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1. Introduction

Until quite recently, the basic approach to non-linear filtering theory
was via the "innovations method," originally proposed by Kailath ca.1967
and subsequently rigorously developed by (Fujisaki, Kallianpur and Kunita
1972) in their seminal paper. The difficulty with this approach is that
the innovations process is not, in general, explicitly computable (excepting
in the well-known Kalman-Bucy case). To circumvent this difficulty the
construction of the filter can be divided into two parts: (i) a universal
filter which is the evolution equation describing the unnormalized con-
ditional density, the Duncan-Mortensen-Zakai (D-M-Z) equation and (ii)
a state-output map, which depends on the statistic to be computed, where
the state of the filter is the unnormalized conditicnal density. The
reason for focusing on the D-M-Z equation is that it is an infinite-
dimensional bi-linear system driven by the incremental observation process,
and a much simpler object than the conditional density equation (which
is a non-linear equation) and can be treated using geometric ideas. More-
over, it was noticed by this author that this equation bears striking
similarities to the equations arising in (Euclidean)-quantum mechanics
and it was felt that many of the ideas and methods used there could be
used in this context. The ideas and methods referred to here are the
functional integration view of Feynman (for a modern exposition see
(Glimm-Jaffe 1981). In many senses, this viewpoint has been remarkably
successful--although the results obtained so far have been of a negative
nature. Nevertheless the recent work has given us a deeper understanding
of the D-M-Z equation which was essential for progress in non-linear

filtering, as well as in stochastic control. The variational interpretation



of non-linear filtering given by (Fleming-Mitter 1982; Mitter 1983) and
the work on the partially observable stochastic control problem by
(Fleming-Pardoux 1982) can be considered to have arisen from the "state-

space" interpretation given to the filter.

2. The Filtering Problem Considered, And the Basic Questions

We consider the signal-observation model:

dx

» b(xt)dt + U(Xt)dwt; x(0) = xo

0<t<1 (1)
dyt h(xt)dt + dnt, where

X, w and y are JRn, ]Rmand IRp—valuedprocesses, and it is assumed that b,
P and h are vector-valued, matrix-valued and vector-valued functions
which are smooth (which mean Cw—function). It is further assumed that
the stochastic differential equation (1) has a global solution in the
sense of Ito. It is further assumed that X, and nt are independent
and Eu/”l |h(xt)|2dt<w. For much of our considerations, the function
h(-) will be a polynomial.

It is well-known that the unnormalized conditional density p(t,x)
(where we have suppressed the y( ) and w-dependence) satisfies the

D-M-Z equation:

P P
ao(t,x) = (@ —é S h3(x)) plt,x)dt + I h, (x)p(t,x)ody, (2)
§ 1 5 p t
i=1 i=1
where
n 32 n 3
e 9 , ) 5
P = I e (00 ) 6 - I b ()0 (3)
i,j=1 1 3 i=1 i

and the - denotes the Stratanovich differential. It is imperative that



we consider (2) as a Stratanovich differential equation, since the Ito-
integral, because it "points to the future," is not invariant under smooth
diffemorphisms of the x-space, and we want to study equation (2) in an
"invariant manner."

We think of p(t,-) as the "state" of the filter and is, what we have
referred to before, as the universal part of the filter. If ¢, say, is
a bounded, continuous functional then the filter typically is required to

o

compute - E(¢(xt)L¥z), where 7 = O{ys,ofsft}. If we denote by

@téE(¢(xt)Liz), then 6t is obtained from p(t,x) by integration:

b, = f¢(x)p(t,X)dX/f p(t,x)dx (4)
t IRn IRn

¢t will be referred to as a "conditional statistic," and no matter what

>

& we wish to compute, p(t,x) serves as a "sufficient statistic."

2. Pathwise Non-Linear Filtering and Analogy of the D-M-Z Equation to

Schrddinger Equations

The D-M-Z equation bears a close resemblance to a Schrondinger equation

with a random potential if we formally rewrite it as

P
L e =groex) -5 |2
E 2 1. .

1=l i=1

p
n? (x) - 2( I h,(x)(y ).) o (t,x). (5)
i i t'i
where it is the formal derivative of Y However since the operator
p
p(t,x) > I h (x) (¥
; i
i=1
this equation by utilizing a time-dependent gauge transformation. To

t)ip(t,x) is a multiplication operator we can transform

simplify the notation, we assume y is scalar and in the sequal we use

subscript x to denote partial derivative.



This leads us to ideas of pathwise nonlinear filtering (Clark 1978;

Davis 1980; and Mitter 1980.

There is as yet no theory of non-linear filtering where the observations

are:

(1)

Y(t) = h(x(t)) + w(t) (6)
where W is a physical wide-band noise and hence smooth. Define
Y(t) = y(t) and w(t) = ﬁ(t) where - denotes differentiation. Then (7)
can be written as:

dy (t) = h(x(t))dt + dn(t), of (8)

t
y (t) =f h(x(t))dt + n(t) (9)
0

Equation (9) is a mathematical model of the physical observation (7)
where the wide band noise w(t) has been approximated as "white noise"
N(t) and hence n(t) is a Wiener process.

Now, if we wish to compute
E(¢((x(t))Lﬁi) = Functional of y a.s. Wiener measure

then this filter does not accept the physical observation y. The idea is
to at least construct a suitable version of the conditional expectation
so that the performance of the filter as measured by the mean-square
error remains close when the physical observation 'Y' is replaced by
the mathematical model of the observation.

This is most easily done by eliminating the stochastic integral in
(2) by a suitable transformation (gauge transformation in the language

of physicists).

(1)

To conform to a P.D.E. viewpoint we are writing processes as w(t)
etc. instead of ﬁt etc.



Define qg(t,x) by
o(t,x) = exph(x)y(t))a(t,x) (10)
Then g(t,x) satisfies the parabolic partial differential equation
qt = (LY)*q + Gy , where
¥ = L9 - y(t)at)h (x) ¢ (a(x) = 0(x)0" (x)) (11)
Vy(t,x) = % hz(x) - y(t)Lh(x) + % yz(t)hx(x)'a(x)hx(x)

Equation (11) is the pathwise non-linear filtering equation and should
be solved for each observation path y (which can be taken to be physical

observation). Equation (1l) can be written explicitly as
1
/ G =5 tr a (x)qxx + gy(x,t) g + Vy(x,t)q

g(0,x) = po(x), the density of x(0), where

< n Baij (12)
gy=—b+y(t)ah +Y, Y.= 2 i 3= 132000
X 3 .. 0%,
i=l 73
2
y sy . 1 0 3 a,.
vt = Vvt - div(b - y(t)ahx) +5 .Z' 5275%7 3
\ i,j=1 i3]

Equation (12) can be considered to be a rigorous version of eguation

(5).

3. Schrodinger Operators, Diffusion Operators and Time Reversibility

Under suitable hypotheses (e.g. uniform elliplicity, growth conditions
on gy, v bounded above) we can express the solution of (12) as a

Feynman-Kac integral



t
- O A4
qt,x) = Ex[p (xt)exp(Lt)expslg v (t,xs)dS)] (13)
where
t t
_ -1 y _ 1 g 2
L, = '/O- a (xs)g (xs,s)dws > ‘/0. |a (xs)gy(xs,s)l ds,

and where EX denotes expectation with respect to the path space of &,
and & satisfies

dg, = o(§ )aw
k L (14)

We may ask whether the functional integration (13) can be reduced to
qguadratures. This leads us to consider the relation between Schrodinger
Operators and Diffusion Operators or what is equivalent, the relation
between the Feynman-Kac formula and the Girsanov Formula (cf. Simon 1979;
Mitter 1980).

Let us suppose that V: Hfl+ TR, be measurable, bounded below and
tends to +* as [x| + © and consider the Schrodinger operator H = -A + V
where A is the n-dimensional Laplacian. The H defines a self-adjoint
operator on LZ(H{” dx) which is bounded below and the lower bound A of
the spectrum of H is an eigenvalue of H. Let Yy(x) be the corresponding
eigenfunction of H, the so-called ground state and assume Y(x) > 0. We
normalize Y(x) i.e. i!;lUNX)lde = 1. Define the probability measure

du = IW(X)Ide, and the unitary operator

u s L2(@®; ax) + 12 (RD; dux))

£+ w'lf



n

[oo]
If we define the Dirichlet form for £, g € Cc (IR)

S(£,9) =3 anf(x) - Vg (x)dx (15)
IR
then a calculation shows

where ( , )u denotes the scalar product in Lz(ﬁf];du) and ¥ is the

diffusion operator (self-adjoint, positive)

P -%Aw + Vb-Vy 17)

b = -log Y

Now since Y satisfies

-% M (x) + V(x)P(x) =0 (assuming A=0) (18)
we get
1 2
V(x) = 3(|\71:>(x)| - Ab(x)), (18b)

where differentials have to be interpreted in the sense of distributions.

Let Et satisfy the stochastic differential equation

a, = -Vb («Et)dt + dw
(19)
Eo = x, where wt is standard Brownian motion.
Define
& 2
L, = exp(-/ Vb(E) - dE_ - 3_[ lVb(gs)l ds)
(20)

0 0
. i & y
exp(- [ Wb(E) -+ aw +5f Wb (£ ) | “as)
0 0
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(1)
which can be shown to be a Bt - martingale. Then if uw denotes Wiener

measure and if denote a new probability measure ug on the path space

of & by

then from the Girsanov theorem €t is Brownian motion under the measure
and hence we can write the solution of

Y

dp 5
§ -+ Yp = 0 0<s<t
- 3 ([/ r

(21)
p(t,x) = YP(x)

~

as p(s,x) = Esx[w(it)] where E denotes integration with respect to UE'

On the other hand, by the Generalized Ito-Differential Rule
1
db(E,) = V()AL + 5Ab(E )dt

and hence (20) reduces to

i f* 2 1t
% exp(-b(&t) +b(£o) -—2-‘/0. IVb(F,S| ds +5‘/0‘ Ab(Es)ds).

e
]

t
w(io)—lW(gt)exp(-~/ﬁ V(&S)ds)
0

and therefore
t
Ui(x) = Ex[‘P(Et)eXP(-./O. V(ES)dS] (22)

where E denotes expectation with respect to Wiener-measure and we have

derived the Feynman-Kac Formula.

(1)Bt = O{WS]Ofsft}



Equation (19) denotes a stationary, reversible (£(t) and £(-t) are

stochastically equivalent) Markov process with invariant measure U. Thus
with operators H = -A + V with V satisfying the hypotheses given above, we

have a unique stationary, reversible Markov process intrinsically

attached to it.

These ideas have a bearing on non-linear filtering (Benes 1981).

Consider the scalar non-linear filtering problem

dxt = -b(xt)dt + dwt
(23)
dyt = xtdt + dnt
and assume that
b(xt) = fx(xt)
and f satisfies
1 2 _ 1.2
2(Ifxl ~Eo) =g K (24)
The D-M-Z equation for this problem is
- 1 2
dp(t,x) = &* - 5 x)p(tx)dt + xp(t,x) - dy, (25)
We may write its solution as (using previous considerations)
1 e 2
plt,x) = Ex[exp(-f(xt) + f(xo) - 5‘4 xsds) s (26)

t 1 t 5
exp (L xsdys - [ xsds)]
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Because of the quadratic nature of the potential this function space
integration can essentially be reduced to Gaussian integrals (cf.
Mitter 1983 for an illuminating discussion). Indeed the filter for

this problem is essentially a Kalman Filter.

4. Variational Interpretation of Non-Linear Filtering

We now give a stochastic variational interpretation of non-linear
filtering in the spirit of the work of Feynman (Feynman-Hibbs 1965). We
do this by associating a stochastic control problem with the D-M-Z
equation. This section provides a justification of the ideas of Kalman
on the duality between filtering and control. The original ideas of
this section are due to Fleming-Mitter (cf. Fleming-Miktter (1982) ;
Pardoux (1981) and Bensoussan (1982)). We follow the exposition of
Pardoux and for simplicity consider the scalar case.

Let us formally denote the differential dys as ?Sds and consider

the D-M-Z equation

‘%% = [ = %’mt,x) T Wedpitaxly,

(27)

lo(o.x) = B (x)

Now p(t,x) admits the factorization

p(t,x) = 2 (t,x)p(t,x)

where p(t,x) is the density of the x-process and % (t,x) is the likelihood

function given by

t
2 (t,x) = E(exp(-f h(x )y ds - %f Ih(xs) | 2as) lxt = x) (28)
0 0



% B

Then a calculation shows that % satisfies the equation

L = R 5
a"t‘ = (L - Eh )QI + hysgf
(29)
2(0) =1
where
~ 1 32~ 3
L=—2-a(x)—2 +b°§x— with
ox
% st D ey =B

P 90X

Here L is the infinitesimal generator of the time-reversed x-process with

Now consider the transformation
L(t,x) = exp(-S(t,x)).

Then S satisfies the Bellman equation

2
98 = 1 9s 1 s 12 =2
be ~ B~ g (ax) # 2 [y ™ & (00
s() =0 .

Denote by X the reverse x-Markov process conditioned on X, = X. Then

(30) corresponds to the following stochastic control problem:

(1)
‘& + (B(X ) +u )ds + o(x )edw_ =0, s<t
S S S S S -

(31)

where the control uS is to be chosen as a Markovian feedback control to

minimize the cost function

(l)e denotes the backward Ito-differential.



=12~

t
-1~ 2 1 ~ 2 e
E[[ (a (xs)|us| F|BlE ) ~ ysl -y )ds , (32)

and S(t,x) is the optimal value function of this stochastic control problem.
In the situation that the dynamics are linear and the observation map
is linear we have a linear filtering problem and the stochastic control
problem (31)-(32) corresponds to a linear-quadratic-gaussian problem
with full observations. But the theory of this problem is essentially
the same as the linear-quadratic deterministic optimal control problem.
This explains in a clear manner the duality principle first enunciated
by Kalman.
This stochastic variational interpretation can be effectively
used to construct maximum a-posteriori density filters and maximum
likelihood filters and allow us to give a derivation of the Extended-

Kalman filter (Mitter 1983).

5. Geometric Theory of Nonlinear Filtering

In the introduction we have suggested that the fact that the D-M-2Z
equation is an infinite-dimensional bilinear equation allows us to
develop a geometrical theory of non-linear filtering. This geometrical
theory, originally independently suggested by Brockett and Clark (1980),
Brockett (1980), Mitter (1980; (1) & (2)) was motivated by the desire to measure
the complexity of nonlinear filters and to discover whether finite-dimensional
filters existed for non-linear problems. The present exposition follows
Mitter (Mitter(2) 1983).

To proceed further, we need to make a definition. By a finite-
dimensional filter for a conditional statistic $t' we mean a stochastic

dynamical system deriven by the observation:

dg, = a(g)dat + B(«Et)odyt
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defined on a finite-dimensional manifold M, so that EtEM, and a(&t) and

B(Et) are smooth vector fields on M, tcgether with a smooth output map
at = Y&, ’

which cawputes the conditional statistic. Equation (5) is to be interpreted
in the Stratanovich sense for reasons we have mentioned above. We shall also
assume that the stochastic dynamical system (5) - (6) is minimal in the
sense of (Sussmann 1977).

For the definitiom and properties of Lie algebras and Lie Groups
used in the sequel the reader is referred to the Appendix.

5.1 Lie Alaebra cf Operators Associated with the Filtering Problem

Consider the Lie algebra generated by the unbounded operators
p

L= & -}-z h?(x) and h, (x) , i=1i, ... p,
2 =1 i i

where the operators & and hi(x) (the hi considered as multiplication
operators ¢ (x) -+ hi(x)¢(x)) act on some ccmmon dense invariant domain &
(say @ = C: ®) or AR)).

This Lie algebra contains important information ané if it is fin%te-
dimensional then it is a guide that a finite dimensional universal filter
for computing p(t,x) may exist.

Care should be taken in interpreting this statement. Firstly,
referring to the definition of a finite-dimensional filter in (5), there is
2 Lie algebra of vector fields associated with it which in general is
infinite-dimensional. Therefore, the fact that the Lie algebra
LfA{L, hl, DT hp} is infinite-dimensional does not preclude the
filtering problem having a finite-dimensional solution. Secondly, even if
ey, Ryv eee hp} is finite-dimensional it does not mean that a finite-

dimensional filter exists. The reason for this is that constructing the
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filter requires integrating the Lie algebra ard it is a well-known fact
from the theory of Unitary representations of Lie Groups that not all Lie

algebra representations extend to a Group representation (see the Appendix

of this paper). However, it is still a good Question to ask as to whether

< . : b
examples of filtering problems exist where the Lie algebra ZA{L, hl' % hb;
is finite-dimensional ané also how big is this class. The answer to the
Zirst cart of this question is positive but the answer to the secend Dart
©¢f the qQuestion appears tc be trnat th:ws class is small.

Zxamnle 1: (Kalman Filterinc)
€x, = Ax_dt + bdw A =n 5
. £ & i X n matrix (33)
= n x 1 matrix
édy, = c'x dt + @& = ‘
Yo t : c n x 1 matrix
Then
n 2 n
£ 3 1 ~ ~
£ =3 z — 0. . - ° (Ax) and
2, & 0x. o ij i 8x. 1. #
i,3=1 1 xk J i=]1 i
* 1 2 (34)
L =% - 3 (c¢'x)” , where

Q = bb' .

Define the Hamiltonian matrix

-a' ce
E = , and the vector
bb' A
c -
a = ew?® .
0

and the contrecllability matrix

” « . 2n-]
Wom e SERE e s -E “a) and assume that
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Then one can show that

n n i
i-1 i-1 3
Z,m 2 E W, x v Y Elul.. x0—, and (35)
1 j=1 5} J 3=1 J+n ox.
(2,20 = (El"a)'(o -z) E"1ay, (36)
T 0
¥ = L 3 :
F = span {L, Zl, s e g zzn' 1) , where the 2y eee Z2n are independent

by hypothesis. Hence, $ has dimension 2n+2, ané this algebra is isomorphic

to the oscillator algebra of dimension 2n+2 (see the Appendix).

5.2, Invariance Properties of the Lie Alcebra and the Benes Problem.

The filter algebra is invariant under certain transformations,
namely, diffeomorphisms on the x-space and gauge transformations to be
discussed below. These ideas are best discussed on an example.

Consider the filtering problem:

(37)
dyt = xtdt + dnt

A basis for the filter algebra Fis

{L, X i I} , where

L = %—Ez? = %-xz and this is the 4-dimensional oscillator algebra.

It is easy to see that if we perform a smooth change of coordinates x> P (x)
then the Filter algebra gives rise to an isomorphic Lie aigebra, and two
filtering problems with isomorphic Lie algebras shoulé have the same
filter.

Now consider the example first treated by Benes (loc.at).

t o+
dxt f(xt)d dwt

(38)

+ r
dy xtdt dnt , where

t

f is the solution of the Riccati equation:



af 2 2 n “l6= e s .
E_ + f° = ax* + bx + ¢ , and the coefficients a,t,c are so
X

chosen that the equation has a global sclution con all of R. We want to
show that by introducing. gauge transformations, we can transform the filter

algebra of (38) to one which is isomorphic to the 4-dimensional oscillator

-

(18}

ebra. Hence, the Benes filtering prorzlem is essentially the sane as

o
B
(h

Kalmer filtering prczlem ccnsidered in examzle 1.

Tc see tnis, first note trnat fcor (38)
[L.x; = - £ , where the brackets are computed on CZ(EU.

Now consider the commutative diagram:
4
éx
CP(R) =3 C°(R)
o o)

Y W
\

C” (R) cmmseeie € (IR)
(@] (o]

&ow ¥
ax
Here ¥V is the multiplication operator ¢(x)=> Y (x)¢(x) and it is assumed
tmat Y is invertible. Then it is easy to see that
¥ e "
Yix) = epr[ £(z)éz.
o
S 3 £ i T o - 82 c £
Under the transformaticn ., the operatcr &¥* = 5 %2  ax ©
o (o o
) i §2 1., . AE Lo
transforms to Tz = SV(x), where Vix} = ==+
2 °x 2 ax

It is easy to see that the Filter algebra & is isomorphic to the Lie

zlgerra with cenerators

Vix) -

N |-
N

1 &

2 ax?
%z now see that 1f V(x) is a gualratic, then this Lie algebra is
essentially tne 4-céimensional oscillaztor alcebra corresponding to the

Xelman Filter in Example 1.

What we have done is to introduce the gauge transformation
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& (b)) = ?-l(x):(t,x) , wnere p (t,x) is the solution of the D-M-2

ecuation and what we have shown is that the Filter algebra is invariant

under this isomorphism.

However, for the class of scalar models consicderec in (12) with
general drifts £, the Benes prot-lem is the only one with a finite-
dimensicnal Lie algebra (we restrict ourselves to ciffusions defineé on
~he whole real line). Fecr further details on this point the reader
should consult Oc&ne(Ocone, 1980) .

There is no difficulty in generalizing these considerations to the

vector case, provided f is a gradient vector £field.

5.3 The Weyl Algebras ancé the Cubic Sensor Problem.

Tne Weyl algebra wn is the algebra of all pclynomial differential

3 9
operators Duxl, cee o X 5;; ;e axn .

A basis for Wn consists of all monomial expressicns

xaa B o 3 3%n
— - x@y v xoD 9”1 e
XK 1 n axB = *n
1 n
where ¢ ,8 range over all multiindices ¢ = (cl, S5 5 G’),S = (Bl, ... en).

wn can be endowed with a Lie algebra structure in the usual way. The
centre of wn, that is the idezl ¥#= {chn%[x,Z] = 0, VXEWh} is the one-
éimensional space IR - 1 and the Lie algebra wn/B . 1 is simple.

Consider the cubic sensor £filtering problem:

= L+ T &
dy xt a dﬁt

Then the filter algebra & cenerated by the operatcrs

6

2
g x , and 9& = x> is the Wevl algebra Wl/IR.

= -
L= 37 &8

-

A proof of this can be constructed by performing calculations similar to

that in Avez-Heslot (Avez-Heslot 1979).-
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5.4 Example with Pro-finite-dimensional Lie Alcebra (cf. Hazewinkel-.

Marcus 1982).

Ccnsicer the filterin

Ue]
e
N
(o)
o
-
m
4

» = W
T T -
= 2
= x dt
e, t
d = x dt + dv
Yo £ t

It can be shown that all conditional moments of St can be

computed using recursive filters. For this problem .% is generzted by

. )
2 3z i 49 1 2 2 . . - < . .
X TF YT s 7 -5 x%x =%and x =& . B basis for # is given by ZLand
o 2 ox 2 1
3 5 3% 3+ g 1
X 3ET ' 35ci ¢ 351 , 1 =90,1, ...
Ei
Definirg Jﬂ to be the ideal generated bv x SFL v X% 0562, T
i (13

P

t can be shown & is a pro-finite-dimensional filtered Lie algenra,
solvable and 3?3% is finite-dimensionall and can be realized in terms of
finite-dimensional filters corresponding tc conditional statistics.

Remark 1. -

Cther examcles of finite-dimensicnal filters can be constructed by

corbining the attributes cf the Zenes examcle consicdered in Section 5-2

=4 ) ot T
= R as z pi .
wnere £ satisfies —; + £ = ax  + bx + ¢, ané a,b,c are choser so that

This ecuation has a2 cglozal solution. Then it can be shown that all

i

conditional moments of 5_'caﬁ be ccmputeé usinc finite-cdimensicnal
-~

recursive filters (Ocone-Baras-Marcus 1982).

Remark 2

Tre Lie-algebraic and representation approach to the filtering

problerm is really concerned with the "classification" guestion Zor
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filters. The actual construction of the filter ca- ecoarently be achieved

using probabilistic techniques.

5.5 Existence and Nonexistence ¢of Finite-cdimens

Homomorphism Ansatz of Brockett.

Earlier we have given the definition of a finite-dimensional
filter. We would consider this definition to be the description of a control
system with inputs yt and output $t' Furthermore, as we have said we may
assume that this representation is minimal in the sense of Sussmann. We thus
have two ways of computing $t-—one via the D-M-Z equation and the other
via the contrecl system. The ansatz of Brockett says: Suppose there exists a
finite-dimensional filter and consider the Lie algebra of vector fields
generated by u(it) and B(Et) and call this Lie algebra L(I). Then there
must exist a non-trivial anti-homomorphism between the Filter algebra ¥ and
L(£) such that L +*qo and hi-+ Bi where Bi is the ith row of 8.

Conversely, suppose that the Lie algebra & cannct be generatec as the
Lie algebra of vector-fields with smooth coefficients on some finite-

dimensional manifold, then there exists no such homomcrprhism and hence no

conditional statistic can be computed using a finize-cdimensional filter.

The Brockett ansatz suggests a possible stratecy for cobtaining
finite-dimensional filters for computing certain corditional statistics.
Suppose, we are in the situation of Example 5.4, that is, the Lie algebra ¥
is pro-finite dimensional. Since JDJQ is finite-dimensional it has a
fzithful finite-dimensional representation (by Ado's theorem) and hence can
be realized with linear vector fields on a finite-cdimensional manifolgd
which may give rise to a bilinear filter computin¢g some conditional
statistic. However, what statistic this filter ccmrutes is in general
difficult to determine, and one has to resort to incirect and propadbilistic

technigues for this determination. One shoulé alsc remark again that Hlor
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ary of its quotients) need not be finite-dimensicnal for a finite-

dimensicrnal filter to exist.

5.6 XKelman Filter Revisited

It is instructive to view the Kalman filter in the light of the above
discussion and solve explicitly the corresponding D-il-2Z eguation. We shall

consider the special case where the Filter Lie algebra is generated by

=2 -
2 s 25 p g— + x , I). For a rigorous justification of the
2 ax

calculations which follow see Ocone 1980.
The basic idea is to do the following formal calculation which needs

to be justified.

Suppose that we want to solve the evolution equation

dp . . '
— = + y r
Y Llp u(t)pzo , where (39)

L1 and L2 are in general unbouncded linear operators and u(t) is a given

continuous function. Let us assume that the Lie algebra of cperators

r

A{L L } has a finite set of cenerators {Ll' L, -.. , L.}. we try a

17 72 2 d

solution
o(t) = exp(gl(t)Ll>exp(c2(t)L2> R exp(gd(t)Ld)O(o) (40)

wnere (o) is the initial condition. For ideas similar to this in the
context of ordinary stochastic céifferentizl eguations, see (Kunita 1981).

Differentliatinc the above, we get

- s s @emleon)en(s,w,) - e
at gl(t)Llp + gz(t)exp ,I(L)Ll Lzexp gz\t)Lz ... EXp gd(t)Ld L (o)

+ gd(t)exp(ql(t)Ll> S8 Ldexp<cd(t;Ld>o(o).

Now, we use the Campbell-Baker-Hausdorff formula: for 1 < i, 3 <€ d/
d

i,3

exp(tL.)L, = E = (t)L_exp(tL.) repeatedly to obtain

3 X | bt J
m=1 =
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do ~ ..
ac = Fl<g(t),g(t)>Llo TSR Fd(g(t),g(t)>Ld,c (41)
fcr some non-linear functions ?i of g(t) = (gl(t), s gd(t)> and é(t).

For (41) to define a solution of (39), we need

F, (g(t) ,é(t)) =1
Fz(g(t),é(t)) = u(t)
rj(g(t),é(t)> =0 for §>2.

For the Kalman-filter problem considered, one gets (formally)

gl(t) =1

&(t) = éz(t)coshgl(t) + §3(t)sinhgl(t)

0 = gz(t)Sthgl(t) + 93(t)coshgl(t)
0 =g,(t) - g3(t)92<t)
g;(0) =0, 4i=1,2 ...4.

One can explicitly solve the above set of eguations to obtain

t
j; cosh(s)dy(s)

gz(t) =
L P
93(t) = —}; sinh(s)dy (s)
: . t ;
g4(t) = j; (sinhs) (coshs)ds - }; g, (s)sinh(s)ady(s)

wnhere we have now used stochastic integrals.

Substituting the above in (40) and using
oo

(etLl¢)(S) = J( G(x,y,t,)b(y)dy , t 2 0, where

)

G(x,y,t) = (2Wsinht)-%exp[}% (Coth)(x2+y2) + xy/sinht] ;

one gets

i 1 -1 2
O(XIt) =f_wk(2't)EXp(-3p (t) [X‘m(t)} >D°(z)dzl

where p(t) = tanht
o .
Z : sinhs <
= o+ S—————— L
Wit cosht j- S

cosht
(o]
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(ané k(z,t) is a furnction which can be computed), which is the '
famil.iar Xalman-filter solution.

~ne essential point in troving the above results rigorously is to note

'?.2 p

. s + £ . : %
that -3 == T % generates & pesitiviTy-ireserving Hypercontractive
2 ¢x
: ] @ X -2 d
semigroup and that the operators 5 anl X Xy a;-have a commeon dense

set cf analytic vectors.

Finally, since the Lie algebra corresponding to the Kalman filter is
soclvable (40) is a global representation for the solution.

We remark that the Benes problem considered in Section 3.1 can be
integrated in exactly the same fashion.

Nete also that this method computes the fundamental solution of the
D-M-2 eguation and hence these ideas can be applied to solve Kalman

filtering problems with non-Gaussian initial conditions.

5.7 Non-Existence of Finite-Dimensional Filters

Irn an earlier part of this secnionfwe have suggested a strategy for
cbtaining finite-dimensional filters when the Lie algebra of the filter
has 2 "good" ideal-structure using the Brockett Homomorphism Ansatz. We
have zlso remarked how the same ansatz may lead to negative results.

Now, in section 3.2 we have shown that for the cubic-sensor problem
the Lie algebra of the filter is isomorrhic to the wl/IR . Now Hazewinkel
and Marcus (loc.cit) have shown that Wl/nicannot be realized as the Lie
algebraz of vector fields with smcoth coefficients on a finite-dimensional
smocth manifold. On the other hand, Sussmann (Sussmann 1981) has shown that if
there is a finite-dimensional filter for a conditional statistic, then there
exists & non-zerc homomcrpnism of Lie algebras according to the Brockett

prescrintion. Some furthner work combining these two ideas shows that no

[e1)

1Tion

0

on 1 statistic fcr the cubic-sensor

e

ot
om
"3

roblem can be computecé using

finite-dimensional filters.
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We ccnjecture that essentially similar results can be proved for the

following class of filtering problems:

dxt

f(xtfdt + dwt

dy xtdt + dyt

t

Suppose that f satisfies:

%§ + f2 = V(x), where V(x) is an even-positive polynomial. Then

the Lie algebra for this filtering problem is an algebra which is isomorphic
to the Weyl algebra wl/ﬁk, and hence all the above results of this section

will hold.

5.8 Some Recent Positive Results

There have been some recent positive results using the Lie~algebra
formalism. One such result is concerned with the asymptotic expansion in €

of the unnormalized conditional-density for the filtering problem

dxt = axtdt + dwt

dy. = [x, +e(x)%lat + ay_, x>1
t t t 00 e
E .

Yo = 0; OO(X) Gaussian ,

where € is some small positive answer.

For this class of problems it has been shown (Sussmann 1982) that the
various terms in the formal asymptotic expancion of o€ t,x) can be
ccmputed by finite-dimensional filters using the ideas developed in this
section.

We close this section with a remark on the identification problem for
linear stochastic dynamical systems. These proolems can be viewed as
non-linear filterinc problems and lead to Lie algebras which are known as
"current-algebras" in mathematical physics. The intecration of these Lie

algebras in a rigorous manner has recently been cdone Hazelwinkel-Krishnaprasad-

Marcus (1983).
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Marcus (1983). (and k(z,t) is a function which can be computed), which is the
famiiiar Kalman-filter solution.
The essential point in proving the above results rigorously is to note
§ g% A . . :

that a3 genereates & positivity-rreserving Hypercontractlve

: : . 1 g2 1
semigroup and that the operators "3 ax2 + X Xy have & common dense
set of analytic vectors.

Finally, since the Lie algebra corresponding to the Kalman filter is
solvable (40) is a global representation for the solution.

We remark that the Benes problem considered in Section 3.1 can be
integrated in exactly the same fashion.

Note also that this method computes the fundamental solution of the

D-M-2 eguation and hence these ideas can be applied to solve Kalman

filtering problems with non-Gaussian initial conditions.

5.9 Non-Existence of Finite-Dimensional Filters

In an earlier part of this section_we have suggested a strategy for
ébtaining finite-dimensional filters when the Lie algebra of the filter
has a "good" ideal-structure using the Brockett Homomorphism Ansatz. We
have also remarked how the same ansatz may lead to negative results.

Now, in section 3.2 we have shown that for the cubic-sensor problem
the Lie algebra of the filter is isomorphic to the W,/RR. Now Hazewinkel
and Marcus (loc.at.) have shown that Wl/nzcannot be realized as the Lie
algebrz of vector fields with smooth coefficients on a finite-dimensional
smocth marnifold. On the other hand, Sussmann 1981) has shown that if there
is & finite-dimensicnal filter for a conditional statistic, then there
exists a non-zero homomorphism of Lie algebras according to the Brockett
prescription. Some further work combining these two ideas shows tﬁat no
conditional statistic for the cubic-sensor problem can be computed using

finite-dimensional filters.
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APPENDIX i

O~ Lie Alagebras, Lie Groups and Representations

For most of this paper, the C®-manifold we will be interested in is
R (which is covered by a sincle coordinate system).

We shall say that a vector space & over R is a real Lie algebra, if in

ac¢3ition to its vector space structure it possesses a product CxL+L:
(x,¥) > [X,Y] which has the following properties:
(i) it is bilinear over IR
(ii) it is skew commutative : [X,Y] + [Y,X] =0
X, ¥, 2L

(iii) it satisfies the Jacobi identity:

(x,1v,2]) = [Y,[2,X]] + [2,[X,¥]] = O,

Exarmple: MnUR) = algebra of n x n matrices overIR.
If we denote by [X,Y] = XY - YX, where XY is the usual matrix product,
t-en this commutator defines a

Lie algebra structure on M_(IR).

Ewarcle: Let 27M) denote the C*-vector fields on a C®-manifold M. 27(M
iz a vector space over R and a C* (M) module. (Recall, a vector fielc X on
M is a mapping: M -~ TP(M): ¥ - X where pPeEM and Tp(M) is the *angent space

t- =he point p at M). We can give a Lie algebra structure to Z(M) by

é=zfining:

e = - = Y - &5 ’ |

5o (XY YX)Pf Yp(Yf) Yp(x ) » £eC” (D)
(=he C®- functions in a neighborhood of »), anz

[X,¥Y]) = XY - ¥X.

t-=h of these examples will be useful to us later on. i

-
rso

Let £be a Lie algebra over R and let {Xl, Sew 4 Xq} be a basis of & [

1

(2s a vector space). There are uniquely determined constants {
c € IR (1<r,s,p<n) such that l
|

|
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[X_,X ] . c X
B2 1<p<n rsp P
Tr.e c &5 are called the structure constants of % relative to the basis 3
r i
{Xl, ' Xn}. From the definition of a Lie algebra:
i
(1) c + ¢ =0 (1<r,s,pn)
rsp srp
(ii) Z ( =0 (1%r,s,t,usn).

+
15p%n <:rspcptu ™ cstpcpru Ctrpcpsu)
Let £ be a Lie algebra over R. Given two linear subspaces M,N of Z’
we denote by [M,N] the linear space spanned by [X,Y), XeM and YEN. A linear
subspace K of & is called a sub-algebra if [K,K]JCK, an ideal if [ZK]JCK.

If & and ¥' are Lie algebras over IR and T:¥-+%" : X->T(X), a linear

map, T is called a homomorphism if it preserves brackets:

[m(X), m(¥)] = m([X,¥])) (X,YeZL)
In that case T() is a subalgebra of &' and ker T is an ideal in Z.
Conversely, let Zbe a Lie algebra over R and K an ideal of Z. Let
¥ = ¥/K be the quotient vector space and m:2%" the canonical linear map.
For X' = m(X) and Y' = 7(Y), let

[X',Y'] = 7([X,Y]).

Tais mapping is well-defined and makes &' a Lie algebra over R and T is
then a homomorphism of & into &' with K as the kernel. &' = ¥/K is called
the guotient of by K.

Let %/ be any algebra over R, whose multiplication is bilinear but not
recessarily associative. An endomorphism D of % (considered as a vector
space) is called a derivation if

D(ab) = (Da) b + a (Db) a, be#

TE Dl and D2 are derivations so is [Dl,D2] = D1D2 - D2Dl

Lar

Tne set of all derivations on %/(assumed finite dimension'al) is a subalgebra
of gl¥%H, the Lie algebra of all endomorphisms of 4%/.

For us the notion of a representation of a Lie algebra is very
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Let X be a Lie algebra over R and V a vector space -over IR, not

necessarily finite dimensional. By a representation of & in V we mean

a e

.

e]

X+ m(X) : &> gl(V) (all endomorphisms of V), such that
(1) 7 is linear
(ii) TO[X,Y)) =mX)n(Y)-m(Y)7(X).
For any Xe& let adX denote the endomorphism of ¥
adx : Y+ [X,Y] (Ye ).
adX is a derivation of Z and X+ adX is a representation of ¥ in &£,

called the adjoint representation.

Let G be a topological oroup and at the same time a differentiable
manifold. G is a Lie group if the mapping (x,y)* xy : GXG * G and the
ma?ping x—rx-l : GG are both C®-mappings.

Given a Lie group G there is an essentially unique way to define its
Lie azlcsbra. Conversely, every finite-di‘mensional Lie algebra is the Lie
algebra of some simply connected Lie group.

In filtering theory some special Lie algebras seem to arise. We give
trhe basic definitions for three such Lie algebras.

A Lie algebra L over R is said to be nilpotent if adX is a nilpotent
endomorohism of &, ¥YXe#. Let the dimension of £ be m. Then there are

ideals JJ of & such that (i) dim & = m-j , 0Sji<m.

J
i =@DID = P11 3 <58~
(ii) jo Q’_yl_ ce.. & =0 and (iii) [Q,JJ]QZHI, 0Z33m-1.

Let g be a Lie algebra of finite-dimension over R and write &g = [g,g].
Zc is a subalaebra of g called the derived algebra. Define @pg (p20)
irductively by :
Z°g = g

ZPq = 2P ra)  (p21).




We thsn get a sequence D°g=2 2142 ._.2.8-of subalgebras of ¢. g is said to
be solvable if@Fg = 0 for some p>1.
Examples
(i) Zet n>0 and let (pl, soe 0 pn,ql, o e e qn,z) be a basis for a real
vector space % Define a Lie algebra structure on ¥ by [pi,qi] =
[qi,pi} = Z, the other brackets being zero. This nilpotent Lie algebra
A’is the so-called Heisenberg alqgebra.
(ii) Tne real Lie algebra with basis (h,pl, 3 S L pn,ql, S qn,Z)
satisfying the bracket relations

[h,pi] = qi ' [h,qi] = pi ' [piqi] = Z, the other brackets being

zero is a solvable Lie algébra, the so-called oscillator algebra. Its

derived algebra is the Heisenberg algebra F.

A Lie algebra is called simple is it has no nontrivial ideals. An
infinite dimensional Lie algebra & is called pro-finite dimensional aﬁd
filtered if there exists a sequence of ideals JﬁZDJS p— such.QVJVi is

finite~dimensional for all i and (\Ji = {0}.

Infinite-Dimensional Representations

Let g be a finite dimensional Lie algebra and G its associated

simply connected Lie group. Let H be a complex Hilbert space (generally
infinite-dimensional). We ére interested in representations of g by
means of-linear operators on H with a common dense invariant domain 9.
Let 7 denote this representation.

Similerly, we are also interested in representations of G as
pounced linear operators on H. Let T be such a representation. That is,
7 : G > L(H) satisfies

T(g,9,) = T(gl) T(g,) 9, 9, EG.

The following problem of Group representation has been considered

py Nelson and others. Given a representation T of g on H when does
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there exist a croup representation (strongly continuous) T of G on H such

that
T(exp (tX)) = exp (tﬂ(X)) Y XeG

Here exp (tﬂ(x)) is the strongly continuous group cenerated by 7 (X) in

the sense that
d- s p
-é: exp|tm (x) ¢ = mT(X)d V¢€9

and exo (tX) is the exponential mapping, mapping the Lie algebra g into
the Lie group G..
Let Xl, e Xd be a basis for g. A method for constructing T

locally is to define
exp(t. X ... exp(t.S ) = ex (t m(X ) oieies O (t (X, )

T(p(ll) p(dd) pl(l) Xxp d(o)

A sufficient condition for this to work is that the operator
identity

z " n
exo(tA.)A, = — [adh.] A.exp(tA.)
J 1 -1 ] - J
n=o -
holds for Aj = w(xj) , 1<3, j<d.

T+ is a well known fact, that many Lie algebra representations do
not extend to Group representations. An example is the representation
of the Heisenberg algebra consisting of three basis elements by the

2 d. .3 2 : 3 © : z
operators i-ix, =— , -i} on L" (IR ) with domain C_ (R,) which does not
ax &% (o) +
extend to a uritary representation (since essential self-adjointness

fails).

Rlthough in filtering theory we are not interested in unitary group
representation, nevertheless these ideas will serve as a guide for

integrating the Lie algebras arising in filtering theory.
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