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Problem 1: Birkhoff-von Neumann Switch
a) We are given the following decomposition:
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Multiplying both side by a column vector e of all its elements being 1, we obtain
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The first equality follows from the fact that R is doubly stochastic, and the last equality fol-
lows from the fact that Py is a permutation matrix for every k. This proves that >, ¢ = 1.

b) It is easy to see that in class k, there are [ tokens whose virtual finishing times are not
greater than F}. In class j # k, if the number of such tokens is denoted by [;, then it has to
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because [; is an integer. Summing up the above equality together with [ yields the desired
result.

c¢) In worst case, the [-th token of class k will be served after all the tokens have been served.
Hence, the time slot 7} satisfies
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d) Because 7. < F}, we have
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e) We have
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where we have used the fact that K = |E;;| + |E]| (where A® is the complement of set A)
and ), ¢ = L.
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f) Applying the result in d) for C;;(¢) and the result in e) for C;;(s), we obtain
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g) If the arrival rate matrix R satisfy the constraints ((6) and (7) in PS8) of doubly sub-
stochastic matrix with strict inequalities, then it is obvious that there exists a stochastic
matrix R such that 7;; > ry;,V(4, j). To see this, if the constraints (6) and (7) are satisfied,
it follows that maxy(; ;) 75; < 1. Then, there exists a constant ¢ > 0 such that r;; + € < 1.
Hence, adding €/N to each coordinate of R yields another doubly substochastic matrix R*
satisfying r§; > 7i;,V(i,j). By von Neumann’s Theorem, there exists a doubly stochastic

matrix R such that Tij > 753, V(i, 7). This proves that there exists a doubly stochastic matrix
R that dominates R in component-wise.
On the other hand, let s = 0, divide both side of the inequality in f), and take liminf; .,

then we obtain o)
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where the equality follows from Birkhoft’s Theorem. Because 7; > r;;,V(i,j), the above
inequality implies that the service rate is greater than the arrival rate, and this proves the
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stability of the algorithm.

NOTE: Refer to the following paper for more details: Cheng-Shang Chang, Wen-Jyh Chen
and Hsiang-Yi Huang, ”On service guarantees for input-buffered crossbar switches: acapac-
ity decomposition approach by Birkhoff and von Neumann,” IWQoS 1999.



