Lectures 17: Broadcast routing

Eytan Modiano
Broadcast Routing

• Route a packet from a source to all nodes in the network

• Possible solutions:

 – Flooding: Each node sends packet on all outgoing links
 Discard packets received a second time

 – Spanning Tree Routing: Send packet along a tree that includes all of the nodes in the network
• A graph $G = (N, A)$ is a finite nonempty set of nodes and a set of node pairs A called arcs (or links or edges)

$N = \{1,2,3,4\}$
$A = \{(1,2),(2,3),(1,4),(2,4)\}$

$N = \{1,2,3\}$
$A = \{(1,2)\}$
Walks and paths

- A walk is a sequence of nodes \((n_1, n_2, ..., n_k)\) in which each adjacent node pair is an arc.

- A path is a walk with no repeated nodes.

Walk \((1,2,3,4,2)\)
Path \((1,2,3,4)\)
Cycles

- A cycle is a walk \((n_1, n_2, \ldots, n_k)\) with \(n_1 = n_k\), \(k > 3\), and with no repeated nodes except \(n_1 = n_k\)

Cycle \((1,2,4,3,1)\)
Connected graph

• A graph is connected if a path exists between each pair of nodes

Connected Unconnected

• An unconnected graph can be separated into two or more connected components
Acyclic graphs and trees

- An acyclic graph is a graph with no cycles.

- A tree is an acyclic connected graph.

\[\begin{array}{ccc}
 1 & 4 & 3 \\
 2 & & \\
 & & \\
\end{array} \] \quad \begin{array}{ccc}
 1 & 3 \\
 2 & & \\
 & & \\
\end{array} \] \quad \begin{array}{ccc}
 1 & 3 \\
 2 & & \\
 & & \\
\end{array} \\

- The number of arcs in a tree is always one less than the number of nodes.

 - Proof: start with arbitrary node and each time you add an arc you add a node \Rightarrow N nodes and N-1 links. If you add an arc without adding a node, the arc must go to a node already in the tree and hence form a cycle.
Sub-graphs

• $G' = (N', A')$ is a sub-graph of $G = (N, A)$ if
 - 1) G' is a graph
 - 2) N' is a subset of N
 - 3) A' is a subset of A

• One obtains a sub-graph by deleting nodes and arcs from a graph
 - Note: arcs adjacent to a deleted node must also be deleted

- Graph G
- Sub-graph G' of G
Spanning trees

- $T = (N', A')$ is a spanning tree of $G = (N, A)$ if
 - T is a sub-graph of G with $N' = N$ and T is a tree

Graph G Spanning tree of G
Spanning trees

- Spanning trees are useful for disseminating and collecting control information in networks; they are sometimes useful for routing
 - Especially in wireless networks

- To disseminate data from Node n:
 - Node n broadcasts data on all adjacent tree arcs
 - Other nodes relay data on other adjacent tree arcs

- To collect data at node n:
 - All leaves of tree (other than n) send data
 - Other nodes (other than n) wait to receive data on all but one adjacent arc, and then send received plus local data on remaining arc
General construction of a spanning tree

- Algorithm to construct a spanning tree for a connected graph \(G = (N,A) \):

1) Select any node \(n \) in \(N \); \(N' = \{n\}; A' = \{ \} \)

2) If \(N' = N \), then stop

\(T = (N',A') \) is a spanning tree

3) Choose \((i,j) \in A, \ i \in N', \ j \notin N' \)

\(N' := N' \cup \{j\}; \ A' := A' \cup \{(i,j)\}; \) go to step 2

- Connectedness of \(G \) assures that an arc can be chosen in step 3 as long as \(N' \neq N \)

- Is spanning tree unique?

 - What makes for a good spanning tree?
Spanning tree algorithm

- The algorithm never forms a cycle, since each new arc goes to a new node

- \(T = (N',A') \) is a tree at each step of the algorithm since \(T \) is always connected, and each time we add an arc we also add a node

Theorem: If \(G \) is a connected graph of \(n \) nodes, then

1) \(G \) contains at least \(n-1 \) arcs
2) \(G \) contains a spanning tree
3) if \(G \) contains exactly \(n-1 \) arcs, \(G \) is a spanning tree
Distributed algorithms to find spanning trees

1) A fixed node sends a "start" message on each adjacent arc of the graph

2) Each other node marks the first arc on which a start message was received as a spanning tree arc and then sends a "start" message on each other arc
 - This is a distributed implementation of the general spanning tree algorithm
 - It has several problems shared by many such algorithms:
 a) Who chooses the starting node?
 b) When does the algorithm terminate?
 c) The resulting tree is somewhat random
Min weight spanning tree

- Given a graph with weights assigned to each arc, find a spanning tree of minimum total weight (MST)

- Define a "fragment" to be a sub-tree of a MST

- Theorem:
 - Given a fragment F of an MST, Let a(i,j) be a minimum weight outgoing arc from F, where j is not in F
 - Then, F extended by arc a(i,j) & node j is a fragment

 That is, the MST will include the min-weight outgoing arc a(i,j) and node j

- Proof (by contradiction):
 - Let M be the MST that does not include a(i,j) (but does include F)
 - Since a(i,j) is not part of M, then adding a(i,j) to M must cause a cycle
 \[\Rightarrow \text{There must be some link in the cycle } b \neq a \text{ which is outgoing from } F \]
 - Deleting b and adding a creates a new spanning tree

 Since weight of b cannot be less then weight of a, M' must be a MST
 If weight of a = weight of b, then both are MST’s otherwise M could not have been an MST
MST algorithms

• **Generic MST algorithm steps:**
 – Given a collection of sub-trees of an MST (called fragments) add a minimum weight outgoing edge to some fragment

• **Prim-Dijkstra:** Start with an arbitrary single node as a fragment
 – Add minimum weight outgoing edge

• **Kruskal:** Start with each node as a fragment;
 – Add the minimum weight outgoing edge, minimized over all fragments
Prim-Dijkstra Algorithm: example

Step 1

Step 2

Step 3

Step 4

Step 5
• Suppose the arcs of weight 1 and 3 are a fragment
 – Consider any spanning tree using those arcs and the arc of weight 4, say, which is an outgoing arc from the fragment
 – Suppose that spanning tree does not use the arc of weight 2
 – Removing the arc of weight 4 and adding the arc of weight 2 yields another tree of smaller weight
 – Thus an outgoing arc of min weight from fragment must be in MST