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1 Introduction

Discrete Markov random fields (MRF's) defined on a finite lattice have seen
significant application as stochastic models for images [1, 2]. There are
two fundamental problems associated with image processing based on such
random field models. First, we want to generate realizations of the ran-
dom fields to determine their suitability as models of our prior knowledge.
Second, we want to collect statistics and perform optimizations associated
with the random fields to solve model-based estimation problems, e.g., im-
age restoration and segmentation.

According to the Hammersley-Clifford Theorem [3], MRFs which are
defined on a lattice are in one-to-one correspondence with Gibbs distribu-
tions. Starting with [4], there have been various constructions of Markov
chains that possess a Gibbs invariant distribution, and whose common char-
acteristic is that their transition probabilities depend only on the ratio of
the Gibbs probabilities (and not on the normalization constant). These
chains can be used via Monte Carlo simulation for sampling from Gibbs
distributions at a fixed temperature, and for finding globally minimum
energy states by slowly decreasing the temperature as in the simulated an-
nealing (or stochastic relaxation) method [5, 6]. Certain types of diffusion
processes that also have a Gibbs invariant distribution can be used for the
same purposes when the random fields are continuous-valued [7, 8].
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Many of the fundamental ideas on MRF-based image processing stem
from [6], which introduced the idea of modeling an image with a com-
pound random field for both the intensity and boundary processes. This
prior random field is an MRF characterized by a Gibbs distribution. A
measurement model is specified for the observed image, and the resulting
posterior random field also is an MRF characterized by a Gibbs distribu-
tion. A maximum a posteriori probability (MAP) estimate of the image
based on the noisy observations then is found by minimizing the posterior
Gibbs energy via simulated annealing.

There have been numerous variations and extensions of the ideas in [6],
including different estimation criteria, different methods to perform the an-
nealing, and different methods to determine the random field parameters
[9-12]. We note that some of the alternative estimators that have been
proposed do not use annealing but rather collect statistics at a fixed tem-
perature, e.g., the maximizer of the posterior marginals (MPM) and the
thresholded posterior mean (TPM) estimators [9]. The scope of the MRF
image models also has been enlarged over time. Most of the early work
on Monte Carlo sampling methods and annealing algorithms as applied to
MRF-based image processing considered finite-valued MRFs (e.g., general-
ized Ising models) to model discrete gray-level distributions [6]. Some more
recent work has dealt with continuous-valued MRFs (e.g. Gauss-Markov
models) to model continuous gray level distributions (13, 14]. In certain
applications, it may be advantageous to use a continuous Gauss-Markov
random field model for computational and modeling considerations even
when the image pixels actually can take only a finite (but large) number of
gray-level values. Both Markov chain sampling methods and annealing al-
gorithms, and diffusion-type sampling methods and annealing algorithms,
have been used in continuous-valued MRF-based image processing.

It also should be noted that the annealing algorithm has been used
in image processing applications to minimize cost functions not derived
from an MRF model (¢f. [15] for an application to edge detection), and
many other non-image processing applications as well. There has been a
lot of research on the convergence of discrete-state Markov chain annealing
algorithms and diffusion annealing algorithms, but very few results are
known about continuous-state Markov chain annealing algorithms. _

Our research, described in detail in [16-19], addresses the following
questions:

1. What is the relationship between the Markov chain sampling meth-

ods/annealing algorithms and the diffusion sampling methods /annealing

algorithms?
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2. What types of convergence results can be shown for discrete-time
approximations of the diffusion annealing algorithms?

3. What types of convergence results can be shown for continuous-state
Markov chain annealing algorithms?

In this chapter, we summarize some of our results. In Section 2, we show
that continuous-time interpolations of certain continuous-state Markov chain
sampling methods and annealing algorithms converge weakly to diffusions.
In Section 3, we establish the convergence of a large class of discrete time
modified stochastic gradient algorithms related to the diffusion anneal-
ing algorithm. Also in Section 3, we establish the convergence of certain
continuous-state Markov chain annealing algorithms, essentially by show-
ing that they can be expressed in the form of modified stochastic gradient
algorithms. This last result gives a unifying view of the Markov chain
and diffusion versions of simulated annealing algorithms. In Section 4, we
briefly examine some directions for further work.

| 2 Convergence of Markov Chain Sampling

Methods and Annealing Algorithms to
Diffusion

In this section, we analyze the dynamics of a class of continuous-state
Markov chains, which arise from a particular implementation of the Metropo-
lis and the related Heat Bath Markov chain sampling methods [20]. Other
related sampling methods (c¢f. [21]) can be analyzed similarly. We show
that certain continuous-time interpolations of the Metropolis and Heat
Bath chains converge weakly (i.e., in distribution on path space) to Langevin
diffusions. This establishes a much closer connection between the Markov
chains and diffusions than just the fact that both are Markov processes that
possess an invariant Gibbs distribution. We actually show that the inter-
polated Metropolis and Heat Bath chains converge to the same Langevin
diffusion running at different time scales. This establishes a connection
between the two Markov chain sampling methods that in general, is not
well understood. Our results apply to both (fixed temperature) sampling
methods and (decreasing temperature) annealing algorithms.

We start by reviewing the discrete-state Metropolis and Heat Bath
Markov chain sampling methods. Assume that the state space ¥ is count-
able. Let U(-) be the real-valued energy function on ¥ for the system. Also,
let T be the (positive) temperature of the system. Let ¢(,7) be a station-
ary transition probability from ¢ to j for i, j € £. The general form of the
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one-step transition probability from i to j for the discrete-state Markov
chain { X} we consider is given by

p(i,5) = q(i, 5)s(i, J) + m(i)1(5 = 1), (1)
where

m(i) =13 a6, 3)s(i ), (2)

s(i,j) is a weighting factor (0 < s(i,7) < 1), ax}d 1(-) is an indicator
function. Let [a]+ denote the positive part of a, i.e., [a)+ = max{a,0}.
The weighting factor s(,j) is given by

sm(i,j) = exp(=[U(5) — U@)}+/T) (3)
for the Metropolis Markov chain, and by

. exp(=(UG) —U®)/T) (4)
SH(%]) - 1+ exp(—(U(]) — U(l))/T)

for the Heat Bath Markov chain.
Let

alie %exp(—U(i)/T), €% Z=3 exp(~UG)/T)

(assuming Z < 00). If the stochastic matrix Q = [¢(i,7)] is symmetric and
irreducible, then the detailed balance equation,

w(i)p(i, j) = ©(H)p(4,1), 4LIEL,

is satisfied, and it follows easily that = (i), i € ¥, are the unique stationary
probabilities for both the Metropolis and Heat Bath Markov chains. Hence
these chains may be used to sample from and to compute mean values of
functionals with respect to a Gibbs distribution with energy U (+) and tem-
perature T [22]. The Metropolis and Heat Bath chains can be interpretefi
(and simulated) in the following manner. Given the current state Xy =1,
generate a candidate state X = j with probability q(i,7). Set the .next
state Xx41 = 7 if s(4,j) > Ok, where O is an independent randomAvanable
uniformly distributed on the interval [0, 1]; otherwise set Xig1=1

We can generalize the discrete state Markov chain sampling methods
described previously to a continuous d-dimensional Euclidean state space
as follows. Let U(-) be a smooth real-valued energy function on r =
R4, and let T be the (positive) temperature. Let q(z,y) be a stationary
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transition density from z to y for z, € R%. The general form of the one-
step transition probability density for the continuous-state Markov chain
{X&k} we consider is given by

p(x’ y) = q(:z:, y)s(x, y) + m(z)é(y - .’E), (5)

where
1Mﬂ=1—/ﬂnwﬂnw@, (6)

s(z,y) is a weighting factor (0 < s(z,y) < 1), and 68(-) is a Dirac-delta
function. Here, s(-,) = sam(-,-) or s(-,-) = sg(-,-) for the generalized
Metropolis and Heat Bath chains, respectively. (See Egs. (3) and (4).)

The continuous state Metropolis and Heat Bath Markov chains can
be interpreted (and simulated) analogously to the discrete-state versions.
In particular, g(z,y) is a conditional probability density for generating a
candidate state Xj = y, given the current state X; = z. For our analysis,
we shall consider the case where only a single component of the current
state is changed to generate the candidate state, and the component is
selected at random with all components equally likely. Furthermore, we
shall require that the candidate value of the selected component depend
only on the current value of the selected component. Let z; denote the ith
component of the vector z € R?%. Let r(z;,1;) be a transition density from
z; to y; for z;,y; € R. Hence we set

d
q(z,y) = é > r(e,w) [T 6w —=5) (7)
i=1

J#i
Suppose we take
r(zi ) = Uz = —1)6(y: — 1) + 1z = 1)8(yi + 1) (8)

In this case, if the ith coordinate of the current state Xy is selected (at
random) to be changed in generating the candidate state Xx, then Xj ; is
+1 when X ; is F1. If, in addition,

U(l‘) = - Z J,‘jI,‘l‘j, /3 = Rd,
J#i
then { Xy} corresponds to a discrete-time kinetic Ising model with interac-

tion energies J;; [20].
Suppose we instead take

1 = 4
r(zi,yi) = Vona? exp 202
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In this case, if the ith coordinate of the current state X is selected (at
random) to be changed in generating the candidate state Xk, then Xj;
is conditionally Gaussian with mean Xj ; and variance o2, In the sequel,
we shall show that a family of interpolated Markov chains of this type
converges (weakly) to a Langevin diffusion.

For each € > 0, let r.(-,-) denote the transition density in Eq. (9) with
o2 =¢, and let p.(-,-) denote the corresponding transition density in Egs.
(5)-(7). Let {X§} denote the Markov chain with transition density pe(-,-)
and initial condition X§ = Xo. Interpolate {Xf} into a continuous-time

process {X¢(t),t > 0} by setting
Xc(t) =X[€t/e:]’ t20y

where [a] is the Jargest integer less than or equal to a. Now the precise
definition of the weak convergence of the process X°(-) to a process X()
(as € — 0) is given in [23]. The significance of the weak convergence is that
it implies not only the convergence of the multivariate distributions but also
the convergence of the distributions of many interesting path functionals,
such as maxima, minima, and passage times. (See [23] for a full discussion.)
To establish weak convergence here, we require the following condition on

U(-):

(A) U(-) is continuously differentiable, and VU (+) is bounded and Lipshitz-
continuous.

Theoreml: Assume (A). Then there is a standard d-dimensional Wiener
process W (-) and a process X (-) (with X(0) = Xo in distribution), nonan-
ticipative with respect to W(-), such that X¢(-) — X(-) weakly as ¢ — 0,
and

a) for the Metropolis method,

YUK D g1+ = aw ) (10)

dX() ==rd Jd

b) for the Heat Bath method,

UX®),,, L

e TV ). 11)

dX(t) = —

Proof: See [16].
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Note that Theorem 1 justifies our claim that the interpolated Metropolis
and Heat Bath chains converge to Langevin diffusions running at different
time scales. Indeed, suppose Y (-) is a solution of the Langevin equation,

dY (t) = —VU(Y (t))dt + V2TdW (t), (12)

with Y(0) = X, in distribution. Then for 7(t) = t/2Td, Y(7(-)) has the
same multivariate distributions as X (-) satisfying Eq. (10), while for 7(t) =
t/4Td, Y(7(-)) has the same multivariate distributions as X(-) satisfying
Eq. (11). Observe that the limit diffusion Eq. (10) for the Metropolis
chain runs at twice the rate of the limit diffusion Eq. (11) for the Heat
Bath chain, independent of the temperature.

To obtain Markov chain annealing algorithms, we simply replace the
fixed temperature T in the preceding Markov chain sampling methods by
a temperature schedule {T%} (where typically Tx — 0). We can establish a
weak convergence result for a nonstationary continuous-state Markov chain
of this type as follows. Suppose T'(:) is a positive continuous function on

[0,00). For € > 0, let

T¢ = T(ke), k=0,1,...,

and let {X§} be as in the preceding but with temperature schedules {T¢}.
It can be shown that Theorem 1 is valid with T replaced by T'(t) in Egs. (10)
and (11). Hence the Markov chain annealing algorithms converge weakly
to time-scaled versions of the Markov diffusion annealing algorithm,

dY () = —VU(Y (£))dt + 2T (O)dW (2). (13)

We remark that there has been a lot of work establishing convergence
results for discrete state Markov chain annealing algorithms [6, 24-27],
and also for the Markov diffusion annealing algorithm (7, 28, 29]. However,
there are very few convergence results for continuous-state Markov chain
algorithms. We note that the weak convergence of a continuous-state chain
to a diffusion together with the convergence of the diffusion to the global
minima of U(-) does not directly imply the convergence of the chain to the
global minima of U(-); see [30] for a discussion of related issues. However,
establishing weak convergence is an important first step in this regard.
Indeed, a standard method for establishing the asymptotic (large-time)
behavior of a large class of discrete-time recursive stochastic algorithms
involves first proving weak convergence to an ODE limit. The standard
method does not quite apply here because we have a discrete-time algorithm
converging weakly to a nonstationary SDE limit; but calculations similar
to those used to establish the weak convergence, in fact, do prove useful in
ultimately establishing the convergence of continuous-state Markov chain
annealing algorithms, as discussed in Section 3.2.
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3 Recursive Stochastic Algorithms for Global
Optimization in R*

3.1 Modified Stochastic Gradient Algorithms

In this section, we consider a class of algorithms for finding a global min-
imum of a smooth function U(z), = € R%. Specifically, we analyze the
convergence of a modied stochastic gradient algorithm,

Xis1 = Xk — ax(VU(Xg) + &) + bk Wi, (14)

where {£x} is a sequence of Ré-valued random variables, {W}} is a sequence
of standard d-dimensional independent Gaussian random variables, and
{ax}, {bx} are sequences of positive numbers with ag, by — 0. An algorithm
of this type arises by artificially adding the bxWj term (via a Monte Carlo
simulation) to a standard stochastic gradient algorithm,

Zrs1 = Zx — ax(VU(Z) + &k)- (15)

Algorithms like Eq. (15) arise in a variety of optimization problems, ix}clud-
ing adaptive filtering, identification, and control; the sequence {&x} is dl{e
to noisy or imprecise measurements of VU(-) (cf. [31]). The asymptotic
behavior of {Z} has been much studied. Let S and S* be the set of local
and global minima of U (-), respectively. It can be shown, for example, the?t
if U(-) and {£} are suitably behaved, ax = A/k for k large, and {Zx} is
bounded, then Zx — S as k — oo w.p.1. However, in general, Z # S*
(unless, of course, S = 5*). The idea behind adding the additional by Wy
term in Eq. (14), compared with Eq. (15), is that if bx tends to zero slowly
enough, then possibly {Xi} (unlike {Zi}) will avoid getting trapped ifx a
strictly local minimum of U(:). (This is the usual reasoning behind sim-
ulated annealing-type algorithms.) We shall show in fact that if U(:) and
{€x} are suitably behaved, ax = A/k and b; = B/kloglogk for k large with
B/A > C, (where Cj is a positive constant that depends only on U (-‘)),
and {Xj} is tight, then X; — S* as k — oo in probability. We also give
a condition for the tightness of {Xi}. We note that the convergence of
Zi to S can be established under very weak conditions on {£x}, assuming
{Z} is bounded. Here, the convergence of Xi to S* is established un(-ier
somewhat stronger conditions on {£}, assuming that {Xy} is tight (which
is weaker than boundedness).

The analysis of the convergence of {Z;} usually is based on the asymp-
totic behavior of the associated ordinary differential equation (ODE),

#(t) = ~VU((1)) (16)
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(¢f. [31, 32]). This motivates our analysis of the convergence of {X}
based on the asymptotic behavior of the associated stochastic differential
equation (SDE),

dY (t) = —VU(Y (t))dt + c(t)dW (¢), 7)

where W () is a standard d-dimensional Wiener process and ¢(-) is a positive
function with ¢(t) — 0 as ¢ — oo. This is just the diffusion annealing
algorithm discussed in Section 2 (Eq. (13)), with T'(t) = c?(¢)/2. The
asymptotic behavior of Y (t) as ¢ — oo has been studied intensively by a
number of researchers. In [7, 29], convergence results were obtained by
considering a version of Eq. (17) with a reflecting boundary; in [28], the
reflecting boundary was removed. Our analysis of {Xx} is based on the
analysis of Y (¢) developed in [28], where the following result is proved: if
U(-) is well-behaved, and c?(t) = C/logt for t large with C > Cj (the same
constant Cp as before), then Y (f) — S* as t — oo in probability. To see
intuitively how {X;} and Y(-) are related, let ¢, = Zﬁ;; an, ar = A/k,
b} = B/kloglogk, c*(t) = C/logt, and B/A = C. Note that by ~ c(tx)\/a.
Then we should have

Y(tk+1) =~ Y(te) = (tk+r — ta) VU(Y () + c(te)(W (tk41) — W(tx))
= Y(tx) — axVU(Y (t)) + c(t)var Vi
~ Y(tk) - akVU(Y(tk)) + bk Vi,

where {Vi} is a sequence of standard d-dimensional independent Gaus-
sian random variables. Hence (for {{} small enough) { X} and {Y ()}
should have approximately the same distributions. Of course, this is a
heuristic; there are significant technical difficulties in using Y'(-) to analyze
{Xx} because we must deal with long time intervals and slowly decreasing
(unbounded) Gaussian random variables.

An algorithm like Eq. (14) was first proposed and analyzed in [29)].
However, the analysis required that the trajectories of {Xy} lie within a
fixed ball (which was achieved by modifying Eq. (14) near the boundary of
the ball). Hence such a version of Eq. (14) is suitable only for optimizing
U(-) over a compact set. Furthermore, the analysis also required £ to be
zero to obtain convergence. In our first analysis of Eq. (14) in [17], we also
required that the trajectories of { Xy} lie in a compact set. However, our
analysis did not require & to be zero, which has important implications
when VU(-) is not measured exactly. In our later analysis of Eq. (14)
in (18], we removed the requirement that the trajectories of {Xx} lie in a
compact set. From our point of view, this is the most significant difference
between our work in [18] and what is done in [29, 17] (and more generally in
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other work on global optimization, such as [33]): we deal with unbounded
processes and establish the convergence of an algorithm that finds a global
minimum of a function when it is not specified a priori what bounded
region contains such a point.

We now state the simplest result from [18] concerning the convergence
of the modified stochastic gradient algorithm Eq. (14). We will require

A VB
= — = — k le 2y 18
ar 5 by fm-———Eog Took' arge, (18)

and the following conditions:

(A1) U(-) is a C? function from R to [0,0c) such that the §* = {z :
Ulz) < U(y)Vy} # @. (We also require some mild regularity condi-
tions on U(-); see [18]).

§ vU oy VU(z
(A2) Hm ;oo T > 0, im0 RN < c0.
q vU
(A3) lim, o (1oH3 &) = 1
(Ad) For k = 0,1,..., let Fr be the o-field generated by

Xo, Wo,..., Wi—1,&0, .. There exists an L > 0, a > -1,

and 3 > 0 such that
E{|&|1 7} < La§  |E{&|F} < Laf wpd,

oy €1

and W} is independent of Fi.

Theorem 2: Assume (Al1)-(A4) hold. Let {Xi} be given by Eq. (14).
Then there exists a constant Cp, such that for B/A > Co,

X — S*ask—

in probability.

Proof: See [18]

Remarks:

1. The constant Cp plays a critical role in the convergence of zj as
k — oo and also Y(t) as t — oo. In [28], it is shown that the
constant Cy (denoted there by cp) has an interpretation in terms of
the action functional for a family of perturbed dynamical systems;
see [28] for a further discussion of Cy, including some examples.
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2. It is possible to modify Eq. (14) in such a way that only the lower
bound and not the upper bound on |VU(-)| in (A2) is needed. (See
(18].)

3. In [18], we actually separate the problem of convergence of { Xy} into
two parts: one to establish tightness and another to establish conver-
gence given tightness. This is analogous to separating the problem of
convergence of {Z;} into two parts: one to establish boundedness and
another to establish convergence given boundedness (cf. [31]). Now
in [18], the conditions given for tightness are much stronger than the
conditions given for convergence assuming tightness. For a particular
algorithm it often is possible to prove tightness directly, resulting in
somewhat weaker conditions than those given in Theorem 2.

3.2 Continuous-State Markov Chain Algorithm

In this section, we examine the convergence of a class of continuous-state
Markov chain annealing algorithms similar to those described in Section
2. Our approach is to write such an algorithm in the form of a modified
stochastic gradient algorithm of the type considered in Section 3.1. A con-
vergence result is obtained for global optimization over all of R¢. Some
care is necessary to formulate a Markov chain with appropriate scaling. It
turns out that writing the Markov chain annealing algorithm in the form
of Eq. (14) is rather more complicated than writing standard variations
of gradient algorithms that use some type of (possibly noisy) finite dif-
ference estimate of VU(-) in the form of Eq. (15) (¢f. [31]). Indeed, to
the extent that the Markov chain annealing algorithm uses an estimate of
VU(-), it does so in a much more subtle manner than a finite difference
approximation.

Although some numerical work has been performed with continuous-
state Markov chain annealing algorithms [13, 14], there has been very little
theoretical analysis, and furthermore, the analysis of the continuous-state
case does not follow from the finite state case in a straightforward way
(especially for an unbounded state space). The only analysis we are aware
of is in [13], where a certain asymptotic stability property is established.
Since our convergence results for the continuous-state Markov chain an-
nealing algorithm are based ultimately on the asymptotic behavior of the
diffusion annealing algorithm, our work demonstrates and exploits the close
relationship between the Markov chain and diffusion versions of simulated
annealing.

We shall perform our analysis of continuous-state Markov chain anneal-
ing algorithms for a Metropolis-type chain. We remark that convergence
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results for other continuous-state Markov chain sampling method-based an-
nealing algorithms (such as the Heat Bath method) can be obtained by a
similar procedure. Recall that the one-step transition probability density
for a continuous-state Metropolis-type (fixed temperature) Markov chain
is given (as indicated in Egs. (3),(5), and (6)) by

p(x,y) = q(z,y)s(z, y) + m(z)6(y — z),

where

miz) =1 - / a(z,v)s(z, ¥)dy

and o U
S(I,y) o ex_p(_[ (y); (I)]+)

Here, we have dropped the subscript on the weighting factor s(z,y). If we
replace the fixed temperature T' by a temperature sequence {7}, we get a
Metropolis-type annealing algorithm.

Our goal is to express the Metropolis-type annealing algorithm as a
modified stochastic gradient algorithm like Eq. (14) to establish its con-
vergence. This leads us to choosing a nonstationary Gaussian transition

density,
_ 1 _ly—== )
oot = gz (i) &

and a state-dependent temperature sequence,

2
T (z) = 2EE) (20)

where
ox(z) = max{a}|z|,1} (21)

and + is a positive number. With these choices, the Metropolis-type an-
nealing algorithm can be expressed as

Xi+1 = Xi — ap(VU(Xi) + &) + bk Wi

for appropriately behaved {£x}. We remark that the state-dependent term
ok(z) in Egs. (19) and (20) produces a drift toward the origin proportional
to |z|, which is needed to establish tightness of the annealing chain.

This discussion leads us to the following continuous-state Metropolis-
type annealing algorithm. Let N(m, A) denote d-dimensional normal mea-
sure with mean m and covariance matrix A.
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Continuous-State Metropolis-Type Annealing Algorithm
Let {Xk} be a Markov chain with one-step transition probability at
time k given by

P{Xk1 €Al X =2z} = /A sk(z,y)dAN (z, biog (x)I)(y) + mk(z)1a(z),

(22)
where
() = 1— / si(z,y)dN (z, B (2)T)(y) (23)
= 20[U(y) - U(a)]
o (206U () - Uz
su(ovy) = exp (- 22 S Pl ) (1)

We now state a convergence result from [19] concerning the convergence
of the continuous-state Metropolis-type annealing algorithm. Let the se-
quences {ax} and {bx} be given by Eq. (18).

~ Theorem 3: Assume (A1)-(A3) hold. Let { Xy} be the Markov chain with

transition probability given by Eqs. (22)-(24) and with 0 <~ < ;. Then
there exists a constant Cy, such that for B/A > Co,

Xr—=S"ask— o

in probability.
Proof: See [19].

Remarks:

1. The constant Cj is the same constant described in Remark 1 following
Theorem 2.

2. Tt is possible to modify Eqs. (22)-(24) in such a way that only the
lower bound and not the upper bound on |VU(:)| from (A2) is needed.
(See [19].)

4 Conclusions

Monte Carlo sampling methods and annealing algorithms have found sig-
nificant application to MRF-based image processing. These algorithms
fall broadly into two groups: Markov chain and diffusion methods. The
discrete-state Markov chain algorithms have been used with finite-range
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MRF models, while both continuous-state Markov chain and diffusion al-
gorithms have been used with continuous-range MRF models. We note
that there are some very interesting questions related to the parallel im-
plementation of these Monte Carlo procedures that we have not discussed
here; see [34].

In this chapter, we summarized some of our research, which has inves-
tigated the relationship between the various Markov chain and diffusion
sampling methods and annealing algorithms. We demonstrated the weak
convergence of certain interpolated continuous-state Markov chain sam-
pling methods and annealing algorithms to diffusions. We also established
the large-time convergence of a class of discrete-time modified stochastic
gradient algorithms based on the asymptotic behavior of the associated
diffusion annealing algorithm. We further established the large-time con-
vergence of a continuous-state Markov chain annealing algorithm by writing
it in the form of such a modified stochastic gradient algorithm. The con-
vergence here is to the global minima of an energy cost function defined on
the entire d-dimensional Euclidean space.

It seems to us that some experimental comparisons of continuous-state
Markov chain and diffusion-type annealing algorithms (practically imple-
mented by the modified stochastic gradient algorithms described earlier) on
image segmentation and restoration problems would be of some interest.
We are not aware of any explicit comparisons of this type in the litera-
ture. It also might be useful to examine the application of the modified
stochastic gradient algorithms to adaptive pattern recognition, filtering,
and identification, where stochastic gradient algorithms frequently are em-
ployed. Because of the slow convergence of the modified stochastic gradient
algorithms, off-line applications probably will be required. One particu-
lar application that might prove fruitful is training multilayer feedforward
neural nets, which is a nonconvex optimization problem often plagued with
local minima [35].
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