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An Improved  Selective-Repeat ARQ Strategy 
E. J. WELDON, JR., MEMBER, IEEE 

Abstract-A new procedure for handling retransmissions in a 
selective-repeat ARQ system is proposed. This procedure can operate 
with a receive buffer of minimal size; in addition it places little 
computational load on the transmit and receive processors. 

The  procedure  is  simple enough that its throughput can be 
calculated  exactly.  Analysis of this strategy shows that: 

1) it  yields  higher throughput than earlier ARQ techniques; 
2) for modest receive buffer size,  its throughput differs  little from 

channel  capacity; 
3) as buffer size  increases, throughput approaches channel 

capacity. 
The  final  section of the paper considers  the performance of  ARQ 

systems on channels  in which errors occur in bursts. It indicates that 
on reasonably good channels,  error burstiness has  little  effect on 
throughput. 

I. INTRODUCTION 

A. Background 

V ERY early work on ARQ systems was done by Chang 
[ l ]  , Harris et al. [2], and Metzner and Morgan [3]. 

These authors examined the basic nature of communications 
with feedback and classified the  types of  ARQ systems. 
Shannon [4] investigated the theoretical limits of ARQ 
systems and demonstrated  that although feedback could not 
increase the capacity of a memoryless channel,  it could im- 
prove the reliability of such channels at all rates below capac- 
ity. Weldon [5] applied these results to the binary symmetric 
channel and derived bounds on the reliability achievable with 
ARQ. 

Along more practical lines, Reiffen et QZ. [6]  and Cowell 
and Burton [7] describe early ARQ systems employing a 
stop-and-wait strategy. Stuart  [8] describes the selective- 
repeat strategy and Benice and Frey [9] compare the  per- 
formance, in terms of undetected error probability and 
throughput,  of stop-and wait, go-back-N, and selective-repeat 
ARQ strategies. Somewhat later, Balkovic and Muench [ 101 
examined the performance of these ARQ strategies on the 
switched telephone network. 

All of the early commercial systems which employed ARQ 
used the stop-and-wait strategy, no doubt because of  its sim- 
plicity; IBM’s widely  used binary synchronous communication 
(BISYNC) [l 11 protocol is an example. In  the early and mid- 
19703, the widespread use  of satellites for  data communica- 
tions  [12] , coupled with the declining cost of digital hard- 
ware, encouraged the use  of continuous-ARQ strategies. Pro- 
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tocols like SDLC [13] and ADCCP [ 141 employ the  goback-N 
strategy;  its performance is substantially better  than  that of 
stop-and-wait and it can be implemented at moderate cost. 
Studies by Kaul [ 151 , Traynham and Steen [ 161 , Doll [ 171 , 
and others have determined the  throughput performance of 
these protocols under a wide  range of conditions. 

Recently there has been considerable interest in the selec- 
tive-repeat ARQ strategy, For example, in [ 181 , Easton ana- 
lyzes the performance of  real protocols employing this tech- 
nique. In  [19] , the  authors derive  an approximate expression 
for  the  throughput of a selective-repeat system; their analytical 
results agree  closely with data measured on an experimental 
satellite link [20]. All  of the papers show a wide range  of  sys- 
tem parameters over which the selective-repeat strategy is 
markedly superior to go-back-N. 

In a selective-repeat ARQ system, blocks are numbered 
and ACKed or NACKed by number. Assuming a noiseless feed- 
back link, only erroneous blocks are repeated provided the 
receiver has sufficient buffer capacity to store all correctly 
received blocks until earlier errored blocks can be replaced. 
If the receiver buffer is infinite and if the channel makes 
block errors with probability P, then  the  throughput of the 
link (i.e., the average number of blocks communicated’ per 
transmission) is just  the probability that  a block will be re- 
ceived correctly. That is 

T = l  -P. (1) 

The forward data link may be  regarded  as  an Mary erasure 
channel where M is the number of possible choices for  a 
block. The capacity of such a channel is  well known to be 
1 - P and, as proved by Shannon [4], this capacity is not 
increased by the use  of a feedback link. Hence the selective- 
repeat strategy represents the optimal form of  ARQ when the 
receive buffer size  is unlimited. 

Unfortunately, real  receivers  have finite buffers and the 
simple selective-repeat procedure described above  is no longer 
optimal. Basically,  when the receive buffer fiils, data are dis- 
carded causing a reduction in throughput. 

Recently several modifications of the basic selective-repeat 
strategy have been proposed. Morris [22],  [23], following 
Sastry [21], proposes to repeat blocks S times rather  than 
just once when a NACK  is received, where S is the number of 
blocks stored in the  data link. This virtually eliminates buffer 
overflow, but because blocks are repeated many times,  per- 
formance suffers. For high error-rate conditions, Lin and Yu 
[24] improved on Morris’  scheme by having the  transmitter 

1 In this  paper,  we say a  block is “communicated” if it is transmit- 
ted  and received correctly. 
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repeat the requested  block  a  number  of  times  and also repeat 
subsequent NACKed blocks.  The same authors  analyze  a varia- 
tion on selective-repeat ARQ in [25] and  lower-bound  its 
throughput. , 

Practical selective-repeat ARQ procedures fall far short of 
channel  capacity  when the error probability is high. 
would  appear to be two reasons  for this: 

1) At the high data rates concordant  with selective-repeat 
ARQ, there is no  time to  do  the processing required. 

2) The amount of storage available at  the receiver  is limited 
(usually to one  round-trip delay). 

In this paper, we show that  the  fust of these factors is 
relatively unimportant  and  that  it is the amount of receiver 
storage that controls the performance  of  a selective-repeat 
ARQ system. 

B. This Work 

* .  

In  the present paper we present  a new  selective-repeat 
ARQ strategy and show that  its  throughput is superior to  that 
of  earlier techniques.  In  Section I1  we define our  channel 
model precisely. In Section I11 we define  the new strategy 
and  determine its throughput.  In  the final section we consider 
briefly the  performance of  ARQ systems when errors occur  in 
bursts. 

11. SYSTEM MODEL 
The  system we are considering consists of  a transmitter 

connected to a receiver&y a  data link; this is shown in Fig. 1 .  
The transmitter sends n-bit blocks (or frames) to  the re- 
ceiver; these may contain errors. The receiver also sends n-bit 
blocks to the transmitter and these we  assume are error-free? 
These  reverse blocks carry feedback  information to  the trans- 
mitter  about  the  state  of  the receiver. They  may also carry 
other  information, but this is not of concern to us. 

The  major  system components will  now  be described. 

A .  Data Link 
The link is  capable  of simultaneous bidirectional transmis- 

sion at a rate of R  bits/s  in  each direction. It has  a  propa- 
gation delay of tprop seconds in each direction; hence the link 
"stores" 

Sprop = m t p r o p  (2) 

data bits. In this paper, we are concerned  primarily  with links 
having sprop in the range 103-108 bits. 

The delay  in transmitting a  block across the link in either 
direction is ternis + fprop,  where ternis is the emission  delay 
of  an n-bit block  emitted at rate R. That is, ternis = n/R. At 
the receiver, there is an additional delay between the reception 
of a block  and  the transmission  of a reply; similarly at  the 
transmitter there is a delay  between the receipt of the reply 
and  the transmission  of the  next .block. Adjusting the relative 
phasing  of the two  block  streams can force one of these delays 
to zero, while the  other will not be greater than  one  block 

2 This is not as unrealistic as it seems. Although on a physical link, 
errors will occur in the reverse channel, their effect can be almost 
totally eliminated by the link protocol. 
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Fig. 1. Cornmuhation system model. 

time. Thus, the  number  of  blocks  stored  by the link is3 

and the total round-trip delay  is  nS/R  seconds. We refer to the 
quantity S as the (block) storage of the link. 

'.?'he link causes errors to occur in blocks sent in the  forward 
direction. In calculating the throughput of our  proposed 
strategy (Section 111), we  assume that these errors are inde- 
pendent  events  and  occur  with probability P. In  Section IVY 
we consider the case  where errors occur in bursts. 

B. Transmitter 
This device forms  numbered frames and passes them to 

the link. (Each  frame  also contains  a  polynomial check  se- 
quence  and,  unavoidably, a number of other overhead bits; 
these are not considered further in this study, however.) 
The transmitter and receiver  converse  using a  continuous- 
ARQ protocol which informs  the transmitter of the error 
status of  each  block received at  the receiver. The transmitter 
stores a  copy of each sent block until it is  acknowledged 
(ACKed) by  the receiver.  Since the link storage  is S, the trans- 
mitter  must also have the  capacity to store S blocks. It is not 
hard to show that this transmit  buffer size is sufficient to 
support a selective-repeat protocol regardless  of the receive 
buffer size. 

C. Receiver 
This device recalculates the  polynomial check  sequence on 

each received word.  If the check sum  is nonzero , a  block error 
has been detected.  In t h i s  paper, we assume that all block 
errors are detected  by  the  polynomial check sequence. No 
attempt is made to correct any  detected errors; the trans- 
mitter is  simply notified that  an error was  received via the 
next  block  on the reverse channel. Based on prior numbered 
ACKs,  the transmitter can determine  the  number of the 
corrupted  block.  A  copy is transmitted at  the  completion of 
the  current  block transmission. 

Since the data link stores S blocks,  any selective-repeat 
ARQ  scheme must  employ  a receiver  capable  of storing S 
blocks; otherwise  blocks  could not be  delivered continuously 
in correct order following an error. In this paper, we  assume 
that  the receiver has a buffer  of size qS blocks, q = 1,2,3, -. 
This implies that buffer overflow  will occur  only after q at- 
tempts to  send  a  copy  of  an  errored  block have  failed. 

It is interesting to observe that were the receive buffer 
size zero, the selective-repeat protocol would  become a go- 

3 The notation 1x1 refers to the smallest integer greater than or 
equal to x .  
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back-N protocol.  That  is, all blocks following an error would 
be rejected until  a correct copy of the errored block  was 
received. 

111. THE NEW STRATEGY 

We define throughput T as the average number of blocks 
communicated per transmitted block. It is  more convenient 
to calculate the average number of transmissions necessary 
to communicate a  block,  a  quantity we denote by 0, and  then 
to determine T from the  equation 

T = l /p.  (4) 

A. Description of the  Strategy 

The basic idea of the strategy is to repeat NACKed blocks 
multiple times with the number of repeats increasing  as the 
receive buffer approaches overflow. The strategy operates as 
follows: 

Level 0 If an ACK is received a t  the  transmitter, send 
a new block. 

Level 1 If a NACK is received after  the transmission 
of a new block,  the block is repeated nl 
times. 

Level 2 If all nl copies are received in error (corre- 
sponding to nl NACK's) the block is repeated 
n2 times. 

Level q If all n4 - copies are  received in error, buffer 
overflow occurs. The block is repeated n4 
times. 

Level q + 1 If  all ng copies are received in error, buffer 
overflow occurs. The block is repeated n4 
times. The strategy remains at  this level until 
the block is communicated. 

At each level, the  transmitter sends new blocks whenever 
it does not have repeats to send. It should be noted  that  the 
"classical" selective-repeat strategy results when q = 1 and 
nl = 1 .  

As a result of multiple errors the  transmitter may be re- 
quired,  by  the foregoing, to send two or more blocks at  the 
same time.  In  this case, the lowered numbered (older) block 
is sent first. 

After q + 1 attempts to send a block have failed and level 
q + 1 has been reached, the receive buffer is considered to be 
full. The next S - 1 received blocks are discarded and, of 
course, subsequently repeated by  the transmitter. It is recog- 
nized that  the receive buffer may not really be full (as a result 
of numerous errors in blocks which were to be stored in the 
buffer). Also it is recognized that discarding blocks which may 
be the first correct copy of a particular block reduces through- 
put. Nevertheless the strategy operates in this manner so that 
the expected number of transmissions needed to communi- 
cate block i is independent of errors in block j and its  repeti- 
tions  for all j # i .  Hence, the expected number of transmis- 
sions is the same for all blocks. 

B. Calculation of Throughput 

We calculate throughput  by first determining 0, the average 
number of block transmissions necessary to communicate a 
block, Throughput is then given by (4). 

Three types of blocks may be involved in communicating 
a block; the original block, copies sent in response to NACK's 
and blocks lost because  of  receive buffer overflow.  Blocks  dis- 
carded  because of errors in block i or  its copies are attributed 
to the transmission of block i. Thus,  for example, in a system 
with q = 1 and nl = 1 ,  if block 0 is received  in error and  its 
repeat (block S) is also  received in error,  then blocks S + 1 
through 2S  - 1 will  be discarded because  of buffer overflow. 
If block 2 S  (the second repeat) is  received correctly,  then  by 
our reckoning S + 1 blocks were transmitted to communicate 
block 0. 

With probability 1 - P the first transmission of a block is 
successful.  If the first transmission is received in error (proba- 
bility P) then exactly 1 + nl transmissions will be needed un- 
less  all n1 repeats are in error. Hence, we have 

Pr (1) = 1 -P ( 5 4  

Pr (1 + n l )  = P ( 1  -PI). (5b) 

If all nl repeats are in error,  then exactly 1 + nl + n2 
transmissions will be required, so 

If all (nl + n2 + .-. + n q )  repeats are in error,  the receive 
buffer overflows, S - 1 blocks are discarded and n4 additional 
repeats are sent. Hence, 

P r ( l + n l   + - + n , + n , + S - 1 )  
= p l + n l + . . . + n  9--l+"'(l -P"S). (5e) 

If  all n4 additional copies are received in error, S - 1 
blocks are discarded and n4 additional copies are sent.  The 
probability of this and subsequent cycles can be written 
directly. Equations (5a)-(5e) can be used to compute  the 
average number of transmissions needed to communicate a 
block, that is, 

C' ni+ 
.(1 -Pn')p i=l 

+ j= 2 0 n i l  

(k- 1 )"* 1. 
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To simplify the  notation in this expression, we  have  used 
the symbol no to represent the first term (i.e., 1) in each 
j-sum The k-sum  can be rearranged to give 

a 

k= 1 

P- 
Then use of theidentitiesXEoxi=(l -x)-' and Xgljxi = 

(1 - x)-' allows us to write this as 
Fig. 2.  Plot of throughput (7") versus block error probability (P) for 

the new strategy with u = 1 and S = 1000 for several values of n r  . 
Results of simGation f i r  n = 1 denoted by A. 

(I 

Throughput can  be determined by substituting this ex- 
pression into (6 )  and the result into (4). This gives 

4 S- 
q x nj  (n +s- lp%'i I 4 Fig. 3. Plot of throughput (7') versus round-trip channel delay (9 for 

several continuous-ARQ strategies (independent errors, P = 10-2, + x n.++O + -4  (8) q = 1). Resultstof simulation for nl = 1 denoted by A. 
j= 0 1 -P4 

This result needs some explaining. In practice, 4 usually plotted both figures. 
plotted versus S for P = Channel capacity (1) is also 

The  curves  show  several things. First of all, they show thit equals unity. Here (8) reduces to 

For a given channel defined by P and S, the number of 
repeats nl should be selected to maximize T. Although it is 
not feasible to give a complete solution for nl in (9), the  fol- 
lowing may be useful guidelines for practical ARQ systems. 
Throughput is maximized for  the following choices of nl : 

nl = 1, O<SP<l 

n1 = 2, 1 GSPand  OGSP' < 1 

nl 23, 1 GSP'. (1 0) 

The quantity SP is the expected number of errored blocks 
in the  data  link, i.e., the number of errors "in flight." For 
most links, SP is less than one and NACKed blocks should be 
repeated once. For  longhaul links with a high data  rate, SP 
can exceed unity; here blocks should be repeated twice. Only 
for channels with extremely large storage S or very  high error 
probability will more than  two  repetitions be necessary. 

Equation (9) is  plotted in Figs. 2 and 3 for several  values  of 
nl.  In Fig. 2, throughput is plotted versus error probability 
for  a channel with storage S = 1000 blocks. In Fig. 3, it is 

if the number of in-flight errors (SP) is greater than hree 
or so, multiple repeats should be used. They also  show that 
for channels with very  high error probability,  the number of 
repetitions which maximizes throughput is significantly greater 
than  one. On the  other  hand, Fig. 2 shows that regardless of 
the value  of nl , throughput is significantly less than channel 
capacity for P > 0.1 . 

For a given  value of 4 ,  we  will denote  by Tq the value of T 
obtained  by maximizing  over the set of possible choices for 
n = (nl , n2, -e, n4). That is 

Tq =max T .  
Vn 

Thus, Tl is represented by  the upper envelope of the curves 
of T versus P in Fig. 2. Table I shows the values of nl , nz , 
and n3 which maximize throughput  for 4 = 3 for several  large 
values of P. 

The quantity Tl is less than channel capacity for two 
reasons, the receiver's fixed buffer size and its limited proc- 
essing power. It is interesting to ask  if  removing the first of 
these constraints, i.e.,  enlarging the receive buffer, will permit 
capacity to be achieved. 

In Fig. 4, we plot Tq versus P for several  values of q.  These 
curves indicate that increasing the size  of the receive buffer 
permits channel capacity to be achieved. This can  be  seen 
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TABLE I 
VALUES OF n l ,  n2, AND n3 WHICH  MAXIMIZE  THROUGHPUT 

FOR q = 3 FOR  SEVERAL  VALUES OFp 

5 
2 
2 
1 
1 
1 
1 
1 
1 
1 

8 
4 
3 
2 
2 
2 
1 
1 
1 
1 

24 
13 
10 
I 
6 
5 
5 
4 
4 
3 

0.123 
0.257 
0.391 
0.517 
0.6 30 
0.713 
0.780 
0.832 
0.869 
0.897 P- 

Fig. 5. Plot of throughput (7') versus  block-error  probability (P) for 
several continuous-ARQ  strategies (S = 1000, q = 1 independent 
errors). 

a result previously  derived by Sastry [27] . As Fig. 5 shows, 
this strategy is effective only when SP Q 1 ,  as is usually the 
case on low-speed and terrestrial data links. Morris' procedure 
[22] yields performance which is virtually identical to that of 
the go-back& strategy. 

The Lin-Yu procedure [24] (SETRAN)  behaves like the go- 
back-N procedure for small P even though it employs a buffer 
with 4 = 1 .  Its throughput is lower bounded by  the expression 
~ 4 1  

P- 
Fig. 4. Plot of throughput (Tq) versus block error probability (P) for 

several  values of buffer  size (4). 
1 -(l-P)(l-P2)- 

1 -(1 -P)(1 -P"-' +PZ(S+X) TLY (1 5) 

analytically as  well. Setting all ni = 1 in (8)  gives 

T = 1/[ 2 (i + l)pi(l -P) + p q + W  + (4 + 1)(1 -P)) 
i= 0 1 -P 

(1  2) 

Since the first and second terms in the  brackets approach 1 - 
P and 0, respectively, with increasing 4, it follows that 

lim Tq = 1 - P = capacity. 
q--tm 

Fig. 4 also  shows the rather limited benefits achieved by 
using a receive buffer with 4 .> 3. If a system must operate 
with P > 0.1, it would seem that some form of error correc- 
tion should be used. For example, the simple  FEC procedure 
considered by Sindhu [26] yields significant increases in 
throughput with a modest amount of  receiver  processing. 

The  new strategy compares favorably with older contin- 
uous-ARQ procedures even with the receive buffer size lim- 
ited to 4 = 1. Fig. 5 shows a  plot of throughput versus error 
probability for this strategy with 4 = 1 and several other 
strategies. Among these are the following. 

Go-back-N: This strategy is a special  case of our strategy 
with 4 = 0 and n1 = 1 .  For these values (8) yields 

1 -P 
TGBN = l+(S--l)P 

where 

p [  (1 -P)2 1 -P(1- (1 -P)2f-l 1 1 -(1-(1 -P)'>s X=------ 

As Fig. 5 shows, the  throughput of this procedure is  signifi- 
cantly inferior to that of  even the selective-repeat strategy. 

Selective-repeat: This is the new strategy with 4 = 1 and 
nl = 1. Here (8) yields 

1 -P 
TSR = 

1 + (S- 1)P2 

The plot in Fig. 5 shows that  the procedure is effective pro- 
vided the number of in-flight errors is  less than  three  or so. 

The procedure recently proposed by Yu and Lin [25] is 
identical to the selective-repeat strategy but allows some 
processing at  the receiver. In particular, it allows copies of 
blocks which are correctly received  when the  buffer has over- 
flowed to replace incorrect blocks in the  buffer. This addi- 
tional processing buys some improvement over selective-repeat 
when the  throughput of the  latter is small; it does little to ex- 
tend  the useful  range of the selective-repeat strategy, however. 
The throughput of this procedure is lower bounded as follows 
[25] : 
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1-6 1-a where 

B 
1-c 

E = -  (1 - BCS-') 

andwhereA,=1-P2 ,B=1-P3mdC=1-P4 .  
Equation (17) is plotted in Fig. 5 as  curve Y - L .  
The final curve (C) plotted in Fig. 5 is the channel capacity: 

given by (1). The  curve  shows that  for interesting values  of 
throughput the selective-repeat strategy is inferior to capacity 
by  about  a factor of  ten in error probability. (This factor 
varies with  channel storage S, of  course.) ' The  new strategy 
with q = 1 recovers most of  +is  loss and is inferior to capacity 
by less than  a factor of three. 

IV. PERFORMANCE OF ARQ  STRATEGIES WHEN 
ERRORS OCCUR  IN  BURSTS 

The effect of channel  memory (i.e ., error burstiness) on  the 
performance  of ARQ strategies'has been  considered  by a num- 
ber  of authors. Blank and Trafton [28] define a bursterror 
model  and analyze the  performance  of  a simple  delayless  ARQ 
system.  Kanal and  Sastry [29] present  a  number of different 
channel  models  which can be used for analyzing ARQ systems 
subject to burst errors. In this section, we use  one  of these 
models, the two-state Gilbert model [30j, to derive  an a p  
proximate expression for the  throughput  of  our selective- 
repeat strategy when  the  channel is subject to long-term 
error dependence or burstiness. 

Fig. 6 depicts the Gilbert model. In  the  good  state, errors 
do  not  occur;  the link spends a fraction 6 of the time in this 
state. In  the  bad  state, errors occur  independently  with  proba- 
bility PB = P/(1 - 6); the link is in t h i s  state 1 - 6 of the 
time. With this'definition  the average error probability  remains 
P. We call the  parameter 6 the  channel burstiness. When 
6 = 0, we  have the case considered previously; as 6 increases 
toward its upper limit of 1 - P, errors become  increasingly 
clustered. 

Calculating throughput  exactly  under  these  assumptions is 
difficult; the  fact  that  the link can  change state  during error 
recovery complicates things. To avoid this complexity, we will 
assume that  the average state  occupancy  time is considerably 
larger than  the  round-trip delay. Thus we do  not take into 
account the "fine structure" of the  bursty  channel.  In  this 
case, throughput can be  approximated  by the weighted  average 
of the  throughputs of the  two  states separately. That is, 

TGGTG + (1 - ~ ) T B  (1 8) 

where TG and TB are the values  of throughput achieved by the 
strategy in question in the good and  bad  states, respectively. 
By hypothesis,  the good state is error-free; hence TG = 1 for 
any  continuous ARQ scheme  considered here. 

Equation [18] can  be used to approximate  throughput  for 
any of the strategies conqidered  in Section 111. For  example, 
for  the new strategy with q = 1, TB is  given by (9) with P re- 

Fig. 6. Gilbert  model of data li. 

I I 
.4 .% 

BURSTINESS (6) - 
Fig. 7. Plot of throughput (13 versus  burstiness (6) for the  new 

strategy  with q = 1 and "1 = 1. Channel  has S = 1000. 

placed by P/(1 - 6). That is, 
r 

T s 6  + ( 1  - - 6 ) / l  + n l (  1 - 6  

This result is plotted in Fig. 7 for nl = 1 , S = 1000, and P = 
lo-', lop2, and The  curves  show that for 
links in the normal  operating range (T slightly  less than  unity) 
error burstiness has little or no  effect. For  poor  channels 
(T < 0.8 or so) burstiness improves performance while for 
marginal channels (0.8 < T Q 0.9) burstiness lowers through- 
put. 

Generally speaking, error burstiness increases channel 
capacity. However,  a$ pointed out by Kanal and Sastry [29] , 
throughput  does  not necessarily  increase with capacity; rather, 
it reflects a system's ability to exploit capacity. Thus, in  Fig. 7 
for  the  channel  with P = increasing burstiness up to 
6 = 0.7 or so causesmore  buffer overflows(high  overhead)  and 
fewer normal retransmissions  (low  overhead). The  net effect is a 
decrease in throughput. 

'The  primary  conclusion that can be  drawn  from this simple 
analyqs is that, provided error burstiness is a long-term  phe- 
nomenon relative to system response t h e ,  it  does not have a 
significant impact 'on  channels  with  reasonably high through- 
put m.8 or so). Under such  conditions, the independent- 
error model can be used with some confidence in predicting 
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the performance of data links regardless of their error bursti- 
ness. 
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