showed a strong suppression relative to the expectation of binary collision scaling [57–59, 94, 95]. As described in Sect. 1.6.3, the absence of such a suppression in d+Au collisions supported the interpretation of parton energy loss in the final state [55, 60, 61]. The Cu+Cu spectra presented in this thesis (and published in [63]) bridged the gap between the d+Au and Au+Au systems, allowing an examination of the dependence of high-p_T suppression on system size.

To quantify the observed suppression, a reference spectrum was constructed from charged hadron measurements in p+p (or p+\bar{p}) collisions. This reference spectrum was used to calculate the nuclear modification factor (see Eq. 7.1) as a function of centrality and transverse momentum. The suppression in Au+Au and Cu+Cu was then compared to various model calculations to elucidate the dependence of parton energy loss on path length.

7.1 p+p Reference Spectra

The charged hadron transverse momentum spectra have been measured for 200 GeV p+p collisions by the UA1 experiment [96]. Their results are shown in Fig. 7.1, where they have been divided by a fitted power law function. This fit function had to be corrected for the different angular acceptances of PHOBOS and UA1. Whereas the PHOBOS Spectrometer covered the range $0.2 < \eta < 1.4$, the UA1 results were measured for $|\eta| < 2.5$. A correction to account for the different acceptances was constructed using the PYTHIA event generator [97]. p+\bar{p} events were generated at 200 GeV and the resulting ‘true’ tracks from the different pseudorapidity acceptances were histogrammed in p_T. The resulting correction was just the ratio of these two histograms [93].

The charged hadron spectra in the range $p_T = 0.25 – 3.0$ GeV/c have been measured at the Intersecting Storage Rings (ISR) in 62 GeV p+p collisions [98]. Additionally, identified pions for $p_T = 3.8 – 12$ GeV/c were measured at 63 GeV [99]. Using the ratios π^+/h^+ and π^-/h^- that were presented as a function of p_T in the latter paper, the high-p_T spectrum of charged hadrons could be inferred. The resulting fit to the combined spectra was a power law of the form $43.231(1 + p_T/2.188)^{-15.37}$. The final p+p reference again incorporated a PYTHIA-based correction accounting for the difference between the PHOBOS acceptance and those of the ISR measurements ($0.5 < y < 1.0$ in [93] and $0.52 < y < 0.88$ in [99]).
7 Cu+Cu Spectra Results and Discussion

Figure 7.1: The charged hadron p_T spectra were measured by UA1 in $p+\bar{p}$ collisions at $\sqrt{s_{NN}} = 200$ GeV and fitted with the power law function, $50.9(1+p_T/1.59)^{-11.2}$. Shown here is the ratio of the data to the fit.

7.2 Cu+Cu Spectra Results

Once the corrections detailed in Sect. 6.3 had been applied, the evolution of the yields with centrality and system size could be studied. The invariant yield of charged hadrons (see Eq. 6.3 on page 67) was obtained from the average of the positive and negative hadron yields. It is shown in Fig. 7.2 [63] as a function of transverse momentum and centrality for Cu+Cu collisions. At 62.4 GeV, the yields were measured in the interval $0.25 < p_T < 5.0$ GeV/c, while at 200 GeV they were measured for $0.25 < p_T < 7.0$ GeV/c.

Since the invariant yields span seven orders of magnitude, it is generally more instructive to normalize these spectra by the $p+p$ references determined in Sect. 7.1. The nuclear modification factor R_{AA} is defined as the ratio of the nucleus-nucleus yield to the $p+p$ yield scaled by the average number of binary collisions $\langle N_{coll} \rangle$,

$$R_{AA}(p_T) = \frac{\sigma_{pp}^{inel}}{\langle N_{coll} \rangle} \frac{d^2N_{AA}/dp_Td\eta}{d^2\sigma_{pp}/dp_Td\eta},$$

(7.1)

where the differential cross-section in $p+p$ is divided by the total inelastic cross-section σ_{pp}^{inel} to get the yield. Note that if the particle production in heavy ion collisions scaled with the number of binary nucleon-nucleon collisions, the value of R_{AA} would be equal to 1.
Figure 7.2: Top: Invariant yields for charged hadrons from Cu+Cu collisions at $\sqrt{s_{NN}} = 200$ GeV in the pseudorapidity interval $0.2 < \eta < 1.4$ as a function of p_T for six centrality bins. Bottom: The same for $\sqrt{s_{NN}} = 62.4$ GeV. For clarity, successive centrality bins are scaled by a factor of 5 [63].
Figure 7.3: Nuclear modification factor, $R_{AA}(p_T)$, in bins of fractional cross-section for Au+Au (open symbols) and Cu+Cu (closed symbols) at $\sqrt{s_{NN}} = 200$ GeV. The gray bands indicate the uncertainty on the estimate of $\langle N_{\text{coll}} \rangle$.

Figure 7.4: Nuclear modification factor, $R_{AA}(p_T)$, in bins of fractional cross-section for Au+Au (open symbols) and Cu+Cu (closed symbols) at $\sqrt{s_{NN}} = 62.4$ GeV.
The centrality evolution of $R_{AA}(p_T)$ is shown in Fig. 7.3 and 7.4 for Cu+Cu collisions at 200 and 62.4 GeV, respectively. As a comparison, the results for Au+Au collisions at both energies [57, 95] are also shown in the same fractional cross-section bins. Due to the inefficiency of the vertex reconstruction in low multiplicity events, the most peripheral bin analyzed in 62.4 GeV Cu+Cu was 35-40%.

At both energies, R_{AA} is greater in Cu+Cu than Au+Au for the same fractional cross-section bin. At 200 GeV (see Fig. 7.3), Cu+Cu collisions exhibit a high-p_T suppression ranging from approximately 0.5 in central collisions, to essentially no suppression in peripheral collisions.

7.2.1 Nuclear Effects on Spectra

The shapes of $R_{AA}(p_T)$, seen in Fig. 7.3 and 7.4, are related to the interplay of many nuclear effects that can enhance or suppress the spectra with respect to binary-scaled p+p. Even in p+A collisions, where there is no expectation of partonic energy loss from induced gluon radiation in the dense medium, the spectra are modified due to nuclear modification of the parton distribution functions and nuclear k_T broadening [100]. In the quantitative study of nucleus-nucleus collisions, it is also important to account for these effects.

From the Deep-Inelastic Scattering (DIS) of leptons or neutrinos from nuclei, the structure functions of the nucleus have been explored [101]. Compared to the structure functions of the deuteron\(^1\), the amount of nuclear modification, F_2^A/F_2^p, depends on Bjorken x. For $x < 0.05 - 0.1$, the effect of ‘shadowing’ drives this ratio below one. The enhancement at $x \approx 0.1 - 0.2$ has been referred to as ‘anti-shadowing’. At larger x, the ratio falls below unity again, called the EMC effect, then rises sharply as $x \to 1$ due to the Fermi motion of the nucleons within the nucleus. These effects increase with the size of the nucleus [102], and would be expected to differ between copper (A=63) and gold (A=197).

A large enhancement of hadron production, called the ‘Cronin effect’, has been seen in p+A collisions relative to p+p collisions scaled by the effective nuclear thickness [103]. The characteristic enhancement from the Cronin effect is clearly visible in Fig. 7.3 and 7.4 as a ‘bump’ around $p_T = 2 - 3$ GeV. This behavior has been ascribed to multiple initial-state scatterings [104, 105], which effectively increase the $\langle k^2_T \rangle$ of the beam partons \(^2\). Although the general features of the Cronin effect can be described by such models, they cannot account for the much larger enhancement for baryons compared to mesons [103, 106]. This so-called ‘baryon-meson anomaly’ may be more successfully described by a final-state recombination approach [107]. While the phenomenology responsible for the Cronin effect is not completely understood, it bears careful consideration in the extraction of the energy loss from the nuclear modification processes.

1The deuteron is used as the reference because heavier nuclei contain both protons and neutrons. Since the proton and neutron structure functions are known to be quite different, the deuteron is a better reference than the single proton.

2Note that the partons have some intrinsic k_T already, due to their confinement within the nucleon. By the uncertainty principle, the magnitude is on the order $\Delta p \approx 1/2\Delta x \approx 0.5 \text{ fm}^{-1} \approx 100 \text{ MeV/c}$
7 Cu+Cu Spectra Results and Discussion

tion factor—what might appear as no suppression could instead be the combination of Cronin enhancement and final-state energy loss.

7.2.2 Introduction to Jet Quenching

One of the most important discoveries at RHIC has been that, in addition to nuclear shadowing and the Cronin effect, jet energy loss has an important role in determining the final spectra. At high-p_T, the energy loss of partons can be treated formally within the framework of perturbative QCD. Calculating the spectrum of gluon radiation from an energetic parton passing through a dense medium is analogous to the QED effect described by Landau, Pomeranchuk, and Migdal.

The QCD formalism considers a very energetic quark of energy E propagating through a medium of length L. Multiple scatterings from particles in the medium induce gluon radiation, leading to energy loss. The main assumption in the calculation is that the energetic parton scatters independently from screened Coulomb potentials with Debye screening mass μ. This condition is related to the mean free path λ of the energetic parton as $\mu^{-1} \ll \lambda$, where λ depends on the density ρ of the medium as $\lambda = 1/\rho \sigma$.

The calculation of quenching weights, namely the probability $P(\Delta E)$ that an energetic parton will lose a fraction of its energy ΔE, has been carried out in the two extreme approximations:

- The multiple soft scattering limit, that is $L \gg \lambda$, known as the Baier Dokshitzer Mueller Peigné Schiff (BDMPS) model.
- The thin plasma limit of a single, hard scattering, known as the Gyulassy Lévai Vitev (GLV) model.

The effect of the medium on the incident parton is characterized by the transport coefficient:

$$\hat{q} = \frac{\langle k_T^2 \rangle}{\lambda}$$

(7.2)

where $\langle k_T^2 \rangle$ is the average transverse momentum squared that is transferred to the parton per unit path length λ. After multiple soft scatterings, gluons in the hard parton wavefunction are considered to be emitted if they have picked up sufficient k_T to decohere. As outlined in [112], the decoherence condition corresponds to picking up a phase difference φ of order 1.

$$\varphi = \left(\frac{k_T^2}{2\omega} \Delta z \right) \sim \frac{\hat{q} L}{2\omega} L = \frac{\omega_c}{\omega}$$

(7.3)

3 This assumption allows a treatment of ‘time-ordered’ scattering events, neglecting the amplitudes from four-gluon vertices as in Fig. 1 in [111].

4 In the limit of strong LPM suppression, where BDMPS is valid, these two formalisms have been shown to be equivalent [113].
7.2 Cu+Cu Spectra Results

Figure 7.5: Medium induced gluon radiation distribution $\omega dI/d\omega$

(a) Multiple scattering limit (BDMPS)

(b) Thin plasma limit (GLV)

where the characteristic gluon frequency $\omega_c = \hat{q} L^2/2$ sets the energy scale of the induced radiation. In \[\{112\}\], a kinematic constraint is imposed, requiring that $k_T < \omega$ (the transverse momentum of the radiated gluon cannot exceed its own energy). This condition introduces a dimensionless scale parameter R, that relates the characteristic scales of ω^2 and k_T^2, i.e. ω_c^2 and $\hat{q} L$, respectively (the latter from its definition in Eq. 7.2).

$$R = \frac{2\omega_c}{\hat{q} L} = \frac{1}{2} \hat{q} L^3 = \omega_c L \quad (7.4)$$

Similar equations govern the single hard scattering limit:

$$\bar{\omega}_c = \mu^2 L^2/2 \quad \text{and} \quad \bar{R} = \bar{\omega}_c L \quad (7.5)$$

where μ is the transverse momentum transferred in the single hard scattering.

The spectra of induced gluon radiation are shown in Fig. 7.5 for the two scenarios. Notice that the single hard scattering scenario results in a harder spectrum of gluons than the multiple scattering, but that the gross features are similar. The overall scale of the spectrum is governed by ω_c, while R determines the shape as ω goes to zero. For the limit of $R \rightarrow \infty$, which corresponds to an infinitely extended medium, the BDMPS and GLV results are retrieved.

In the infinite energy limit, the average energy loss can be expressed as the integral over the induced radiation spectrum:

$$\langle \Delta E \rangle_{R \rightarrow \infty} = \lim_{R \rightarrow \infty} \int_0^\infty d\omega \frac{dI}{d\omega} \approx \frac{2\alpha_s C_F}{\pi} \left(\sqrt{\frac{\omega_c}{2\bar{\omega}}} \right)^2 \left(\frac{1}{12} \left(\frac{\omega_c}{\bar{\omega}} \right) \right)^2 \text{ for } \omega < \omega_c \quad (7.6)$$
It is clear from Fig. 7.5 that this integral is dominated by the region $\omega < \omega_c$. Integrating Eq. 7.6 up to ω_c gives:

$$\langle \Delta E \rangle_{R \to \infty} \propto \alpha_s C_R \omega_c \propto \alpha_s C_R \hat{q} L^2$$

(7.7)

The quadratic dependence of energy loss on path length is thus retrieved for an infinitely energetic parton traversing a static medium of infinite extent. Note, however, that this is not the general case. In particular, for a rapidly expanding medium, the density ρ (and thus the transport coefficient \hat{q}) decreases as $1/L$, making the energy loss linear with path length.

7.2.3 Centrality Dependence of Suppression

At RHIC, the background energy of the underlying event makes direct jet reconstruction difficult. While there have been recent attempts at full jet reconstruction [115], the most effective tools for measuring jet quenching are still high-p_T single-particle spectra and two-particle correlations. To distinguish between various models of parton energy loss, it is useful to vary the geometry of the medium, such that partons must traverse different path lengths.

To this end, the centrality dependence of the nuclear modification factor, R_{AA}, is shown in Fig. 7.6 [63] for different p_T bins in 200 GeV collisions in both the Cu+Cu and Au+Au system. Since the published PHOBOS Au+Au spectra at 200 GeV did not achieve the same statistics that allowed the measurement of the Cu+Cu spectra out to 7 GeV/c, Au+Au results from the PHENIX collaboration are also included for comparison [58].

Within the systematics of the measurement, these data show a simple scaling with the volume of the system (measured either by N_{part} or N_{coll}), that is for the same number of participant nucleons, the Cu+Cu and Au+Au spectra are strikingly similar over the broad range of p_T that was measured. This observed scaling has been extended by PHENIX out to $p_T \sim 15$ GeV/c [117]. While the statistics are more limited at $\sqrt{s_{\text{NN}}} = 62.4$ GeV, this scaling appears to hold for the lower energy as well (see Fig. 7.7 [63]).

Parton Quenching Model

A number of predictions were made for the Cu+Cu system that had successfully described the centrality dependence of high-p_T charged hadron yields and back-to-back correlations in the Au+Au system. One such model is the Parton Quenching Model (PQM), which uses the BDMPS quenching weights described in Sect. 7.2.2 and a realistic collision geometry to describe parton energy loss [116]. The overall scale of \hat{q} was set by fixing the observed suppression to match the data in central Au+Au collisions. Using this prescription, the model was able to describe the centrality dependence of R_{AA}, as shown in Fig. 7.6. One complication arose in how to treat lower energy partons, to which the calculated quenching weights assigned an increasing probability of losing $\Delta E > E$.

5Note that the values of N_{coll} for Cu+Cu and Au+Au collisions with the same N_{part} are indistinguishable (see Fig. 4.4(c) on page 52).
Figure 7.6: The nuclear modification factor, R_{AA}, as a function of the number of participants, N_{part}, in bins of transverse momentum, p_T, for Cu+Cu (closed symbols) and Au+Au (open symbols) collisions at $\sqrt{s_{NN}} = 200$ GeV [57, 58]. The gray band in the first frame represents the relative uncertainty on $\langle N_{\text{coll}} \rangle$; the solid lines show the effect of this uncertainty on the measured R_{AA}. The bands at high-p_T show the predictions of the PQM model [116].
The different methods for truncating the high-energy tail introduced the major source of uncertainty in the model.

Using the same constant of proportionality between nuclear overlap density and \hat{q} from central Au+Au, a prediction was made for the centrality evolution in Cu+Cu. Our Cu+Cu results in Fig. 7.6 suggest that PQM slightly overestimates the suppression in the smaller system, deviating from the observed N_{part} scaling.

Predictions of N_{part} scaling

There are a number of models that do explicitly predict a scaling between systems at the same N_{part}. The simple jet absorption model described in [118] assigns a survival probability to each produced jet, using only two inputs. First, a Glauber-based collision geometry determines the locations of the hard scatterings and the density distribution of the medium in the transverse plane. Then, the probability of jet absorption is treated as quadratic in path length and attenuated by an expanding medium (equivalent to a static medium with linear energy loss).

This prescription is similar to the aforementioned PQM model. However, instead of rigorously employing quenching weights to determine the energy loss, the survival probability of each jet, e^{-KL}, is calculated from the path length density integral I and...
7.2 Cu+Cu Spectra Results

Figure 7.8: (a) Prediction of R_{AA} for central (0-5%) collisions of lighter nuclei (open circles joined by dashed line) compared to the centrality dependence in Au+Au (solid line) [118]. The lower dashed line corresponds to N_{part} scaling. (b) Scaling predicted by I. Vitev [119] and model of corona effect by V. Pantuev [120], with PHENIX Cu+Cu R_{AA} data taken from [117].

a free parameter K, called the absorption coefficient. Assuming the same absorption coefficient for all systems, this model predicted that central collisions of smaller nuclei would exhibit the same suppression as collisions of larger nuclei at the same N_{part} (see Fig. 7.8(a)). This is a simple consequence of geometry; to first order, the volume of the system scales with N_{part}.

The GLV model predicted an explicit scaling between $\ln R_{AA}$ and $N_{\text{part}}^{2/3}$ [119] based on dimensional considerations. The result is readily derived from the expression for fractional energy loss in a (1+1)-dimensional Bjorken expansion, in the limit of large parton energy. This is achieved by simply substituting N_{part} for the gluon density, $N_{\text{part}}^{1/3}$ for the path length, and $N_{\text{part}}^{2/3}$ for transverse area.

7.2.4 Further Observations

The similar high-p_T spectra in Au+Au and Cu+Cu collisions with the same N_{part} can be explained by similar average path lengths (despite the quite different path length distributions). It is not obvious, however, that this similarity ought to persist to such low momentum. As described in Sect. 7.2.1, particle production in heavy-ion collisions is expected to be influenced by many effects. These include p_T-broadening due to initial and final state multiple scattering (the ‘Cronin effect’), the medium-induced energy loss of fast partons, and the effects of collective transverse velocity fields as well as parton recombination [63, 100]. Considering the significantly different geometries of Au+Au and Cu+Cu collisions with the same number of participant nucleons, it is not obvious, a priori, that these effects should conspire to give similar spectra in both systems over such a large range in p_T. This simple scaling of the hadron yields over a broad range of
transverse momentum, as well as a broad range of pseudorapidity \cite{89}, appears to be a fundamental feature of heavy ion collisions at these energies. A full explanation of this phenomenon may well present a challenge to theoretical models of particle production.
8 Obtaining Correlated Yields

As discussed in Ch. 5, the PHOBOS experiment is capable of measuring the angular position of charged particles over a very broad acceptance, as well as the momentum information over a more limited region. Both of these components are used in the analysis of \(p_T \)-triggered correlations over a large range of relative pseudorapidity \((-4 < \Delta \eta < 2)\) and over the complete azimuthal angle \((0 < \Delta \phi < 2\pi)\). The trigger particles for this analysis are tracks reconstructed in the Spectrometer with transverse momentum, \(p_T > 2.5 \text{ GeV/c} \). Associated particles, whose angular position is measured relative to the trigger, come from merged hits in the Octagon subdetector. Since the Octagon is a single-layer detector, there is no \(p_T \) selection on the associated particles. All particles escaping the beam pipe enter into the correlation, corresponding to a low-\(p_T \) cutoff of 4 MeV/c at \(\eta = 3 \) and 35 MeV/c at \(\eta = 0 \). Merged hits from the first layers of the Vertex and Spectrometer subdetectors are also used to fill the holes in the Octagon acceptance.

8.1 Constructing the Correlation Function

By design, the angular correlation function measures the increased likelihood that two particles will be found in a particular angular configuration compared to random pairs drawn from the single particle distribution. Typically, such a correlation involves the construction of a signal distribution of same event pairs and a background distribution of pairs mixed from different events. It is of critical importance that the signal and background distributions have similar multiplicity and matching detector acceptance. For this reason, the analysis has been performed in small bins of collision centrality and event vertex (1 mm).

For events that pass the cuts listed in Table 8.1, a 2-D histogram is filled in each centrality bin with the relative pseudorapidity \((\Delta \eta)\) and the relative azimuthal angle \((\Delta \phi)\) between trigger tracks and merged hits from the Octagon and the first layers of the Vertex and Spectrometer detectors. An example of the signal histogram in one \(z \)-vertex bin is shown in Fig. 8.1. To have been successfully reconstructed, the trigger track must have left a hit in the first layer of the Spectrometer. This hit is excluded from being paired with the trigger track. Since hit merging can affect adjacent pads, these are excluded as well. The analysis module stores the following information about the trigger track in a tree for later use in event mixing: \(\eta^{\text{trig}}, \phi^{\text{trig}}, \) centrality bin, and position of pad hit in first spectrometer layer.

The mixed event background uses the same event selection as the signal events except that there is no requirement of a track with \(p_T > 2.5 \text{ GeV/c} \). For each event, a trigger
8 Obtaining Correlated Yields

<table>
<thead>
<tr>
<th>Event Cuts:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger Condition</td>
</tr>
<tr>
<td>Vertex Range</td>
</tr>
<tr>
<td>Collision Centrality</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Track Cuts:</th>
</tr>
</thead>
<tbody>
<tr>
<td>η Range</td>
</tr>
<tr>
<td>Fit Probability</td>
</tr>
<tr>
<td>Secondary Rejection</td>
</tr>
<tr>
<td>Trigger (signal only)</td>
</tr>
</tbody>
</table>

Table 8.1: A summary of the event cuts and track selection criteria for the triggered correlations analysis.

![Signal and Mixed Event Background Distributions](image)

Figure 8.1: (a) Signal and (b) mixed event $\Delta \eta, \Delta \phi$ distributions in one vertex bin ($0.3 < v_z < 0.4$ cm) for the 10-15% centrality bin. Distributions are normalized by the number of triggered events.

The track is selected randomly from the stored tree making sure that it came from an event with the same centrality and z-vertex bin. The 2-D histogram of the pair distribution is filled as in the signal, again requiring that the track not be paired with a hit in the same pad as its own first hit. The mixed event background histogram is shown for one z-vertex bin in Fig. 8.1(b).

8.1.1 Correlated Yield

The quantity that will be quoted as a final result is the per trigger correlated yield of charged particles as a function of $\Delta \eta$ and $\Delta \phi$. Since the mixed event construction does not preserve the event-wide elliptic flow correlation, the background is first multiplied by this term before being subtracted from the signal.
8.1 Constructing the Correlation Function

\[
\frac{1}{N_{\text{trig}}} \frac{d^2 N_{\text{ch}}}{d\Delta\phi d\Delta\eta} = S(\Delta\phi, \Delta\eta) - B(\Delta\eta) \cdot a(\Delta\eta) \left(1 + 2V(\Delta\eta) \cos(2\Delta\phi)\right) \tag{8.1}
\]

\[
= B(\Delta\eta) \cdot \left[\frac{s(\Delta\phi, \Delta\eta)}{b(\Delta\phi, \Delta\eta)} - a(\Delta\eta) \left(1 + 2V(\Delta\eta) \cos(2\Delta\phi)\right) \right] \tag{8.2}
\]

S(\Delta\phi, \Delta\eta) and B(\Delta\eta) correspond to the acceptance corrected per trigger signal and background distributions; a(\Delta\eta) is a scale factor very close to unity, which accounts for a slight mismatch in multiplicity between signal and background; and \(V(\Delta\eta) = \langle v^2_{2\text{trig}} \rangle \langle v^2_{2\text{assoc}} \rangle \) is the product of the mean flow magnitudes for trigger and associated particles.

In practice, it is convenient to rearrange the terms of Eq. \(8.1\) such that the detector acceptance cancels in the ratio of signal and mixed events (the lowercase \(s\) and \(b\) signifying that the distributions are uncorrected)\(^1\).

8.1.2 Averaging Vertex Bins

The information over the full vertex range is combined by averaging the 250 separate vertex bins. Because the detector acceptance looks quite different for different \(z\)-vertex positions, this cannot be achieved by simply adding the histograms and dividing by their number. Naïvely, one might try to combine the results by constructing the error-weighted mean where the error in each bin is just the square root of the number of entries. However, for the ratio of two low-statistics, Poisson-distributed variables, this can be shown to consistently underestimate the true mean value. The preferred solution is the same that was used to average different bending directions in the \(p_T\) spectra analysis\[^{93}\]. The average value of the correlation in a given \(\Delta\eta, \Delta\phi\) bin becomes

\[
\langle \text{Correlation} \rangle = \sum_{\text{vertex}} \frac{\text{SignalHits}}{\text{SignalTriggers}} \cdot \frac{\text{BackgroundHits}}{\text{BackgroundTriggers}} \tag{8.3}
\]

where the sums are over the 250 vertex bins. The relative error on the average correlation is just the square root of the total number of signal hits in a given \(\Delta\eta, \Delta\phi\) bin.

Figure 8.2 shows the results of performing the correlation analysis (including the averaging over vertex bins) on simulated HIJING events run through a full detector simulation. The method accurately retrieves the known azimuthal correlation that was artificially introduced into the raw simulated events.

When measured in real data events, the dominant feature of the two-particle correlation is a term proportional to \(\cos(2\Delta\phi)\), clearly seen in Fig. 8.3, characteristic of elliptic flow. In the following section, the procedure for subtracting the sizeable flow-like correlation to extract the additional jet-like correlation is discussed.

\(^1\)Because the signal and background have been carefully constructed in small bins of \(z\)-vertex, the same acceptance factor \(A(\Delta\phi, \Delta\eta)\) relates the two raw distributions to the true distributions i.e. \(s(\Delta\phi, \Delta\eta) = S(\Delta\phi, \Delta\eta) \cdot A(\Delta\phi, \Delta\eta)\) and \(b(\Delta\phi, \Delta\eta) = B(\Delta\eta) \cdot A(\Delta\phi, \Delta\eta)\).
Figure 8.2: $\Delta \phi$ projections of the correlation function averaged over $-10 < v_z < 10$ cm for reconstructed HIJING events (0 – 10% central) run through a full detector simulation. The separate panels correspond to 0.5 unit-wide $\Delta \eta$ slices of the reconstructed correlation from -4 to 2. The raw HIJING events have had a flow correlation artificially introduced through the random reassignment of particle ϕ angles based on a $\cos(2\phi)$ modulation with a magnitude of 5% at mid-rapidity falling off linearly to zero at $\eta = 6$. The input correlation (scaled by the occupancy and suppression factors discussed in Sect. 8.2.2 and 8.2.3) is represented by the red lines.

8.2 Subtraction of Elliptic Flow

For Au+Au events at RHIC, elliptic flow introduces a harmonic term into the distribution of single particles proportional to $1 + 2v_2 \cos(2(\phi - \Psi_R))$, where Ψ_R is the reaction plane angle\(^2\). The corresponding harmonic correlation term for pairs of particles is then $1 + 2 \left\langle v_2^{\text{trig}} v_2^{\text{assoc}} \right\rangle \cos(2\Delta\phi)$. This is just a consequence of both the trigger and associated particles being preferentially produced in alignment with the reaction plane. For the purposes of this analysis, $\left\langle v_2^{\text{trig}} v_2^{\text{assoc}} \right\rangle$ is approximated as $\left\langle v_2^{\text{trig}} \right\rangle \left\langle v_2^{\text{assoc}} \right\rangle$. This approximation is actually more robust than one might think against fluctuations in v_2, which are known to be relatively large \([121]\). This is because the event plane method used by PHOBOS to measure flow is actually sensitive to the RMS not the mean \([49]\) of

\(^2\)The reaction plane angle is defined by the orientation of the initially asymmetrical overlap region between colliding nuclei. It points on a line in the transverse plane joining the centers of the two nuclei. Positive v_2 corresponds to preferential production of particles along this line.
8.2 Subtraction of Elliptic Flow

Figure 8.3: $\Delta \eta, \Delta \phi$ correlation averaged over $-15 < \nu_z < 10$ cm (15–20% central Au+Au). Note that the peculiar detector acceptance seen in Fig. 8.1 is cancelled in the ratio of signal to mixed events. Additionally, the various holes around the Spectrometer and Vertex layers are largely filled by averaging over different vertex positions.

ν_2. In a situation where fluctuations were driven by event-by-event shape differences in the initial source, ν_2^{trig} and ν_2^{assoc} should fluctuate together, making the above approximation an exact equality.

8.2.1 Fits to Published Elliptic Flow Measurements

It is clear from Eq. 8.1 that one needs to know the mean ν_2 of the trigger and associated particles to extract the correlated jet yield. To determine the value of ν_2 at arbitrary values of N_{part}, p_T and η, it is assumed that ν_2 can be factorized into three functions, each depending on a single variable. The validity of this assumption is demonstrated in Fig. 8.5 and 8.6. The ν_2 estimates were derived from fits to published PHOBOS measurements, which used the event plane procedure described in [90, 122].

Beginning with the N_{part} dependence of the track-based and hit-based PHOBOS ν_2 results [50], a third order polynomial fit is found to effectively describe the data over the centrality range of this analysis. A comparison of the fit function to the data can be found in Fig. 8.4.

The next step is to find the functional form of $\nu_2(p_T)$. The published results only show $\nu_2(p_T)$ for one minimum bias bin and for a somewhat limited range in p_T. However, a preliminary analysis of the much higher statistics 2004 data set allows the division into multiple centrality bins. In Fig. 8.5, these preliminary results are plotted after being scaled to the minimum bias value of $N_{part} = 236$ using the already described polynomial fit to $\nu_2(N_{part})$. Indeed, ν_2 does appear to factorize nicely between these two variables, an observation previously shown by PHENIX [123]. Because the $\nu_2(p_T)$ results are only needed for the trigger particle, the fit is optimized in the region
8 Obtaining Correlated Yields

Figure 8.4: $v_2(N_{part})$ from track- (red) and hit-based (black) analyses. Errors are statistical plus systematic. Black line is a 3rd-order polynomial fit to both data sets. On the right the data points have been divided by the fit. Note that the N_{part} range of this analysis is the same as the track-based v_2 analysis.

Figure 8.5: $v_2(p_T)$ divided by $v_2(N_{part})/v_2(N_{part} = 236)$. Errors are statistical only. 3-6% (black), 6-10% (red), 10-20% (blue), 20-30% (magenta), 30-40% (green), 40-50% (orange). The fit is a fourth-order polynomial with zero constant term. On the right the points are divided by the fit.

Finally, a fit to $v_2(\eta)$ is needed. The published results are shown for three centralities (3-15%, 15-25% and 25-50%). The hit-based results span a broader η range than is used in this analysis. There are also track-based results within the narrower Spectrometer range ($0 < \eta < 1.5$). In Fig. 8.6, the published $v_2(\eta)$ results are shown after scaling to the mid-central points at $N_{part} = 200$. The coefficients of the three polynomial fit functions are listed in Appendix D.

Before constructing the v_2 correlation, however, one must account for the fact that the observed magnitude of the correlation is reduced from the true value by two effects. First, v_2^{trig} is reduced because more tracks are lost due to occupancy in-plane than out-of-plane. Second, v_2^{assoc} is reduced because of secondary hits that are uncorrelated (or at least less correlated) to the reaction plane than true primary tracks.
8.2 Subtraction of Elliptic Flow

Figure 8.6: $v_2(\eta)$ divided by $v_2(N_{part})/v_2(N_{part} = 200)$ for published track- (open circles) and hit-based (closed circles) results. 3-15% (black), 15-25% (red), 35-50% (blue). The fit is an even, fourth-order polynomial. Ratio of data to fit shown in right panel.

8.2.2 Effect of Spectrometer Occupancy on Flow

To estimate the occupancy effect on v_2^{trig}, the parameterization of the occupancy factor with Spectrometer hit density is taken from Sect. 6.3.4, where studies of embedded tracks in real data events determined the fraction of tracks that are lost due to occupancy (see Fig. 8.7(a)). Then, a toy MC generates a ϕ-distribution of tracks with the assigned input flow magnitude. Using the known occupancy factor to randomly discard the appropriate fraction of these tracks based on the local occupancy, it is possible to estimate by how much the observed v_2 of trigger tracks will be diminished from the true value. The magnitude of this effect is shown in Fig. 8.7(b) as a function of multiplicity with the corresponding fit.

Figure 8.7: (a) The fraction of tracks lost to occupancy in the Spectrometer as a function of multiplicity in Au+Au for different bending directions (open and closed symbols). (b) The factor by which occupancy in the Spectrometer diminishes the observed v_2^{trig}. The dashed lines correspond to the uncertainty on this effect.
8 Obtaining Correlated Yields

8.2.3 Suppression Correction

To account for the effect of non-primary hits, a sample of HIJING events with known input flow strength is run through the full detector simulation and reconstruction. The output flow (i.e. the magnitude of the \(\cos(2\Delta \phi) \) fit to the distribution of reconstructed hit angles compared to the known HIJING reaction plane angle) is compared to the input flow. The ratio of output to input is shown for the Octagon subdetector in Fig. 8.8(a) as a function of \(\eta \) for different values of input flow strength. This ratio, known as the suppression correction, is extracted as a constant in \(\eta \) and is shown in Fig. 8.8(b) as a function of multiplicity.

Studies have shown that non-flow correlations are suppressed by the same amount as flow due to uncorrelated secondary hits. For this reason, after the \(v_2 \) subtraction has been performed, the remaining correlation is scaled up by the same suppression factor.

8.2.4 Average Flow Correlation

To compare the average correlation function in data to the estimated flow correlation, the factorized fit function is used to fill a histogram as a function of \(\Delta \eta \) and \(\Delta \phi \) with the harmonic term of Eq. 8.2 on page 95. The magnitude of \(v_2^{\text{trig}} \) is calculated using the \(\langle p_T \rangle \) and \(\langle \eta \rangle \) of trigger tracks in the particular \(z \)-vertex bin in question. These values are shown as a function of \(z \)-vertex in Fig. 8.9(a). The \(\langle p_T \rangle \) is essentially independent of vertex position with a value of \(\approx 2.95 \), whereas the \(\langle \eta \rangle \) depends strongly on vertex position, ranging from around 1.2 for the most negative positions to around 0.3 for the most positive\(^3\).

In principle, the flow correlation histograms constructed in this way could be compared at each \(z \)-vertex position to the correlation function in the data. However, due the

\[^3\text{The gaps in the acceptance of trigger tracks coincide with the particular value of } \eta \text{ where the track moves from the central region of the spectrometer to the outer wing, see Sect. 5.2.}\]
8.2 Subtraction of Elliptic Flow

Figure 8.9: (a) Trigger track p_T and η distributions as a function of z-vertex position. (b) $\Delta \eta$, $\Delta \phi$ correlation from the estimate of $v_2(N_{part}, \eta, p_T)$ averaged over all vertex bins and over centrality bins 11 through 13. Notice that the peak of the distribution is somewhat displaced to the negative $\Delta \eta$ since the $\langle \eta \rangle$ of trigger tracks is somewhat forward.

meager statistics in each vertex bin of data this is not a useful comparison, particularly as one would like to estimate the constant scale factor, $a(\Delta \eta)$, by comparing these two distributions. Instead, the flow correlation is first averaged over the full range of vertex bins (see Fig. 8.9(b)) and then compared to the averaged correlation function shown in Fig. 8.3.

8.2.5 Scale Factor

The value of the scale factor, $a(\Delta \eta)$ in Eq. 8.2, was calculated using two methods: Zero Yield at Minimum (ZYAM) \[124\] and Zero Yield at One (ZYA1) \[67\]. The ZYAM method hypothesizes that the correlated yield in $\Delta \phi$ is equal to zero at some value (i.e. there exists a point where the flow term just equals the measured correlation). In practice, the scale factor is calculated in each centrality bin as a function of $\Delta \eta$ by constructing the vertex average of the quantity

$$s(\Delta \phi) = \frac{b(\Delta \phi) \cdot [1 + 2V \cos(2\Delta \phi)]}{b(\Delta \phi) \cdot [1 + 2V \cos(2\Delta \phi)]} \tag{8.4}$$

and extracting the minimum value with a parabolic fit in the region $20 < \Delta \phi < 90$ degrees (see Fig. 8.10). Though the scale factor is easier to extract in the ZYAM method, which simply fixes the yield to be zero at $0.8 < \Delta \phi < 1.2$ radians, it is not guaranteed that the actual minimum occurs here. The more general ZYAM method is used for the mean result; a comparison to ZYA1 determines the magnitude of the systematic uncertainty introduced in finding the scale factor.

Finally, to smooth out statistical fluctuations and allow the interpolation in $\Delta \eta$ between the centers of the twelve $\Delta \eta$ slices, the extracted ZYAM scale factor is fit with a second-order polynomial in $\Delta \eta$. The scale factor is essentially flat for the the most cen-
Figure 8.10: To determine the scale factor \(a(\Delta \eta) \) in Eq. 8.2, the ratio of the raw correlation to the flow modulation (see Eq. 8.4) is fitted with a second-order polynomial in twelve slices from \(-4 < \Delta \eta < 2\) (shown for the 15-20% centrality bin). The location of the minimum is not fixed in the ZYAM method; the value at the minimum corresponds to the scale factor \(a(\Delta \eta) \).

Figure 8.11: A smooth function is fit to the extracted ZYAM scale factors versus \(\Delta \eta \) from \(-4 < \Delta \eta < 2\) in three bins of centrality.
8.3 Overall Normalization

There is one remaining term in Eq. 8.2 on page 95 that has yet to be discussed, namely the overall normalization, $B(\Delta \eta)$. Multiplying by the per-trigger, acceptance-corrected, mixed-event distribution turns the v_2-subtracted correlation function into the total yield of correlated particles. Assuming that the acceptance of pairs is just the product of the single particle acceptances, the trigger acceptance cancels when the distribution is normalized by the number of triggers. The only corrections required are for the associated particles (e.g. acceptance, efficiency, secondaries).

The corrected distribution of associated particles is measured very nicely in the published $dN/d\eta$ measurements [126]. Generating the corrected background distribution (Fig. 8.12(b)) is just a matter of convoluting the published measurements with the normalized η distribution of trigger tracks (Fig. 8.12(a)).

One important feature of this normalization method is that it effectively corrects for pair acceptance as well as single particle acceptance. Consider a region near the edge of the two-particle acceptance at $\Delta \eta = -4$. This could come from a trigger/associated pair at $(\eta_1, \eta_2) = (1, -3)$ or at $(0.2, -3.8)$. However, the associated particle in the second pair falls outside the Octagon acceptance. If the corrected background distribution, $B(\Delta \eta)$, was constructed using the limits of the Octagon acceptance, it would underestimate the

Figure 8.12: Convoluting the normalized trigger distribution with the published $dN/d\eta$ results (not shown) gives the corrected mixed-event pair distribution.

(a) Normalized trigger track distribution (b) Corrected mixed-event pair distribution
8 Obtaining Correlated Yields

Figure 8.13: Ratio of signal to background for the 10% most central collisions at long-range (left) and short-range (right). Estimated flow modulation and uncertainty are represented by the red line and shaded band. The scale factor, \(a(\Delta \eta) \), and its associated uncertainty are represented as a dashed line and a gray box, respectively.

strength of the correlation near the edges of the two-particle acceptance. By using the published results, which include the Ring subdetectors out to \(|\eta| < 6\), this problem is avoided.

8.4 Systematic Errors

The dominant systematic error in this analysis comes from the uncertainty in estimating the magnitude of \(\langle v_2^{\text{trig}} \rangle \langle v_2^{\text{assoc}} \rangle \). This flow uncertainty is typically on the order of 15-20\%, though in central collisions, where the subtracted flow is quite small compared to the resulting jet correlation, the uncertainty reaches 50\%. In Fig. 8.13, the relative sizes of the raw correlation, the flow correlation and the flow error are shown for 0-10% central Au+Au at both short-range and long-range. As can be seen in Fig. 8.13 on page 108, these errors translate to roughly a 30\% uncertainty on the measured magnitude of the ridge correlation.

Additional systematic uncertainty is introduced from the error on the assignment of the scale factor from the \(\text{ZYAM} \) procedure described in Sect. 8.2.5. This error is determined from the errors on the minimum values from the \(\text{ZYAM} \) fits (see Fig. 8.10), as well as a comparison of different assumptions (\(\text{ZYAI} \) versus \(\text{ZYAM} \)). The value of the uncertainty on the per-trigger correlated yield per unit \(\Delta \eta \) and \(\Delta \phi \) is a constant \(\pm 0.025 \).
9 Triggered Correlation Results and Discussion

As with the single-particle spectra, it is informative to compare correlations in Au+Au collisions to the more elementary p+p collision system. The choice of p+p reference and the p+p correlation structure are discussed in Sect. 9.1.

After subtracting elliptic flow and averaging over the full vertex range, the per-trigger correlated yields in Au+Au are presented in Sect. 9.2 as a function of pseudorapidity ($\Delta \eta$) and azimuthal angle ($\Delta \phi$) relative to the trigger. The results have been measured for the top half of the Au+Au cross-section and were divided into five centrality bins (0-10%, 10-20%, 20-30%, 30-40% and 40-50%). The essential new feature of this measurement – extending correlated yields out to $\Delta \eta = 4$ – is made possible by the broad pseudorapidity acceptance of the PHOBOS multiplicity array. These data, which were presented in preliminary form at the 2008 Quark Matter conference \cite{127}, are being prepared for publication at the time of writing, but should still be considered preliminary.

Besides the triggered correlations measurement described in this thesis, there exist a number of related measurements relevant to this topic. The experimental properties of Au+Au correlations in general and the 'ridge' structure in particular are discussed in Sect. 9.3.

Finally, a summary of proposed theoretical interpretations for the observed Au+Au correlation structure is contained in Sect. 9.4. Particular attention will be paid to whether this new PHOBOS measurement at large $\Delta \eta$ either rules out or supports any of these proposed mechanisms.

9.1 p+p Reference

To understand the effect of the hot, dense medium on correlated particle production in heavy ion collisions, it is essential to compare the correlation in Au+Au to an elementary reference system – p+p collisions. However, due to low statistics, this analysis could not be repeated using PHOBOS p+p data\(^1\). Instead, 5 million MC events generated by PYTHIA version 6.325 \cite{97} were used as a reference.

To test the validity of this substitution, the magnitude of the correlated yield in PYTHIA was compared to published STAR p+p results at mid-rapidity \cite{67}, using the

\(^1\)While PHOBOS has recorded approximately 100 million p+p events to tape, many are either outside the nominal vertex range or fail the IsCol criteria. Additionally, the small angular acceptance of the Spectrometer reduces the number of high-p_T trigger tracks by a factor of 50-100 compared to a similar number of generated MC events.
same triggered and associated selection criteria. Figure 9.1 shows PYTHIA to be in good agreement with the STAR results, as a function of both $\Delta \eta$ and $\Delta \phi$.

While the trigger of $p_T > 4$ GeV/c is slightly higher than the trigger used in this Au+Au analysis ($p_T > 2.5$ GeV/c), the very good agreement between STAR and PYTHIA inspires confidence in this choice of reference. It should be noted that, for this study only, the ZYAM method (see Sect. 8.2.5) was used to normalize the PYTHIA correlation to match the choice made in this STAR publication.

For comparison with the Au+Au results presented in this thesis, the correlated yield in raw PYTHIA was calculated by subtracting the per-trigger background distribution from the per-trigger signal distribution using the ZYAM method for normalization. The resulting 2-D correlated yield is shown in Fig. 9.2(a) as a function of $\Delta \eta$ and $\Delta \phi$.

There are two prominent features of the high-p_T triggered p+p correlation structure. The narrow peak centered at $\Delta \phi \approx \Delta \eta \approx 0$ is a consequence of jet fragmentation. The hadronization of a scattered parton results in a narrow cone of particles associated with the leading hadron that is the trigger. The structure at $\Delta \phi \approx \pi$ comes from particles in the away-side jet correlated with the near-side jet. The away-side correlation is similarly narrow in $\Delta \phi$ but extended in $\Delta \eta$. The broad $\Delta \eta$ extent of the away-side can be understood by considering hard scatterings between partons with very different fractions of the total momentum of the colliding protons.

9.2 Correlations in Au+Au

In central Au+Au collisions, particle production correlated with a high-p_T trigger is strongly modified. Figure 9.2(b) shows the conditional yield of charged hadrons relative to a trigger with $p_T > 2.5$ GeV/c. Not only is the away-side yield much broader in
Figure 9.2: 2-D correlated yield as a function of $\Delta \eta$ and $\Delta \phi$ for (a) 200 GeV PYTHIA $p+p$ and (b) 0-30% central $Au+Au$. The same cuts are used for PYTHIA as in the $Au+Au$ data ($p_{T}^{trig} > 2.5$ GeV/c).
9 Triggered Correlation Results and Discussion

\[\begin{align*}
\text{Near-side, } |\Delta \phi| < 1.0 \\
\bullet \text{ Au+Au 0-30\% (PHOBOS)} \\
\text{ } \\
\text{ } \\
\text{ } \\
\text{ } \\
\bullet \text{ p+p (PYTHIA v6.325)}
\end{align*} \]

Figure 9.3: Near-side yield integrated over \(|\Delta \phi| < 1\) for 0-30\% Au+Au compared to PYTHIA p+p (dashed blue line) as a function of \(\Delta \eta\).

\(\Delta \phi\) than in the p+p system, the near-side peak now sits atop an unmistakable ridge of correlated partners extending continuously and undiminished all the way to \(\Delta \eta = 4\).

To examine the near-side structure more closely, the correlated yield is integrated over the region \(|\Delta \phi| < 1\) and plotted as a function of \(\Delta \eta\) in Fig. 9.3. For the most central 30\% of Au+Au collisions, there is a significant and relatively flat correlated yield of about 0.25 particles per unit pseudorapidity far from the trigger. Previously observed by the STAR experiment over a more limited \(\Delta \eta\) range [64], the ridge correlation is clearly a novel feature of the system produced in the collision of heavy ions, given its absence from the p+p correlation structure.

A more detailed examination of the correlation structure is possible by projecting the correlation onto the \(\Delta \phi\) axis as in Fig. 9.4. In the top row of that figure, the correlated yield in Au+Au is compared for three centrality bins (0-10\%, 20-30\%, and 40-50\%) to PYTHIA-simulated p+p events at short-range (i.e. integrated over the region \(|\Delta \eta| < 1\)). In the bottom row, the same comparison is shown at long-range (i.e. integrated over the region \(-4 < \Delta \eta < -2\)).

Focusing first on the away-side correlation, a number of features become apparent. First, the shape of the correlation is considerably broader in \(\Delta \phi\) for Au+Au collisions compared to p+p in all measured centrality bins. Additionally, the magnitude of the away-side yield is enhanced relative to p+p, increasingly so for more central Au+Au collisions. Finally, within the systematics associated with the \(v_2\) subtraction, the away-side correlation seems to have a similar shape and centrality dependence at both short- and long-range. This last observation is explored more quantitatively in Fig. 9.5, where
9.2 Correlations in Au+Au

Figure 9.4: Projections of the correlated yield versus $\Delta \phi$ at short-range (top row, $|\Delta \eta| < 1$) and long-range (bottom row, $-4 < \Delta \eta < -2$) for three centrality bins (most central on left). The points with very poor statistics in the top row correspond to the $\Delta \phi$ locations of the Spectrometer holes (see Fig. 8.1 on page 94). Dashed, blue line is p+p PYTHIA for comparison. Black boxes represent the uncertainty from flow subtraction. The error on the ZYAM procedure is shown as a gray band at zero.

Integrated away-side yields ($\Delta \phi > 1$) are presented as a function of participating nucleons (N_{part}) at short- and long-range (open and filled squares respectively).

Moving to the near-side, an equally rich picture emerges. At short-range (top row of Fig. 9.4), a narrow peak at $\Delta \phi \approx 0$ is observed. In central collisions, this peak has a large contribution in excess of the p+p jet yield. The near-side, short-range correlation decreases in magnitude with decreasing centrality, reaching the same height as p+p in the 40-50% bin.

At long-range (bottom row of Fig. 9.4), the persistence of the ridge correlation to very large $\Delta \eta$ is evident in the peak at $\Delta \phi \approx 0$ for central Au+Au collisions. This effect is completely absent in more elementary systems. The ridge yield also decreases in magnitude for more peripheral collisions until it disappears in the 40-50% bin.

The similar centrality dependence of the short- and long-range yields in excess of the p+p jet correlation suggests a decomposition of the near-side correlation into distinct jet and ridge components. The separation into two components is supported by previous STAR measurements of the associated particle p_T spectra, the centrality inde-
Figure 9.5: Average near-side ridge yields ($|\Delta \eta| < 1$) and away-side yields ($\Delta \phi > 1$) as a function of N_{part} at both short-range ($|\Delta \eta| < 1$) and long-range ($-4 < \Delta \eta < -2$) for the top 50% of the total inelastic cross-section. The away-side yields have been scaled down by a factor of 2. To extract the ridge component of the near-side yield at short-range, the PYTHIA jet yield has been subtracted. Boxes correspond to the combined v_2 and ZYAM systematic errors.

After subtracting the near-side PYTHIA yield, the ridge yield is the same within experimental uncertainties at all $\Delta \eta$. It decreases as one goes towards more peripheral collisions and is consistent with zero in the most peripheral bin analyzed (40-50%). While the systematic errors do not completely exclude a smooth disappearance of the ridge as one approaches $p+p$ collisions, these data suggest the ridge may have already disappeared by $N_{\text{part}} = 80$.

A summary of the main findings of this analysis of high-p_T triggered two-particle correlations is listed below:

- A broadened away-side correlation persists over the full pseudorapidity range.
- For central Au+Au collisions, the near-side ridge continues to at least $\Delta \eta = 4$.

110
9.3 Experimental Properties of the Ridge

A near-side correlation structure elongated in $\Delta \eta$ was first observed by STAR in the study of charge-independent autocorrelations at $\sqrt{s_{NN}} = 130$ GeV [128]. The properties of this elongated structure have since been extensively studied through both autocorrelations and triggered correlations near mid-rapidity. This includes varying the trigger and associated p_T requirements, using identified trigger particles, and selecting on the relative position of the trigger to the reaction plane angle. In addition, correlations have been measured for associated particles at forward pseudorapidity.

Figure 9.6: Charge-independent autocorrelations in $\Delta \eta, \Delta \phi$ after subtraction of dipole and quadrupole terms in $\Delta \phi$ [128]. Notice the much broader ‘minijet’ peak in the more central collisions.

- The ridge yield decreases for more peripheral collisions; it is consistent with zero at $N_{\text{part}} \approx 80$.

- For all centralities, the ridge yield is the same at small and large $\Delta \eta$ after subtracting a jet-like component taken from p+p PYTHIA.

Precise, quantitative measurements of correlations between particles can shed light on the evolution of the system produced in heavy ion collisions and the underlying mechanisms responsible for particle production. This analysis adds a very important piece to the puzzle, namely the longitudinal extent of the ridge correlation. However, there are many other known features of correlated particle production, and any serious theoretical description ought to simultaneously account for these various features. Therefore, a brief description of related correlation measurements is included first, before addressing the numerous theoretical interpretations.
Figure 9.7: Same-side Gaussian peak amplitude and $\Delta \eta$ width as a function of centrality at two energies taken from [130]. Centrality is measured in transverse particle density, i.e. $\frac{3}{2} \frac{dN_{ch}/d\eta}{\langle S \rangle}$, where $\langle S \rangle$ is the initial overlap area. Transverse density was proposed as a scaling variable for the two collision energies. The location of the abrupt transition corresponds to approximately $N_{\text{part}} = 100$ at 62.4 GeV and $N_{\text{part}} = 40$ at 200 GeV.

9.3.1 Autocorrelations

Inclusive correlations, or ‘autocorrelations’, avoid the distinction between trigger and associated particles, instead pairing all charged hadrons on equal footing. As a result, such correlations are dominated by low-momentum pairs.

PHOBOS inclusive correlation measurements have largely focused on the strength of the one-dimensional Gaussian correlation in $\Delta \eta$, parameterized generically in terms of ‘cluster’ size and width [129]. The analysis integrated over $\Delta \phi$ to avoid having to subtract a flow term. However, this integration prevents direct access to ridge-like correlations among inclusive particle pairs. Nonetheless, the intriguing splitting between near-side and away-side cluster size as a function of centrality may be an indirect manifestation of such a ‘soft ridge’.

The analysis of autocorrelations in STAR attempts to decompose the correlation structure into a minimum set of unique features [130]. In the p+p system, p_T correlations suggest a natural separation of hard and soft processes. The soft part is fit with a one-dimensional Gaussian in $\Delta \eta$ (as in the PHOBOS analysis) attributed to string fragmentation and an exponential near $\Delta \phi = \Delta \eta = 0$ to account for the Hanbury-Brown and Twiss Effect (HBT) and e^+e^- conversions. The hard part is fit with a two-dimensional Gaussian centered at $\Delta \phi = \Delta \eta = 0$ ascribed to ‘minijets’ and a $- \cos(\Delta \phi)$ term characterizing the conservation of momentum on the opposite-side. In the Au+Au analysis one additional term is added, proportional to $\cos(2\Delta \phi)$ to account for elliptic flow.

Extracting the ‘minijet’ contribution from the Au+Au fit gives an interesting behavior
9.3 Experimental Properties of the Ridge

as a function of centrality. For peripheral Au+Au events, the ‘minijet’ term is symmetric in $\Delta \phi$ and $\Delta \eta$ as for p+p collisions. However, increasing the centrality of the Au+Au events results in a rapid change around mid-peripheral collisions. As can be seen in Fig. 9.7 [130], there is a rapid increase in the $\Delta \eta$ width as well as the total yield of the ‘minijets’. This feature has been referred to as the so-called ‘soft ridge’ — an extended near-side correlation, first seen in 130 GeV Au+Au autocorrelations (see Fig. 9.6 [128]).

9.3.2 Jet-Ridge Decomposition

Extensive systematic studies of high-p_T triggered correlations have been done by the STAR experiment. Assuming that the near-side correlation can be decomposed into jet and ridge components corresponding to distinct underlying phenomena, the following observations were made [64]:

- The ridge yield is largely independent of the trigger p_T up to $p_T^{\text{trig}} \sim 9 \text{ GeV}/c^2$.

- The jet yield is independent of centrality and in agreement with the yield in p+p collisions. In contrast, the ridge yield increases for more central Au+Au collisions, consistent with the PHOBOS results shown in Fig. 9.5.

- The associated p_T spectrum of ridge particles is similar to the inclusive spectrum and does not depend on p_T^{trig}. On the other hand, the jet spectrum is significantly harder with a p_T^{trig} dependence that is consistent with jet fragmentation.

- After subtracting the ridge component, the jet fragmentation function ($z_T = p_T^{\text{assoc}}/p_T^{\text{trig}}$) is independent of p_T^{trig} and similar to d+Au measurements.

These observations support the ansatz that the near-side correlation consists of a jet component similar to p+p or d+Au events and a ridge component with similar properties as the medium. Additionally the ridge component is found to be nearly independent of the flavor [131] and the meson/hyperon classification [132] of the trigger particle.

Finally, preliminary measurements show the jet yield to be essentially independent of the angle between the trigger and the reaction plane, whereas the ridge yield appears to be larger for in-plane triggers ($\phi^{\text{trig}} - \Psi_R \approx 0$) than out-of-plane triggers ($\phi^{\text{trig}} - \Psi_R \approx \pi/2$) [133]. The proposed interpretation of this result is that the medium is more opaque to out-of-plane jets, such that surviving in-plane jets may have deposited more energy into correlated ridge particles.

2This observation has been touted as evidence that the ridge is associated with hard partonic scattering and jet production, as opposed to recombination, for example. In light of the proposed theoretical mechanisms in Sect. 9.4.2, this observation might instead suggest that the surface bias induced by jet quenching has little dependence on trigger p_T.

113
9 Triggered Correlation Results and Discussion

Figure 9.8: Preliminary STAR correlation functions between $p_T > 3$ GeV/c triggers at mid-rapidity and forward associated particles, taken from [134]. (a) Correlation functions in 60-80% and 20-40% central Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV. (b) Correlation functions for two associated p_T ranges in 0-10% central Au+Au collisions.

9.3.3 Forward STAR Measurements

The STAR experiment can measure correlations between associated particles at forward pseudorapidity detected in the Forward Time Projection Chamber (FTPC) [135] and trigger particles at mid-rapidity detected in the Time Projection Chamber (TPC) [136]. The preliminary results of this measurement, presented at the 2006 Quark Matter Conference [134], showed a possible ridge correlation at forward rapidities in central events that was absent in more peripheral events. Although the systematic uncertainties made it impossible to rule out zero long-range correlations (see Fig. 9.8(a) [134]), the significance of the result was improved by using only associated particles with $p_T > 1$ GeV/c. As shown in Fig. 9.8(b) [134], there is a non-zero long-range correlation for the higher associated p_T cut.

Despite the larger systematic uncertainties from which it suffers, this measurement still provides important evidence that the long-range ridge correlation does not arise exclusively from very low-p_T particles.

9.4 Theoretical Interpretation

In recent years, many different theoretical mechanisms have been proposed that qualitatively describe an extended near-side ridge correlation. In the broadest sense, these can be considered to belong to three very different families:

1. Jet fragmentation modified by the medium.

2. Longitudinally separated particles with sources correlated in the transverse plane, coupled to strong radial flow.
9.4 Theoretical Interpretation

Figure 9.9: Diagram of vacuum fragmentation, the broadening in the presence of a dense medium, and the anisotropy introduced by a flowing medium, taken from [137].

3. Particles in the medium that have been excited by their proximity to the trajectory of the jet trigger.

9.4.1 Medium Modification of Fragmentation

It has been proposed that the modified near-side correlation structure in Au+Au collisions is due to the effect of the medium on jet fragmentation. Among the theories in this family, the mechanism responsible for the asymmetrical broadening of radiated gluons varies substantially, including coupling to longitudinal flow [137], turbulent color fields [138], anisotropic plasma [139], and glasma [140]. Nonetheless, all the theories within this family attribute the correlated particle production to jet fragments.

Longitudinal Collective Flow

In a dense medium, Brownian motion of jet fragments induces a broadening of the jet structure (see Fig. 9.9 [137]). However, the medium-induced gluon radiation depends not just on the energy density of the medium, but also on its collective flow [137]. The presence of longitudinal flow can break the rotational symmetry of the jet energy distributions in $\Delta \eta \times \Delta \phi$.

This scenario was able to reproduce the centrality dependence of the $\Delta \eta$ and $\Delta \phi$ widths of triggered correlations measured in STAR [141]. It has not been explained, however, how this mechanism would produce the relatively flat structure of the near-side ridge correlation, not to mention its extent over four units of rapidity.
Anisotropic Plasmas, Turbulent Color Fields, and Glasma

It is suggested by Romatschke [139] that rapid expansion can result in a large anisotropy in the momentum distribution of partons making up the medium. Propagating a heavy quark through this expanding medium results in a greater broadening in the longitudinal direction due to elastic collisions. It is proposed that this mechanism could be responsible for the ridge.

A number of issues with this explanation are noted in [138]. First, elastic scatterings are likely not the main source of energy loss for the light partons that are responsible for the ridge. Also, the large values of momentum anisotropy ($\xi \sim 10$) that are required to generate a ridge at $\Delta \eta = 2$ are not consistent with the low shear viscosity ($\eta/s \leq 0.3$) implied by the data.

Majumder et al [138] provide yet another possible mechanism involving plasma instabilities. Turbulent color fields, which have already been considered as a candidate for the fast equilibration times of the medium, are shown to induce a broadening in the induced gluon radiation pattern. The instability pattern results in a dominance of the transversely polarized color magnetic field mode, accounting for the preferential deflection along the beam direction.

Finally, Mizukawa et al have investigated the possibility of momentum broadening in a pre-thermalized glasma state [140]. The authors show that an anisotropic broadening from this early state, corresponds to a ridge structure in the final-state hadrons after simulating energy loss in a QGP and hadronization.

Causality

An important consideration in the discussion of long-range correlations is the concept of causality. Figure 9.10 shows a space-time diagram of the system evolution after a collision of two relativistic nuclei. At the freezeout surface, interactions between particles cease – they stream freely into the detectors. Therefore, any event that has a causal influence on a particle must lie within the light cone pointing back in time from freezeout (see the shaded regions in Fig. 9.10). Correlations between pairs of particles can only come from a space-time region defined by the overlap between their respective light cones. Assuming boost invariance, the condition for the latest time a correlation can be generated is [143]:

$$\tau \leq \tau_{\text{freezeout}} e^{-\frac{1}{2}|y_A - y_B|}$$

(9.1)

where y_A and y_B are the rapidities of the two correlated particles. For a rapidity gap of four units, the causal event must occur almost an order of magnitude before freezeout.

3The momentum anisotropy parameter ξ of the expanding medium is related to shear viscosity η by the relation $\xi \approx 10\eta/(s \cdot T)$, where s is entropy, τ is proper time after the initial hard collision, and T is temperature [138].

4Glasma is the highly coherent matter making the transition from a Color Glass Condensate (CGC) initial state to an equilibrated QGP. It is characterized by the decay of longitudinal color electric and magnetic fields [142].
For long-range correlations this is a powerful constraint, but it should be noted that the condition $\eta \approx y$ is violated for very low-p_T particles. For instance, a pion with $p_T = 20$ MeV/c at $\eta = 3$ corresponds to a rapidity of only 1.16. Because the single-layer multiplicity detectors in PHOBOS cannot select on the momentum of associated particles, it has been asked whether the large $\Delta \eta$ correlations might be dominated by very low-p_T particles. However, BRAHMS measurements show that the particle spectra at $y=0$ and $y=3$ are quite similar (the inverse slope parameters vary by no more than 20%) \[144\]. As a consequence, there are very few particles with such low transverse momentum. Additionally, the forward STAR data with an associated trigger of $p_T > 1$ GeV/c show if anything an increased long-range correlation compared to the lower-p_T^{assoc} sample \[134\].

The above caveat notwithstanding, the persistence of the ridge correlation out to $\Delta \eta = 4$ seems impossible to reconcile with the coupling of gluon radiation to longitudinal flow depicted in Fig. 9.9. It is less clear how the other modified fragmentation proposals listed in Sect. 9.4.1 are affected by causality considerations, as they rely on various pre-equilibrium mechanisms. Nonetheless, without more quantitative theoretical work, it remains difficult to see how any models of this type could reproduce the relative flatness of the near-side correlation structure.
Figure 9.11: (a) The location of a hard scattering in the transverse plane of a central heavy ion collision. The survival probability depends on the path length (L), which is a function of radius (r) and jet direction (φ₁). (b) Distribution of surviving jets in the r-φ₁ plane [146]. The majority of surviving jets emerge almost radially outwards (φ₁ = 0) from points near the surface (r ≳ 5 fm). (c) Minijet correlation amplitudes extracted from STAR autocorrelations [130] as a function of centrality at √s_{NN} = 62.4 and 200 GeV. The data are compared to a blast-wave model with and without the effect of glasma flux tubes [147].

9.4.2 Coupling to Radial Flow

In the second theoretical family, the long-range correlations do not come from particle pairs within the same jet. Instead, longitudinally separated particles have sources correlated in the transverse plane. Two different scenarios for such a correlation – QCD bremsstrahlung along the beam [145, 146] and glasma flux tubes [143, 147] – will be described in detail in the following sections. In both cases, the narrowness in Δφ of the near-side structure is a consequence of the coupling to strong radial flow.

QCD Bremsstrahlung

It has been suggested in [146] that the ridge structure is essentially an artifact of the correlation between the transverse location of a hard collision and the angular distribution of the surviving jet. Because of jet quenching, high-pₜ trigger particles originate primarily from the edge of the nucleus (see Fig. 9.11(b) [146]). As shown in Fig. 9.11(a) [146], the survival probability of a trigger parton is maximized by taking the shortest path through the medium – radially outwards – coinciding with the direction of collective flow.

Hard collisions produce not just the two familiar jets, but also gluon radiation along the beam direction. In heavy ion collisions, particles associated with this QCD bremsstrahlung can be boosted transversely by the radial expansion of the system.
Since the location of the hard scattering is localized in the transverse plane, this radial boost correlates the remnants of the forward gluon radiation to the angular direction of the triggered jet at mid-rapidity.

Because the QCD bremsstrahlung has a similarly wide rapidity distribution as the bulk, a ridge structure that is quite broad in $\Delta \eta$ is naturally reproduced. It will be interesting to see if this model can reproduce the abundance of data on the correlation strength versus centrality and system size, using realistic values of radial flow and source geometry dependent jet quenching.

Glasma Flux Tubes

The existence of long-range rapidity correlations is not unique to heavy ion collisions. They have been observed in $p+p$ collisions at the CERN ISR [148], by the UA5 experiment at SPS [149], and most recently by the PHOBOS experiment at RHIC [150]. Such long-range correlations are intrinsic features of string breaking models.

Unlike in $p+p$ collisions, coupling to radial flow in heavy ion collisions can induce azimuthal correlations. In string breaking models, particles are produced independently along the length of the flux tubes. However, their common transverse position corresponds to a common transverse expansion, collimating the long-range correlation into a ridge that is narrow in $\Delta \phi$. In Fig. 9.11(c) [147], the result of combining string breaking and radial flow is shown to agree qualitatively with the centrality dependence of the autocorrelation strength measured by STAR [130].

The essential new feature of glasma flux tubes, put forth in [143], is their localization in a transverse region of size $1/Q_s$, where Q_s is the saturation scale. An improved agreement is found between this model [147] and the centrality and collision energy dependence of STAR autocorrelations [130], again using a blast-wave parameterization of radial flow. While this model has not yet been applied to triggered correlations, the longitudinal flux tubes should still produce a broad correlation in $\Delta \eta$. In fact, an explanation of the ridge involving radial flow is supported by the slightly harder spectrum of ridge particles observed in triggered correlations compared to the bulk [64]. Because most of the surviving triggers originate near the surface, correlated particles would pick up a greater than average radial boost.

9.4.3 Medium Excited by Jet Energy Loss

For the third family of theories, the ridge correlation is a consequence of medium partons that have been excited by their proximity to the trajectory of the jet trigger. The clear advantage to such an explanation is that it effortlessly explains the preponderance of evidence showing the ridge properties to be similar to the bulk (see Sect. 9.3.2). In the recombination model [151, 152], the medium is excited by the localized heating of thermal partons, while in the momentum kick model [153–155], scatterings by the trigger impart a momentum kick on medium partons in the trigger direction. One further proposal, which will not be discussed in detail due to the lack of quantitative predictions, is hydrodynamic ‘backsplash’ from the away-side jet [156]. Analogous to a raindrop
9 Triggered Correlation Results and Discussion

(a) Recombination Model

(b) Momentum Kick Model

Figure 9.12: (a) STAR triggered correlation in $\Delta \eta$ compared to recombination model with a thermal enhancement of $\Delta T \approx 15$ MeV taken from [152]. (b) Comparison of momentum kick model prediction [155] to the PHOBOS per-trigger correlated yield as a function of $\Delta \eta$ for 0-10% central Au+Au.

falling into a puddle, the penetration of the away-side jet into the medium results in a splash of oppositely directed particles (i.e. towards the near-side). This mechanism has the desirable feature that the ridge structure has the same $\Delta \eta$ extent as the away-side correlation. However, without further theoretical work it is unclear how seriously this picture should be taken.

Recombination of Energetic Thermal Partons

The development of recombination models was motivated by observations at intermediate p_T (e.g. baryon-to-meson ratios, differing p_T dependence of elliptic flow between baryons and mesons) that could be explained by the recombination of valence quarks at hadronization. Within the recombination framework, triggered correlations are described as follows: a hard parton is scattered near the surface losing energy along its trajectory through the medium. Upon exiting the medium, the parton fragments into shower particles (S) that recombine with enhanced thermal particles (T) to become both the trigger particle and the jet-like associated particles on near-side. Pairs of enhanced thermal particles (TT for mesons, TTT for baryons) recombine to form the associated particles of the ridge, which are noticeable after background subtraction due to their increased temperature. An enhancement of $\Delta T \approx 15$ MeV is found to reproduce the STAR data on the interval $|\Delta \eta| < 1.2$ (see Fig. 9.12(a) [152]).

Due to causality, correlations between particles separated by many units of rapidity must be imprinted in the very earliest moments of the collisions. It seems improbable that the energy deposited by the trigger jet can thermalize quickly enough to allow correlations at $\Delta \eta = 4$. Thus, the PHOBOS triggered correlations measurement appears to rule out this explanation of the ridge phenomenon.
Momentum Kick Model

The momentum kick model attempts to describe, as simply as possible, the essential elements of the experimentally observed correlation features: particles in the ridge share the properties of the bulk and receive their azimuthal properties from the trigger. In the model, jets are produced near the surface of the medium, suffering at most one collision before escaping. The jet-medium collision gives a momentum kick to the medium parton in the direction of the jet.

It is claimed that the jet-medium collisions sample the properties of the medium (i.e. rapidity width, p_T distribution, etc.) at the very earliest moments after the collision of the two nuclei. The magnitude of the average momentum kick and the rapidity width of the medium partons are extracted by fitting to STAR results at mid-rapidity [64] and forward rapidity [134]. Using these parameters, the model predicted the correlation in the PHOBOS acceptance quite accurately as shown in Fig. 9.12(b). It should be pointed out that the forward STAR results have quite a similar acceptance to the forward PHOBOS results, except for a slightly higher trigger p_T. (Recall that the ridge yield closer to mid-rapidity hardly depends on trigger p_T at all [64].) Therefore, it isn’t obvious that this is so much a prediction as a verification that the STAR and PHOBOS results are consistent.

One particularly interesting feature of the momentum kick model is that it is quite sensitive to the properties of the early system. For example, it requires a very wide rapidity distribution for the initial partons – much wider than the distribution of final hadrons. If this model turns out to be a valid description of correlated particle production, it may be possible to use the structure of long-range correlations to extract the temperature and rapidity distribution at the very earliest moments after the collision.

An issue that certainly needs to be addressed is finding a plausible mechanism with associated cross-sections that can account for the magnitude and frequency of these momentum kicks. In a sense, the momentum kick model is not so different from the model proposed by Shuryak in [146]. In place of the momentum kick from a trigger parton, there is a boost from radial flow aligned with the surviving jet trigger. In place of the wide distribution of initial partons in the medium, there is a wide distribution of QCD bremsstrahlung.

9.4.4 Summary of Theoretical Models

1. The longitudinal flow picture [137] is inconsistent with the very broad extent of the ridge correlation due to causality considerations. Furthermore, it has difficulty reproducing the flatness of the observed ridge in $\Delta \eta$.

2. Other proposed mechanisms for medium modification of jet fragmentation [138–140] rely on very early pre-equilibrium processes. While the observed structure of the ridge correlation is not transparently attained, further quantitative calculations will be required to determine if these theoretical proposals are consistent with this measurement.

3. The wide rapidity distribution of QCD bremsstrahlung invoked in [146] and the
9 Triggered Correlation Results and Discussion

early time of the hard scattering are certainly consistent with our result. It remains
to be seen whether quantitative theoretical calculations using realistic inputs can
reproduce experimental results.

4. The glasma flux tube model \cite{14,147} has already shown an impressive agree-
ment with the STAR autocorrelation results, though it is unclear how important
the glasma part really is to the result. It appears likely that flux tubes will be con-
sistent with this measurement, though the correlation has not yet been presented
versus $\Delta \eta$.

5. Because of causality constraints, an explanation of the ridge based on recombi-
nation of thermal partons \cite{151,152}, enhanced by the deposition of energy from
a passing jet trigger, seems inconsistent with this measurement.

6. At present, the momentum kick model has made the only quantitative predic-
tion of the near-side triggered correlation for the PHOBOS acceptance \cite{155}. It
remains to be seen whether the striking agreement can be understood in terms of
a plausible mechanism for the ‘kick’.
10 Summary

The dynamical interactions between high-p_T probes and the hot, dense medium produced in heavy ion collisions have been studied experimentally by the PHOBOS experiment. Details of the analysis of single-particle transverse momentum spectra and p_T-triggered, two-particle correlations are presented in this thesis.

Charged hadron transverse momentum distributions for Cu+Cu collisions at $\sqrt{s_{NN}} = 200$ and 62.4 GeV have been measured and compared to the Au+Au spectra measured previously at both energies [57, 95]. It has been suggested that the large suppression of the particle yields in central Au+Au collisions, compared to binary scaling of p+p, is a consequence of energy loss via final-state scatterings in the dense, strongly interacting medium [55, 60, 61]. By varying the geometry and density of the produced system, the precise nature of the energy loss mechanism was tested.

At both energies, the nuclear modification factor, R_{AA}, was shown to depend only on the size of the produced system, measured either by N_{coll} or N_{part}. The scaling of the high-p_T suppression with system size supported the prediction of a simple geometric model, which related the survival probability of a jet to a quadratic dependence of energy loss on path length in an expanding medium. Interestingly, this observed scaling between the Au+Au and Cu+Cu yields persisted over the full p_T-range that was measured ($0.25 < p_T < 7.0$). It remains a challenge to theoretical models to explain how the numerous mechanisms of particle production can conspire to produce such similar spectra over a large range of p_T.

In addition, two-particle angular correlations with respect to high-p_T trigger particles have been measured in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV over the broad longitudinal acceptance of the PHOBOS multiplicity array. The correlation structure in Au+Au was found to be strongly modified compared to p+p collisions. The magnitude of the near-side peak due to jet fragments was largely unchanged. In Au+Au, however, the jet correlation was accompanied by a novel 'ridge' structure of near-side, correlated partners that extended over the full measured pseudorapidity range ($-4 < \Delta \eta < 2$). As in previous measurements of the ridge near mid-rapidity [64], the magnitude of the correlation was seen to have a pronounced centrality dependence.

Many different theoretical mechanisms have been proposed that can qualitatively describe the presence of such an extended, near-side correlation near mid-rapidity. The large $\Delta \eta$ extent observed in this measurement places a powerful constraint on possible explanations of the ridge phenomenon. For a boost-invariant system, any effect that might have a causal influence on two particles separated by such a large rapidity gap is constrained to a region of space-time defined by the overlap of their backward-pointing light cones from freezeout. For a rapidity gap of $\Delta y = 4$, this requires that the correlation originated at least an order of magnitude earlier than freezeout. Based on these
causality considerations, the $\Delta\eta$ extent of the ridge correlation is inconsistent with jet fragmentation in a longitudinally flowing medium. Similarly, recombination models that require thermalization of the deposited jet energy are strongly disfavored.

The PHOBOS correlation measurement seems to be consistent with a number of promising models based on a coupling of longitudinal correlations to radial flow. More theoretical work is needed, however, before these models can be compared quantitatively to the experimental results.
A Fundamental Particles

<table>
<thead>
<tr>
<th>Generation</th>
<th>Particle</th>
<th>Symbol</th>
<th>Charge</th>
<th>Mass (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>Up Quark</td>
<td>u</td>
<td>+2/3</td>
<td>1.5 – 4.5 MeV</td>
</tr>
<tr>
<td></td>
<td>Down Quark</td>
<td>d</td>
<td>-1/3</td>
<td>5 – 8.5 MeV</td>
</tr>
<tr>
<td>Second</td>
<td>Strange Quark</td>
<td>s</td>
<td>-1/3</td>
<td>80 – 155 MeV</td>
</tr>
<tr>
<td></td>
<td>Charm Quark</td>
<td>c</td>
<td>+2/3</td>
<td>1.0 – 1.4 GeV</td>
</tr>
<tr>
<td>Third</td>
<td>Bottom Quark</td>
<td>b</td>
<td>-1/3</td>
<td>4.0 – 4.5 GeV</td>
</tr>
<tr>
<td></td>
<td>Top Quark</td>
<td>t</td>
<td>+2/3</td>
<td>174.3 ± 5.1 GeV</td>
</tr>
</tbody>
</table>

Table A.1: The properties of the six quarks. As discussed in Sect. 1.2, each quark can come in three colors (i.e. red, green blue). In addition, each quark is accompanied by an antiquark with the opposite charge and color. The values of the quark masses are taken from the best estimates quoted in the Particle Data Book.[157]

<table>
<thead>
<tr>
<th>Generation</th>
<th>Particle</th>
<th>Symbol</th>
<th>Charge</th>
<th>Mass (MeV/c^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>Electron Neutrino</td>
<td>ν_e</td>
<td>0</td>
<td>< 2 × 10^{-6}</td>
</tr>
<tr>
<td></td>
<td>Electron</td>
<td>e^−</td>
<td>−1</td>
<td>0.511</td>
</tr>
<tr>
<td>Second</td>
<td>Muon Neutrino</td>
<td>ν_μ</td>
<td>0</td>
<td>< 0.19</td>
</tr>
<tr>
<td></td>
<td>Muon</td>
<td>μ^−</td>
<td>−1</td>
<td>105.7</td>
</tr>
<tr>
<td>Third</td>
<td>Tau Neutrino</td>
<td>ν_τ</td>
<td>0</td>
<td>< 18.2</td>
</tr>
<tr>
<td></td>
<td>Tau</td>
<td>τ^−</td>
<td>−1</td>
<td>1777</td>
</tr>
</tbody>
</table>

Table A.2: The properties of leptons. Again, there is an oppositely charged antiparticle for each particle listed here. The listed neutrino masses are effective masses, see [158].
A Fundamental Particles

<table>
<thead>
<tr>
<th>Field Boson</th>
<th>Gravitational</th>
<th>Electromagnetic</th>
<th>Weak</th>
<th>Strong</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spin-Parity</td>
<td>2(^+)</td>
<td>1(^-)</td>
<td>1(^-), 1(^+)</td>
<td>1(^-)</td>
</tr>
<tr>
<td>Mass [GeV/c(^2)]</td>
<td>0</td>
<td>0</td>
<td>80.2, 91.2</td>
<td>0</td>
</tr>
<tr>
<td>Range [m]</td>
<td>∞</td>
<td>∞</td>
<td>10(^{-18})</td>
<td>≤ 10(^{-15})</td>
</tr>
<tr>
<td>Source</td>
<td>mass charge 'weak charge' 'color charge'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coupling</td>
<td>(\frac{G_N M^2}{4\pi \hbar c})</td>
<td>(\frac{e^2}{4\pi \hbar c})</td>
<td>(\frac{G(M c^2)^2}{(\hbar c)^3})</td>
<td>(\alpha_s)</td>
</tr>
<tr>
<td>Constant</td>
<td>(5 \times 10^{-40})</td>
<td>(1/137)</td>
<td>(1.17 \times 10^{-5})</td>
<td>(\leq 1)</td>
</tr>
<tr>
<td>Typical Lifetime [s]</td>
<td>(10^{-20})</td>
<td>(10^{-10})</td>
<td>(10^{-23})</td>
<td></td>
</tr>
<tr>
<td>Cross-section [m(^2)]</td>
<td>(10^{-33})</td>
<td>(10^{-39})</td>
<td>(10^{-30})</td>
<td></td>
</tr>
</tbody>
</table>

Table A.3: Some properties of the fundamental interactions taken from [159]. Note that the very small range of the weak force and its relative weakness at low energies is a consequence of the large mass of the W\(^\pm\) and Z bosons. \(G_N\) is Newton's gravitational constant. For the calculation of coupling constants, \(M c^2\) is taken to be 1 GeV – approximately the proton mass.
B Kinematic Variables

The rapidity variable, denoted by the symbol y, has the useful property that relativistic rapidities are additive (unlike velocities). It can be related to the velocity β (in units of the speed of light) by

$$\beta = \tanh y \quad \text{(B.1)}$$

Similarly, it is related to the Lorentz factor by

$$\gamma = \frac{1}{\sqrt{1 - \beta^2}} = \cosh y \quad \text{(B.2)}$$

Another pair of useful identities is:

$$E = m_T \cosh y \quad \text{(B.3)}$$
$$p = m_T \sinh y$$

where $m_T^2 = m_0^2 + p_T^2 = E^2 - p_z^2$.

From the above identities, rapidity can be expressed as in Eq. (B.4). In many experimental situations, when the mass of a particle is not known, it is convenient to approximate rapidity with pseudorapidity which can be determined based only on the polar angle θ (see Eq. (B.5)). This approximation is very good for high energy particles.

$$y = \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z} \right)$$
$$\approx \frac{1}{2} \ln \left(\frac{p + p_z}{p - p_z} \right) \quad \text{for} \ m^2 \ll E^2$$
$$= \frac{1}{2} \ln \left(\frac{p + p \cos(\theta)}{p - p \cos(\theta)} \right)$$
$$= \frac{1}{2} \ln \left(\frac{1 + \cos(\theta)}{\sin(\theta)} \frac{\sin(\theta)}{1 - \cos(\theta)} \right)$$
$$= \frac{1}{2} \ln \left(\frac{1}{\tan(\theta/2)} \frac{1}{\tan(\theta/2)} \right)$$

$$y \approx -\ln(\tan(\theta/2)) \equiv \eta \quad \text{(B.5)}$$
C Centrality Tables

<table>
<thead>
<tr>
<th>Bin</th>
<th>Fraction</th>
<th>EOct Cuts</th>
<th>N_{part}</th>
<th>N_{coll}</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>0% to 3%</td>
<td>723.0 to 99999.0</td>
<td>108 ± 3.1</td>
<td>208 ± 14.9</td>
</tr>
<tr>
<td>16</td>
<td>3% to 6%</td>
<td>644.6 to 723.0</td>
<td>99.9 ± 2.9</td>
<td>186 ± 13.4</td>
</tr>
<tr>
<td>15</td>
<td>6% to 10%</td>
<td>558.7 to 644.6</td>
<td>91.1 ± 2.7</td>
<td>163 ± 11.8</td>
</tr>
<tr>
<td>14</td>
<td>10% to 15%</td>
<td>468.8 to 558.7</td>
<td>79 ± 2.6</td>
<td>132 ± 9.9</td>
</tr>
<tr>
<td>13</td>
<td>15% to 20%</td>
<td>392.2 to 468.8</td>
<td>67.5 ± 2.7</td>
<td>106 ± 8.6</td>
</tr>
<tr>
<td>12</td>
<td>20% to 25%</td>
<td>326.9 to 392.2</td>
<td>56.9 ± 2.9</td>
<td>83.1 ± 7.7</td>
</tr>
<tr>
<td>11</td>
<td>25% to 30%</td>
<td>270.1 to 326.9</td>
<td>47.4 ± 3.1</td>
<td>64.3 ± 7.0</td>
</tr>
<tr>
<td>10</td>
<td>30% to 35%</td>
<td>221.1 to 270.1</td>
<td>39.7 ± 3.2</td>
<td>50.4 ± 6.4</td>
</tr>
<tr>
<td>9</td>
<td>35% to 40%</td>
<td>181.3 to 221.2</td>
<td>32.7 ± 3.3</td>
<td>38.6 ± 5.7</td>
</tr>
<tr>
<td>8</td>
<td>40% to 45%</td>
<td>146.4 to 181.3</td>
<td>26.5 ± 3.2</td>
<td>29.2 ± 5.0</td>
</tr>
<tr>
<td>7</td>
<td>45% to 50%</td>
<td>116.8 to 146.4</td>
<td>21.3 ± 2.9</td>
<td>21.9 ± 4.2</td>
</tr>
</tbody>
</table>

Table C.1: Properties of the centrality selection used in Cu+Cu collisions at $\sqrt{s_{\text{NN}}} = 200$ GeV. The EOct cuts were TrgCuts_PR05_200CuCu_B[M,P]_DCMEOct.

<table>
<thead>
<tr>
<th>Bin</th>
<th>Fraction</th>
<th>EOct Cuts</th>
<th>N_{part}</th>
<th>N_{coll}</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>0% to 3%</td>
<td>478.3 to 99999.0</td>
<td>105 ± 3.0</td>
<td>181 ± 13.5</td>
</tr>
<tr>
<td>16</td>
<td>3% to 6%</td>
<td>425.6 to 478.3</td>
<td>96.6 ± 2.8</td>
<td>161 ± 12.0</td>
</tr>
<tr>
<td>15</td>
<td>6% to 10%</td>
<td>368.8 to 425.6</td>
<td>87.5 ± 2.7</td>
<td>140 ± 10.6</td>
</tr>
<tr>
<td>14</td>
<td>10% to 15%</td>
<td>308.8 to 368.8</td>
<td>75.7 ± 2.6</td>
<td>114 ± 9.0</td>
</tr>
<tr>
<td>13</td>
<td>15% to 20%</td>
<td>256.9 to 308.8</td>
<td>63.7 ± 2.7</td>
<td>89.9 ± 7.9</td>
</tr>
<tr>
<td>12</td>
<td>20% to 25%</td>
<td>214.4 to 256.9</td>
<td>53.6 ± 3.0</td>
<td>71 ± 7.2</td>
</tr>
<tr>
<td>11</td>
<td>25% to 30%</td>
<td>177.1 to 214.4</td>
<td>44.8 ± 3.2</td>
<td>55.7 ± 6.7</td>
</tr>
<tr>
<td>10</td>
<td>30% to 35%</td>
<td>146.1 to 177.1</td>
<td>37 ± 3.3</td>
<td>43 ± 6.1</td>
</tr>
<tr>
<td>9</td>
<td>35% to 40%</td>
<td>118.8 to 146.1</td>
<td>30.6 ± 3.3</td>
<td>33.5 ± 5.4</td>
</tr>
</tbody>
</table>

Table C.2: Properties of the centrality selection used in Cu+Cu collisions at $\sqrt{s_{\text{NN}}} = 62.4$ GeV. The EOct cuts were TrgCuts_PR05_62CuCu_B[M,P]_DCMEOct_0pt750.
C Centrality Tables

<table>
<thead>
<tr>
<th>Bin</th>
<th>Fraction</th>
<th>,PdlMeanCuts</th>
<th>N_{part}</th>
<th>N_{coll}</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>0% to 3%</td>
<td>1889.7 to 99999.0</td>
<td>359 ± 10.6</td>
<td>1105 ± 79.2</td>
</tr>
<tr>
<td>16</td>
<td>3% to 6%</td>
<td>1722.3 to 1889.7</td>
<td>330 ± 10.7</td>
<td>984 ± 73.0</td>
</tr>
<tr>
<td>15</td>
<td>6% to 10%</td>
<td>1519.0 to 1722.3</td>
<td>297 ± 9.8</td>
<td>847 ± 63.2</td>
</tr>
<tr>
<td>14</td>
<td>10% to 15%</td>
<td>1290.3 to 1519.0</td>
<td>256 ± 8.2</td>
<td>685 ± 50.5</td>
</tr>
<tr>
<td>13</td>
<td>15% to 20%</td>
<td>1085.3 to 1290.3</td>
<td>215 ± 6.8</td>
<td>537 ± 39.5</td>
</tr>
<tr>
<td>12</td>
<td>20% to 25%</td>
<td>902.8 to 1085.3</td>
<td>181 ± 6.3</td>
<td>421 ± 32.0</td>
</tr>
<tr>
<td>11</td>
<td>25% to 30%</td>
<td>743.4 to 902.8</td>
<td>149 ± 6.2</td>
<td>321 ± 26.4</td>
</tr>
<tr>
<td>10</td>
<td>30% to 35%</td>
<td>603.0 to 743.4</td>
<td>123 ± 6.3</td>
<td>245 ± 22.6</td>
</tr>
<tr>
<td>9</td>
<td>35% to 40%</td>
<td>483.4 to 603.0</td>
<td>101 ± 6.3</td>
<td>186 ± 19.5</td>
</tr>
<tr>
<td>8</td>
<td>40% to 45%</td>
<td>377.8 to 483.4</td>
<td>82.1 ± 6.2</td>
<td>138 ± 16.7</td>
</tr>
<tr>
<td>7</td>
<td>45% to 50%</td>
<td>288.5 to 377.8</td>
<td>64.9 ± 5.8</td>
<td>99.1 ± 13.7</td>
</tr>
</tbody>
</table>

Table C.3: Properties of the centrality selection used in Au+Au collisions at $\sqrt{s_{\text{NN}}} = 200$ GeV. The ,PdlMean cuts were TrgCuts_PR04_200_BM and TrgCuts_PR04_200_BP. The N_{coll} numbers are those quoted in [63]. Earlier papers [57, 95] used the values directly from HIJING (see Sect. 4.3.3).

<table>
<thead>
<tr>
<th>Bin</th>
<th>Fraction</th>
<th>,PdlMeanCuts</th>
<th>N_{part}</th>
<th>N_{coll}</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>0% to 3%</td>
<td>709.3 to 99999.0</td>
<td>350 ± 11.2</td>
<td>935 ± 68.4</td>
</tr>
<tr>
<td>16</td>
<td>3% to 6%</td>
<td>653.1 to 709.3</td>
<td>323 ± 10.2</td>
<td>838 ± 60.8</td>
</tr>
<tr>
<td>15</td>
<td>6% to 10%</td>
<td>585.8 to 653.1</td>
<td>290 ± 8.9</td>
<td>723 ± 51.9</td>
</tr>
<tr>
<td>14</td>
<td>10% to 15%</td>
<td>506.9 to 585.8</td>
<td>246 ± 7.5</td>
<td>575 ± 41.3</td>
</tr>
<tr>
<td>13</td>
<td>15% to 20%</td>
<td>433.3 to 506.9</td>
<td>207 ± 6.9</td>
<td>455 ± 33.7</td>
</tr>
<tr>
<td>12</td>
<td>20% to 25%</td>
<td>366.8 to 433.3</td>
<td>173 ± 6.8</td>
<td>354 ± 28.1</td>
</tr>
<tr>
<td>11</td>
<td>25% to 30%</td>
<td>306.1 to 366.8</td>
<td>142 ± 6.8</td>
<td>272 ± 23.9</td>
</tr>
<tr>
<td>10</td>
<td>30% to 35%</td>
<td>250.8 to 306.1</td>
<td>116 ± 6.8</td>
<td>206 ± 20.4</td>
</tr>
<tr>
<td>9</td>
<td>35% to 40%</td>
<td>201.4 to 250.8</td>
<td>95.8 ± 6.6</td>
<td>158 ± 17.6</td>
</tr>
<tr>
<td>8</td>
<td>40% to 45%</td>
<td>159.9 to 201.4</td>
<td>77.7 ± 6.3</td>
<td>118 ± 14.8</td>
</tr>
<tr>
<td>7</td>
<td>45% to 50%</td>
<td>122.1 to 159.9</td>
<td>62.6 ± 5.7</td>
<td>88 ± 12.2</td>
</tr>
</tbody>
</table>

Table C.4: Properties of the centrality selection used in Au+Au collisions at $\sqrt{s_{\text{NN}}} = 62.4$ GeV. The ,PdlMean cuts were TrgCuts_PR04_63_BM and TrgCuts_PR04_63_BP. The N_{coll} numbers are those quoted in [63]. Earlier papers [57, 95] used the values directly from HIJING (see Sect. 4.3.3).
D Elliptic Flow Fit Coefficients

<table>
<thead>
<tr>
<th>p0</th>
<th>5.84295e-02</th>
<th>1.11148e-02</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td>1.65293e-04</td>
<td>1.92265e-04</td>
</tr>
<tr>
<td>p2</td>
<td>-1.29538e-06</td>
<td>1.02164e-06</td>
</tr>
<tr>
<td>p3</td>
<td>1.40226e-09</td>
<td>1.68949e-09</td>
</tr>
</tbody>
</table>

Table D.1: Table of coefficients from the third-order polynomial fit to published hit- and track-based $v_2(N_{part})$ results.

<table>
<thead>
<tr>
<th>p0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td>9.13463e-02</td>
<td>2.63615e-03</td>
</tr>
<tr>
<td>p2</td>
<td>-2.88054e-03</td>
<td>5.19738e-03</td>
</tr>
<tr>
<td>p3</td>
<td>-6.47523e-03</td>
<td>3.04650e-03</td>
</tr>
<tr>
<td>p4</td>
<td>9.66730e-04</td>
<td>5.36281e-04</td>
</tr>
</tbody>
</table>

Table D.2: Table of coefficients from the fourth-order polynomial fit to preliminary $v_2(p_T)$ scaled by the $v_2(N_{part} = 236)/v_2(N_{part})$.

<table>
<thead>
<tr>
<th>p0</th>
<th>5.16512e-02</th>
<th>8.20073e-04</th>
</tr>
</thead>
<tbody>
<tr>
<td>p2</td>
<td>-2.34520e-03</td>
<td>4.63317e-04</td>
</tr>
<tr>
<td>p4</td>
<td>4.49349e-05</td>
<td>2.63290e-05</td>
</tr>
</tbody>
</table>

Table D.3: Table of coefficients from the even, fourth-order polynomial fit to published $v_2(\eta)$ scaled by the $v_2(N_{part} = 200)/v_2(N_{part})$.
E List of Acronyms

Facilities:

AGS
Alternating Gradient Synchrotron

BNL

CERN

FAIR
Facility for Antiproton and Ion Research
(http://www.gsi.de/fair/index_e.html)

ISR
Intersecting Storage Rings

LHC
Large Hadron Collider (http://lhc.web.cern.ch/lhc/)

RHIC

SPS

Physics Terminology:

BDMPS
Baier Dokshitzer Mueller Peigné Schiff

CFL
Color-Flavor Locked

CGC
Color Glass Condensate

DIS
Deep-Inelastic Scattering

EMC
European Muon Collaboration

GLV
Gyulassy Lévai Vitev

HBT
Hanbury-Brown and Twiss Effect

LPM
Landau Pomeranchuk Migdal

NLO
Next-to-leading Order
List of Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNLO</td>
<td>Next-to-next-to-leading Order</td>
</tr>
<tr>
<td>pQCD</td>
<td>perturbative QCD</td>
</tr>
<tr>
<td>PQM</td>
<td>Parton Quenching Model</td>
</tr>
<tr>
<td>QCD</td>
<td>Quantum Chromodynamics</td>
</tr>
<tr>
<td>QED</td>
<td>Quantum Electrodynamics</td>
</tr>
<tr>
<td>QGP</td>
<td>Quark Gluon Plasma</td>
</tr>
</tbody>
</table>

PHOBOS and RHIC Hardware:

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC</td>
<td>Analog-to-Digital Converter</td>
</tr>
<tr>
<td>DAC</td>
<td>Digital-to-Analog Converter</td>
</tr>
<tr>
<td>DAQ</td>
<td>Data Acquisition</td>
</tr>
<tr>
<td>DMU</td>
<td>Data Multiplexing Unit</td>
</tr>
<tr>
<td>FEC</td>
<td>Front-End Controller</td>
</tr>
<tr>
<td>FTPC</td>
<td>Forward Time Projection Chamber (STAR) [135]</td>
</tr>
<tr>
<td>HPSS</td>
<td>High Performance Storage System [http://www.hpss-collaboration.org/hpss/index.jsp]</td>
</tr>
<tr>
<td>ONO</td>
<td>Oxide-Nitrous-Oxide</td>
</tr>
<tr>
<td>PCAL</td>
<td>Proton Calorimeter</td>
</tr>
<tr>
<td>PMMA</td>
<td>Poly-methyl-methacrylate</td>
</tr>
<tr>
<td>PMT</td>
<td>Photomultiplier Tube</td>
</tr>
<tr>
<td>RF</td>
<td>Radio Frequency</td>
</tr>
<tr>
<td>SpecCAL</td>
<td>Spectrometer Calorimeter</td>
</tr>
<tr>
<td>SpecTrig</td>
<td>Spectrometer Trigger</td>
</tr>
<tr>
<td>TAC</td>
<td>Time-to-Analog Converter</td>
</tr>
<tr>
<td>TDC</td>
<td>Time-to-Digital Converter</td>
</tr>
<tr>
<td>TOF</td>
<td>Time-of-Flight</td>
</tr>
<tr>
<td>TPC</td>
<td>Time Projection Chamber (STAR) [136]</td>
</tr>
</tbody>
</table>
T0 Time-Zero Counter
VME VERSAmodule Eurocard
ZDC Zero-Degree Calorimeter

Experimental Terminology:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMN</td>
<td>Common-Mode Noise</td>
</tr>
<tr>
<td>DCA</td>
<td>Distance of Closest Approach</td>
</tr>
<tr>
<td>HIJING</td>
<td>Heavy Ion Jet Interaction Generator</td>
</tr>
<tr>
<td>IsCol</td>
<td>Is Collision</td>
</tr>
<tr>
<td>MC</td>
<td>Monte Carlo</td>
</tr>
<tr>
<td>MinBias</td>
<td>Minimum Bias</td>
</tr>
<tr>
<td>MIP</td>
<td>Minimum Ionizing Particle</td>
</tr>
<tr>
<td>OctProbMult</td>
<td>Octagon Probability Multiplicity</td>
</tr>
<tr>
<td>PdlMean</td>
<td>Paddle Mean</td>
</tr>
<tr>
<td>PdlTDiff</td>
<td>Paddle Time Difference</td>
</tr>
<tr>
<td>PID</td>
<td>Particle Identification</td>
</tr>
<tr>
<td>RMS</td>
<td>Root Mean Square</td>
</tr>
<tr>
<td>RMSSel</td>
<td>RMS-Selected</td>
</tr>
<tr>
<td>ZYAM</td>
<td>Zero Yield at Minimum</td>
</tr>
<tr>
<td>ZYA1</td>
<td>Zero Yield at One</td>
</tr>
</tbody>
</table>
Bibliography

Bibliography

Bibliography

Bibliography

Bibliography

Bibliography

148

Acknowledgments

This work would not have been possible without the invaluable support and assistance of many people.

First and foremost, I would like to thank my advisor, Gunther Roland, who has guided me through all the challenges I have faced in my graduate studies. He has played an instrumental role in ensuring not only the success of my analyses, but the continued success of the PHOBOS experiment.

Let me express my gratitude to the other members of my thesis committee, Wit Busza and Krishna Rajagopal, for their many helpful suggestions. I would especially like to thank Wit Busza for encouraging me to take some time every week to think about the physics implications of these measurements.

It has been a pleasure working with the MIT heavy ion group. Bolek Wyslouch, Christof Roland, and Maarten Ballintijn have always been happy to lend their expertise. Gábor Veres and Constantin Loizides have been excellent role models; their own tireless work inspired everyone who had the privilege of collaborating with them. The students who came before me – Kris Gulbrandsen, Jay Kane, Conor Henderson, and Corey Reed – are responsible for teaching me most of what I know about heavy ion physics. I have truly enjoyed the relaxed, entertaining, multi-cultural environment that my fellow students – Burak Alver, Wei Li, and Siarhei Vaurynovich – bring to the office.

One nice thing about working on a small collaboration like PHOBOS is that each of my colleagues has contributed in some way to this thesis. Nonetheless, I am compelled to single out a few. I owe many thanks to Peter Steinberg, George Stephans, and Don Barton for the time and effort spent reviewing my analyses. Their attention to detail has vastly improved the quality of these results. Gerrit van Nieuwenhuizen and Rachid Nouicer built a beautiful set of silicon detectors and introduced me to the joys of making a dead channel map. Without the stellar work of Andrei Sukhanov on data acquisition and Marguerite Tonjes on data production, there would be no data to analyze! Andrzej Olszewski and Krzysztof Woźniak generated the Monte Carlo events and detector simulations that were crucial to understanding our detector response. Besides providing the centrality cuts and elliptic flow measurements that were essential to my analyses, Dave Hofman, Richard Hollis, Aneta Iordanova, Vasu Chetluru, Josh Hamblen, and Richard Bindel always ensured that meetings and conferences were a fun time.

I would like to thank Tim, Matt, Pete, Kekane, Bub, and Bradford for being great friends and making Boston such an enjoyable place to have lived over the past five years.

Finally, I owe everything to my family. Without their support and understanding (not to mention babysitting services), none of this would have been possible.