Metal-coordination: using more of nature’s tricks to assemble new soft materials

Niels Holten-Anderson, MIT Department of Materials Science and Engineering

Growing evidence supports a critical role of metal-coordination in soft biological material properties such as self-healing, underwater adhesion and autonomous wound plugging.

Using bio-inspired metal-coordinating polymers, initial efforts to mimic these properties have shown promise. In addition, with polymer network mechanics dictated by coordinate crosslink dynamics, material properties can be easily tuned from visco-elastic fluids to elastic solids.

Given their exploitation in desirable material applications in nature, metal-coordinate crosslinking provides an opportunity to advance synthetic polymer materials design. Early lessons from this pursuit are presented.