Computational Effectiveness of Split Cuts for Second-order Conic Programming

Sina Modaresi*

Industrial Engineering Department, University of Pittsburgh

(* Joint work with Mustafa Kilinc, University of Pittsburgh, and Juan Pablo Vielma, Massachusetts Institute of Technology)

INFORMS Annual Meeting, Phoenix, 2012
Outline

• Introduction
• Conic Mixed-integer Rounding (MIR) cuts
• Conic split cuts
• Summary
Second-order Conic Programming

• Second-order (Quadratic) cone

\[L^m = \left\{ (x_1, \ldots, x_{m-1}, x_m) \in \mathbb{R}^m : \sqrt{\sum_{i=1}^{m-1} x_i^2} \leq x_m \right\} \]
Second-order Conic Programming

• Second-order (Quadratic) cone

\[L^m = \left\{ (x_1, \ldots x_{m-1}, x_m) \in \mathbb{R}^m : \sqrt{\sum_{i=1}^{m-1} x_i^2} \leq x_m \right\} \]

• Second-order conic mixed-integer programing (SOCMIP)

\[
\begin{align*}
\min & \quad c^T x + g^T y \\
\text{s.t.} & \quad \|A^i x + G^i y - b^i\| \leq f_i^T x + r_i^T y - d_i, \quad i = 1, \ldots, q \\
& \quad x \in \mathbb{Z}^n, \quad y \in \mathbb{R}^p
\end{align*}
\]
Split Cuts

- A convex set $C \subseteq \mathbb{R}^n$ and $(\pi, \pi_0) \in \mathbb{Z}^n \times \mathbb{Z}$
Split Cuts

• A convex set $C \subseteq \mathbb{R}^n$ and $(\pi, \pi_0) \in \mathbb{Z}^n \times \mathbb{Z}$

$C^{\pi, \pi_0}_L := \{x \in C : \langle \pi, x \rangle \leq \pi_0 \}$

$C^{\pi, \pi_0}_G := \{x \in C : \langle \pi, x \rangle \geq \pi_0 + 1 \}$
Split Cuts

• A convex set $C \subseteq \mathbb{R}^n$ and $(\pi, \pi_0) \in \mathbb{Z}^n \times \mathbb{Z}$

$C_{\pi, \pi_0}^L := \{x \in C : \langle \pi, x \rangle \leq \pi_0 \}$

$C_{\pi, \pi_0}^G := \{x \in C : \langle \pi, x \rangle \geq \pi_0 + 1 \}$

$C_{\pi, \pi_0} := \text{conv} (C_{\pi, \pi_0}^L \cup C_{\pi, \pi_0}^G)$
Split Cuts

• A convex set $C \subseteq \mathbb{R}^n$ and $(\pi, \pi_0) \in \mathbb{Z}^n \times \mathbb{Z}$

\[C^\pi_{\pi_0} := \{ x \in C : \langle \pi, x \rangle \leq \pi_0 \} \]

\[C^\pi_{\pi_0} := \{ x \in C : \langle \pi, x \rangle \geq \pi_0 + 1 \} \]

\[C^\pi_{\pi_0} := \text{conv} \left(C^\pi_{\pi_0} \cup C^\pi_{\pi_0} \right) \]

• Split cuts of C

 ▪ Any valid (linear or nonlinear) inequality for $C^\pi_{\pi_0}$ for some $(\pi, \pi_0) \in \mathbb{Z}^n \times \mathbb{Z}$
Split Cuts

- A convex set $C \subseteq \mathbb{R}^n$ and $(\pi, \pi_0) \in \mathbb{Z}^n \times \mathbb{Z}$
Split Cuts

- A convex set $C \subseteq \mathbb{R}^n$ and $(\pi, \pi_0) \in \mathbb{Z}^n \times \mathbb{Z}$

\[\langle \pi, x \rangle \leq \pi_0 \]

\[\langle \pi, x \rangle \geq \pi_0 + 1 \]
Split Cuts

- A convex set $C \subseteq \mathbb{R}^n$ and $(\pi, \pi_0) \in \mathbb{Z}^n \times \mathbb{Z}$
Previous Work on SOCMIP

• Second-order conic sets of the form

\[LC(B, c) = \{(x, t_0) \in \mathbb{R}^n \times \mathbb{R}_+ : \|B(x - c)\| \leq t_0\} \]

\[B \text{ is invertible} \]
Previous Work on SOCMIP

• Second-order conic sets of the form

\[LC(B, c) = \left\{ (x, t_0) \in \mathbb{R}^n \times \mathbb{R}_+ : \|B(x - c)\| \leq t_0 \right\} \]

\(B \) is invertible

• Atamturk and Narayanan (2008)
Previous Work on SOCMIP

• Second-order conic sets of the form

\[LC(B, c) = \{(x, t_0) \in \mathbb{R}^n \times \mathbb{R}_+ : \|B(x - c)\| \leq t_0\} \]

\(B \) is invertible

• Atamturk and Narayanan (2008)

\[|b_i (x - c)| \leq t_i, \quad i = 1, \ldots, n \]

\[\|t\| \leq t_0, \]

where \(b_i \) denotes the \(i\)-th row of matrix \(B \).
Previous Work on SOCMIP

• Second-order conic sets of the form

\[LC(B, c) = \{ (x, t_0) \in \mathbb{R}^n \times \mathbb{R}_+ : \| B(x - c) \| \leq t_0 \} \]

\(B \) is invertible

• Atamturk and Narayanan (2008)

Linear Part \(|b_i(x - c)| \leq t_i, \quad i = 1, \ldots, n \)

\(\| t \| \leq t_0, \)

where \(b_i \) denotes the \(i \)-th row of matrix \(B \).
Previous Work on SOCMIP

- Second-order conic sets of the form

\[LC(B, c) = \{(x, t_0) \in \mathbb{R}^n \times \mathbb{R}_+ : \| B(x - c) \| \leq t_0 \} \]

- Atamturk and Narayananan (2008)

 Linear Part \[|b_i (x - c)| \leq t_i, \quad i = 1, \ldots, n \]

 Nonlinear Part \[\|t\| \leq t_0, \]

 where \(b_i \) denotes the \(i \)-th row of matrix \(B \).
Previous Work on SOCMIP

• Second-order conic sets of the form

\[LC(B, c) = \{(x, t_0) \in \mathbb{R}^n \times \mathbb{R}_+ : \|B(x - c)\| \leq t_0 \}\]

• Other quadratic sets
 - (See Belotti, Goez, Polik, Ralphs, Terlaky 2012)

• Split cuts for ellipsoids
 - (See Dadush, Dey, Vielma 2011)
Previous Work on SOCMIP

• Second-order conic sets of the form

\[LC(B, c) = \{(x, t_0) \in \mathbb{R}^n \times \mathbb{R}_+ : \|B(x - c)\| \leq t_0\} \]

• Other quadratic sets
 ▪ (See Belotti, Goez, Polik, Ralphs, Terlaky 2012)

• Split cuts for ellipsoids
 ▪ (See Dadush, Dey, Vielma 2011)

• MD01-West 101-CC, Monday, 16:50 – 17:10
Proposition (Simple Conic MIR). Let

\[S_0 = \{(x, t) \in \mathbb{Z} \times \mathbb{R}_+ : |x - b| \leq t\}, \]

and \(f = b - \lfloor b \rfloor \). Then

\[(1 - 2f)(x - \lfloor b \rfloor) + f \leq t \]

is valid for \(S_0 \) and \(\text{conv}(S_0) = \{(x, t) \in \mathbb{R} \times \mathbb{R}_+ : |x - b| \leq t, (1)\}. \)
Conic MIR Cuts

Proposition (Simple Conic MIR). Let

\[S_0 = \{(x, t) \in \mathbb{Z} \times \mathbb{R}_+ : |x - b| \leq t\}, \]

and \(f = b - \lfloor b \rfloor \). Then

\[(1 - 2f)(x - \lfloor b \rfloor) + f \leq t \]

is valid for \(S_0 \) and \(\text{conv}(S_0) = \{(x, t) \in \mathbb{R} \times \mathbb{R}_+ : |x - b| \leq t, (1)\} \).

• More general cuts using a superadditive function
Conic MIR Cuts and Linear Split Cuts

\[LC(B, c)^H := \{(x, t, t_0) \in \mathbb{Z}^n \times \mathbb{R}_+^n \times \mathbb{R}_+ : |B(x - c)| \leq t_0\} \]
Conic MIR Cuts and Linear Split Cuts

\[LC(B, c)^H := \{(x, t, t_0) \in \mathbb{Z}^n \times \mathbb{R}_+^n \times \mathbb{R}_+ : |B(x - c)| \leq t_0\} \]

\[\pi \in \mathbb{Z}^n, \mu \in \mathbb{R}^n \text{ such that } B^T \mu = \pi, \pi^T c \notin \mathbb{Z} \]

\[(1 - 2f)(\pi^T x - \lfloor \pi^T c \rfloor) + f \leq |\mu|^T t \]
Conic MIR Cuts and Linear Split Cuts

\[LC(B, c)^H := \{(x, t, t_0) \in \mathbb{Z}^n \times \mathbb{R}^n_+ \times \mathbb{R}_+ : |B(x - c)| \leq t_0\} \]

\[\pi \in \mathbb{Z}^n, \mu \in \mathbb{R}^n \text{ such that } B^T \mu = \pi, \pi^T c \notin \mathbb{Z} \]

\[(1 - 2f)(\pi^T x - \lfloor \pi^T c \rfloor) + f \leq |\mu|^T t \]

- Equivalency between all versions of conic MIR cuts (simple and superadditive) and linear split cuts
Conic MIR Cuts and Linear Split Cuts

\[LC(B, c)^H := \{(x, t, t_0) \in \mathbb{Z}^n \times \mathbb{R}_+^n \times \mathbb{R}_+ : |B(x - c)| \leq t_0\} \]

\[\pi \in \mathbb{Z}^n, \mu \in \mathbb{R}^n \text{ such that } B^T \mu = \pi, \quad \pi^T c \notin \mathbb{Z} \]

\[(1 - 2f)(\pi^T x - [\pi^T c]) + f \leq |\mu|^T t \]

- Equivalency between all versions of conic MIR cuts (simple and superadditive) and linear split cuts
- Also true for conic MIR with non-negativity
- A single conic MIR per disjunction
Projected Conic MIR

• Conic MIR cut might project to nonlinear cuts

\[S = \left\{ (x, y, t_0) \in \mathbb{Z} \times \mathbb{R} \times \mathbb{R}_+ : \sqrt{(x - b)^2 + y^2} \leq t_0 \right\} \]

• Simple nonlinear conic MIR inequality

\[\sqrt{((1 - 2f)(x - \lfloor b \rfloor) + f)^2 + y^2} \leq t_0 \]
Projected Conic MIR

• Conic MIR cut might project to nonlinear cuts

\[S = \left\{ (x, y, t_0) \in \mathbb{Z} \times \mathbb{R} \times \mathbb{R}_+ : \sqrt{(x - b)^2 + y^2} \leq t_0 \right\} \]

• Simple nonlinear conic MIR inequality

\[\sqrt{((1 - 2f)(x - \lfloor b \rfloor) + f)^2 + y^2} \leq t_0 \]

• Not true in general!
Nonlinear Split Cuts

\[LC(B, c)^{\pi, \pi_0} := \{(x, t_0) \in \mathbb{R}^n \times \mathbb{R}_+: \|B(x - c)\| \leq t_0, \]
Nonlinear Split Cuts

\[LC (B, c)^{\pi, \pi_0} := \{(x, t_0) \in \mathbb{R}^n \times \mathbb{R}_+ : \|B(x - c)\| \leq t_0, \|A_{B,\pi,c}x - b_{B,\pi,c}\| \leq t_0\} \]
Nonlinear Split Cuts

\[LC (B, c)^{\pi, \pi_0} := \{(x, t_0) \in \mathbb{R}^n \times \mathbb{R}_+ : \|B(x - c)\| \leq t_0, \|A_{B,\pi,c}x - b_{B,\pi,c}\| \leq t_0\} \]

Original Set
Nonlinear Split Cuts

\[LC(B, c)^{\pi_0} := \{(x, t_0) \in \mathbb{R}^n \times \mathbb{R}_+ : \| B(x - c) \| \leq t_0, \| A_{B,\pi,c}x - b_{B,\pi,c} \| \leq t_0\} \]
Nonlinear Split Cuts vs. Conic MIR Cuts

• A single split disjunction
Nonlinear Split Cuts vs. Conic MIR Cuts

• A single split disjunction
 ▪ Nonlinear split cut (strictly) dominates conic MIR cut
Nonlinear Split Cuts vs. Conic MIR Cuts

• A single split disjunction
 - Nonlinear split cut (strictly) dominates conic MIR cut

• A group of split disjunctions
Nonlinear Split Cuts vs. Conic MIR Cuts

• A single split disjunction
 ▪ Nonlinear split cut (strictly) dominates conic MIR cut

• A group of split disjunctions
 ▪ More complicated!
Nonlinear Split Cuts vs. Conic MIR Cuts

• A single split disjunction
 ▪ Nonlinear split cut (strictly) dominates conic MIR cut

• A group of split disjunctions
 ▪ More complicated!
 ▪ Combination of conic MIR cuts in the extended formulation \Rightarrow More strength
A Group of Split Disjunctions (Example)

\[
LC(B, c) = \{(x, t_0) \in \mathbb{R}^n \times \mathbb{R}_+ : \|x - c\| \leq t_0\}
\]

\[
c_i = 1/2, \; i \in \{1, \ldots, n\}
\]
A Group of Split Disjunctions (Example)

\[LC(B, c) = \{(x, t_0) \in \mathbb{R}^n \times \mathbb{R}_+ : \|x - c\| \leq t_0\} \]
\[c_i = 1/2, \quad i \in \{1, \ldots, n\} \]

- Elementary conic MIR cuts give the conic MIR closure
A Group of Split Disjunctions (Example)

\[LC(B, c) = \{ (x, t_0) \in \mathbb{R}^n \times \mathbb{R}_+ : \|x - c\| \leq t_0 \} \]

\[c_i = 1/2, \; i \in \{1, \ldots, n\} \]

- Elementary conic MIR cuts give the conic MIR closure

\[z_0^* = \min_{x} \{ t_0 : \|x - c\| \leq t_0, \; x \in \mathbb{Z}^n \} \]
A Group of Split Disjunctions (Example)

\[LC(B, c) = \{(x, t_0) \in \mathbb{R}^n \times \mathbb{R}_+ : \|x - c\| \leq t_0\} \]

\[c_i = 1/2, \ i \in \{1, \ldots, n\} \]

- Elementary conic MIR cuts give the conic MIR closure

\[z_0^* = \min_{x} \{ t_0 : \|x - c\| \leq t_0, \ x \in \mathbb{Z}^n \} \]

Minimizing \(t_0 \) over conic MIR closure

\[z_{cmir}^* = \sqrt{n/2} = z_0^* \]
A Group of Split Disjunctions (Example)

\[(\bar{x}, \bar{t}_0), \quad \bar{x}_i = 1/2, \quad i \in \{1, \ldots, n\}, \quad \bar{t}_0 = 1/2\]
A Group of Split Disjunctions (Example)

\((\bar{x}, \bar{t}_0), \bar{x}_i = 1/2, i \in \{1, \ldots, n\}, \bar{t}_0 = 1/2\)

\((\bar{x}, \bar{t}_0) \notin \text{conic MIR closure}\)
A Group of Split Disjunctions (Example)

\[(\bar{x}, \bar{t}_0), \quad \bar{x}_i = 1/2, \quad i \in \{1, \ldots, n\}, \quad \bar{t}_0 = 1/2\]

\[(\bar{x}, \bar{t}_0) \notin \text{conic MIR closure}\]

\[(\bar{x}, \bar{t}_0) \in \text{split closure}\]

Conic MIR closure
A Group of Split Disjunctions (Example)

\[(\bar{x}, \bar{t}_0), \; \bar{x}_i = 1/2, \; i \in \{1, \ldots, n\}, \; \bar{t}_0 = 1/2\]

\[(\bar{x}, \bar{t}_0) \notin \text{conic MIR closure}\]

\[(\bar{x}, \bar{t}_0) \in \text{split closure}\]

\[\tilde{z}^*_{\text{split}} \leq 1/2\]
A Group of Split Disjunctions (Example)

\((\bar{x}, \bar{t}_0), \bar{x}_i = 1/2, \ i \in \{1, \ldots, n\}, \ \bar{t}_0 = 1/2\)

\((\bar{x}, \bar{t}_0) \notin \text{conic MIR closure}\)

\((\bar{x}, \bar{t}_0) \in \text{split closure}\)

\(\bar{z}_{\text{split}}^* \leq 1/2 < \bar{z}_{\text{cmir}}^* = \sqrt{n}/2\)

Conic MIR closure
A Group of Split Disjunctions (Example)

- Split cuts can still cut off points from the sides of the conic MIR closure

$$\pi = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

Nonlinear split cut

Conic MIR closure
Computational Experiments

• Closest Vector Problem (CVP)

\[
\min_x \left\{ \|B(x - c)\| : x \in \mathbb{Z}^n \right\}
\]
Computational Experiments

• Closest Vector Problem (CVP)

\[
\min_{x} \{ \| B(x - c) \| : x \in \mathbb{Z}^n \}
\]

\(B:\ \text{Uniformly at random in } \{-3, \ldots, 3\}\)

\(c:\ \text{Uniformly at random in } [-1, 1]\)
Computational Experiments

<table>
<thead>
<tr>
<th>n</th>
<th>#</th>
<th>Split Cuts (% gap closed)</th>
<th>Conic MIR Cuts (% gap closed)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>El</td>
<td>El + NEl</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>45.73</td>
<td>77.05</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>37.20</td>
<td>50.27</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
<td>28.64</td>
<td>41.14</td>
</tr>
<tr>
<td>20</td>
<td>10</td>
<td>22.29</td>
<td>31.36</td>
</tr>
<tr>
<td>25</td>
<td>10</td>
<td>21.65</td>
<td>25.75</td>
</tr>
<tr>
<td>30</td>
<td>10</td>
<td>16</td>
<td>22.71</td>
</tr>
<tr>
<td>35</td>
<td>10</td>
<td>15.65</td>
<td>21.56</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>26.74</td>
<td>38.55</td>
</tr>
</tbody>
</table>

Table 1: Performance of the nonlinear split cuts and conic MIR cuts when n elementary and n non-elementary disjunctions are added.
Computational Experiments

Table 1: Performance of the nonlinear split cuts and conic MIR cuts when \(n \) elementary and \(n \) non-elementary disjunctions are added

<table>
<thead>
<tr>
<th>(n)</th>
<th>#</th>
<th>Split Cuts (% gap closed)</th>
<th>Conic MIR Cuts (% gap closed)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>El</td>
<td>El + NEl</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>45.73</td>
<td>77.05</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>37.20</td>
<td>50.27</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
<td>28.64</td>
<td>41.14</td>
</tr>
<tr>
<td>20</td>
<td>10</td>
<td>22.29</td>
<td>31.36</td>
</tr>
<tr>
<td>25</td>
<td>10</td>
<td>21.65</td>
<td>25.75</td>
</tr>
<tr>
<td>30</td>
<td>10</td>
<td>16</td>
<td>22.71</td>
</tr>
<tr>
<td>35</td>
<td>10</td>
<td>15.65</td>
<td>21.56</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>26.74</td>
<td>38.55</td>
</tr>
</tbody>
</table>
Summary

• Equivalency between conic MIR cuts and linear split cuts
• Dominance of a single conic split cut over conic MIR
• Groups of conic MIR could be “strong”!