MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science Department of Aeronautics and Astronautics

6.263/16.37Issued: Oct 14, 2008Problem Set No.6Due: Oct 21, 2008

Problem 1: text problem 4.15

Problem 2: text problem 4.17

Problem 3: text problem 4.26

Problem 4

Consider an M/G/1 queue with packet arrival rate λ . The job size Z is distributed according to a heavy tailed distribution, i.e.,

$$P(Z > x) \sim x^{-\alpha},$$

where $\alpha > 1$ is called the *degree* of the distribution. (In the above notation, $f(x) \sim g(x)$ means that

$$\lim_{x \to \infty} \frac{f(x)}{g(x)}$$

is a non-zero real number.)

a) Show that the mean job size E(Z) is finite.

b) For this part and the next, assume that the service discipline is FCFS. Show that there exist values for α such that the expected queue occupancy is *infinite*, even though the loading of the queue is less that one ($\rho = \lambda E(Z) < 1$). Also, find the condition on α for this to happen.

c) How do you reconcile the fact that the expected queue occupancy is infinite in part (b), but the server utilization ρ is less than one? Does this mean that the steady state queue occupancy can be infinite with some positive probability? Discuss.

Problem 5

Let X(t), $t \in \mathbb{Z}$ be a discrete time, exactly second order self-similar stochastic process with Hurst parameter H.

a) Write down the auto-correlation function r(k) for the process X(t).

b) Show that if $H \neq 0.5$, $r(k) \sim k^{2H-2}$ for large k. (Hint: Consider the ratio of r(k) and k^{2H-2}).

c) Prove that X(t) exhibits long-range dependence for $\frac{1}{2} < H < 1$.