
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science

Department of Aeronautics and Astronautics

6.263/16.37
Problem Set No.3 Solutions Posted: Oct 2, 2008

Problem 1: text problem 3.5

The expected time in the question equals

E{Time} = (5 + E{stay of 2nd student})P (1st stays less or equal to 5 minutes)

+ (E{stay of 1st|stay of 1st ≥ 5}
+ E{stay of 2nd student}P (1st stays more than5minutes).

We have E{stay of 1st|stay of 1st ≥ 5} = 30, and, using the memoryless property of the
exponential distribution,

E{stay of 1st|stay of 1st ≥ 5} = 5 + E{stay of 1st} = 35

Also,

P (1st student stays less or equal to 5 minutes) = 1− e−5/30

P (1st student stays more than 5 minutes) = e−5/30

By substitution, we obtain

P (Time) = (5 + 30)(1− e−5/30) + (35 + 30)e−5/30 = 60.394

Problem 2: text problem 3.6

a) The probability that the person will be the last to leave is 1/4 because the exponential
distribution is memoryless, and all customers have identical service time distribution. In
particular, at the instant the customer enters service, the remaining service time of each
of the other three customers served has the same distribution as the service time of the
customer.
b) The average time in the bank is 1 (the average customer service time) plus the expected
time for the first customer to finish service. The latter time is 1/4 since the departure
process is statistically identical to that of a single server facility with with 4 times large
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service rate. More precisely we have

P (no customer departs in the next t mins) = P (1st does not departs in the next t mins)

∗ P (1st does not departs in the next t mins)

∗ P (1st does not departs in the next t mins)

∗ P (1st does not departs in the next t mins)

= (e−t)4 = e−4t

Therefore,

P (the first departure occurs within the next t mins) = 1− e−4t

and the expected time to the next departure is 1/4. So the answer is 5/4 mins.
c) The answer will not change because the situation at the instant when the customer begins
service will be the same under the conditions for (a) and the conditions for (c).

Problem 3: text problem 3.9

a) For each session the arrival rate is λ = 150/60 = 2.5 packets/sec. When the line
is divided into 10 lines of capacity 5 Kbits/sec, the average packet transmission time is
1/µ = 0.2 sec. The corresponding utilization factor is ρ = λ/µ = .5. We have for each
session NQ = ρ2/(1 − ρ) = .5, N = ρ/(1 − ρ) = 1, and T = N/λ = .4 sec. For all sessions
collectively NQ and N must be multiplied by 10 to give NQ = 5 and N = 10.

When statistical multiplexing is used, all sessions are merged into a single session with
10 times larger λ and µ; λ = 25, µ = .02. We obtain ρ = .5, NQ = .5, N = 1, and T = .04
sec. Therefore NQ, N , and T have been reduced by a factor of 10 over the TDM case.
b) For the sessions transmitting at 250 packets/min we have ρ = (250/60) ∗ .2 = .833 and
we have NQ = .8332/(1 − .833) = 4.158, N = 5, T = N/λ = 5/(250/60) = 1.197 sec. For
the sessions transmitting at 50 packets/min we have ρ = (50/60) ∗ .2 = .166, NQ = 0.033,
N = .199, T = .199/(50/60) = .239.

The corresponding averages over all sessions are NQ = 5 ∗ (4.158 + .033) = 21, N =
5 ∗ (5 + .199) = 26, T = N/λ = N/(5λ1 + 5λ2) = 26/5/(250/60 + 50/60) = 1.038 sec.

When statistical multiplexing is used the arrival rate of the combined session is 5∗(250+
50) = 1500 packets/sec and the same value for NQ, N and T as in (a) are obtained.

Problem 4: text problem 3.22

a) When all the courts are busy, the expected time between two departures is 40/5 = 8
minutes. If a pair sees k pairs waiting in the queue, there must be exactly k + 1 departures
from the system before they get a court. Since all the courts would be busy during this
whole time, the average waiting time required before k + 1 departures is 8(k + 1) minutes.
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b) Let X be the expected waiting time given that courts are found busy. We have λ = 1/10,
µ = 1/40, and ρ = λ/(5µ) = .8. By the M/M/m results, we have

W =
ρPQ

λ(1− ρ)

Since W = XPQ, we obtain X = ρ/[λ(1− ρ)] = 40 min.

Problem 5: text problem 3.61

We have
∞∑
i=0

pi = 1. The arrival rate at the CPU is λ/p0 and the arrival rate at the ith I/O

port is λpi/p0. By Jackson’s Theorem, we have

P (n0, n1, ..., nm) =
m∏

i=0

ρni
i (1− ρi),

where ρ = λ
µ0p0

and ρi = λpi

µip0
for i > 0.

The equivalent tandem system is as follows: The arrival rate is λ. The service rate for

CPU

0
I/O 1 I/O m

queue 0 is µ0p0 and for queue i(i > 0) is µip0/pi.

Problem 6: Derivation of Poisson Process from Random Variables

a) For n = 1, we can easily see that the formula for gn holds because S1 = X1 whose

density is αe−αx. Assume gn(x) = α (αx)n−1

(n−1)!
e−αx, then obtain the formula for gn+1. Because

gn+1(t) =
∫ t

0
gn(t− x)g1(x)dx, it can be computed as:

gn+1(t) =
∫ t

0
α (α(t−x))n−1

(n−1)!
e−α(t−x) · αeαxdx

= ααne−αt

(n−1)!

∫ t

0
(t− x)n−1dx

= α (αt)ne−αt

n!
,

which verifies the formulation for gn. Taking derivative of Gn yields gn, and this completes
the proof.

b) Let N(t) be the number of the packets that have arrived up to time t. Then, the
probability that N(t) = n can be expressed as:

Pr[N(t) = n] = Pr[Tn ≤ t, Tn+1 > t],
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because Tn is the arrival time of the n-th packet. Let A and B denote the sample spaces of
{Tn ≤ t} and {Tn > t}, respectively. Then, Pr[A

⋂
B] is the probability we want to find. It

follows that
Pr[N(t) = n] = Pr[A

⋂
B]

= Pr[A− A
⋂

BC ]
= Pr[A]− Pr[A

⋂
BC ]

= Pr[Tn ≤ t]− Pr[Tn ≤ t, Tn+1 ≤ t]
= Pr[Tn ≤ t]− Pr[Tn+1 ≤ t]
= Gn(t)−Gn+1(t)

= (αt)n

n!
e−αt,

which shows that the packet arrival follows the Poisson process with rate α.
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