Enabling Distributed Throughput Maximization in
Wireless Mesh Networks - A Partitioning Approach

Andrew Brzezinski, Gil Zussman, and Eytan Modiano
Laboratory for Information and Decision Systems
Massachusetts Institute of Technology
Cambridge, MA 02139

{brzezin, gilz, modiano}@mit.edu

ABSTRACT

This paper considers the interaction between channel as-
signment and distributed scheduling in multi-channel multi-
radio Wireless Mesh Networks (WMNs). Recently, a num-
ber of distributed scheduling algorithms for wireless net-
works have emerged. Due to their distributed operation,
these algorithms can achieve only a fraction of the max-
imum possible throughput. As an alternative to increas-
ing the throughput fraction by designing new algorithms, in
this paper we present a novel approach that takes advantage
of the inherent multi-radio capability of WMNs. We show
that this capability can enable partitioning of the network
into subnetworks in which simple distributed scheduling al-
gorithms can achieve 100% throughput. The partitioning is
based on the recently introduced notion of Local Pooling.
Using this notion, we characterize topologies in which 100%
throughput can be achieved distributedly. These topologies
are used in order to develop a number of channel assign-
ment algorithms that are based on a matroid intersection
algorithm. These algorithms partition a network in a man-
ner that not only expands the capacity regions of the subnet-
works but also allows distributed algorithms to achieve these
capacity regions. Finally, we evaluate the performance of the
algorithms via simulation and show that they significantly
increase the distributedly achievable capacity region.

Categories and Subject Descriptors: C.2.1 [Computer-
Communication Networks]: Network Architecture and De-
sign — Wireless communication; G.2.2 [Mathematics of Co-
mputing]: Graph Theory — Graph algorithms

General Terms: Algorithms, Performance, Design

Keywords: Stability, Channel assignment, Scheduling, Dis-
tributed algorithms, Wireless mesh networks, Local Pooling,
Matroid intersection

1. INTRODUCTION

Wireless Mesh Networks (WMNs) have recently emerged
as a solution for providing last-mile Internet access [1]. Sev-

Permission to make digital or hard copies of all or part o twork for
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

MobiCon' 06, September 23—-26, 2006, Los Angeles, California, USA.
Copyright 2006 ACM 1-59593-286-0/06/000955.00.

eral such networks are already in use, including testbeds and
commercial deployments. A WMN consists of mesh routers,
that form the network backbone, and mesh clients. Mesh
routers are rarely mobile and usually do not have power con-
straints. The mesh routers are usually equipped with mul-
tiple wireless interfaces operating in orthogonal channels.
Therefore, a major challenge in the design and operation of
such networks is to allocate channels and schedule transmis-
sions to efficiently share the common spectrum among the
mesh routers. Several recent works focused on multi-radio
multi-channel WMNs (e.g. [2,3,15,22]). Specifically, [2,22]
study the issues of channel allocation, scheduling, and rout-
ing in WMNSs, assuming that the traffic statistics are given.
In this paper, we study the issues of channel allocation and
scheduling but unlike most previous works, we do not as-
sume that the traffic statistics are known. Alternatively,
we assume a stochastic arrival process and present a novel
approach that enables throughput maximization by distrib-
uted scheduling algorithms.

Joint scheduling and routing in a slotted multihop wireless
network with a stochastic packet arrival process was consid-
ered in the seminal paper by Tassiulas and Ephremides [24].
In that paper they presented the first centralized policy that
is guaranteed to stabilize the network (i.e. provide 100%
throughput) whenever the arrival rates are within the sta-
bility region. The results of [24] have been extended to vari-
ous settings of wireless networks and input-queued switches
(e.g. [18,20], and references therein). However, optimal al-
gorithms based on [24] require repeatedly solving a global
optimization problem, taking into account the queue back-
log information for every link in the network. Obtaining
a centralized solution to such a problem in a wireless net-
work does not seem to be feasible, due to the communication
overhead associated with continuously collecting the queue
backlog information. On the other hand, distributed algo-
rithms usually provide only approximate solutions, resulting
in significantly reduced throughput.

Hence, the design of distributed scheduling algorithms has
attracted a lot of attention recently. Lin and Shroff [17]
studied the impact of imperfect scheduling on cross-layer
rate control. Regarding primary interference constraints®,
they showed that using a distributed maximal matching al-
gorithm along with a rate control algorithm may achieve as
low as 50% throughput. Similar results for different settings
were also obtained in [7,8,23,25]. A novel distributed ran-

Under primary interference constraints, each station can
converse with at most a single neighbor at a time. Namely,
the set of active links at any point of time is a matching.



domized approach that can achieve 100% throughput has
been recently presented in [19].

In this paper, we show that the multi-radio and multi-
channel capabilities of WMNs provide an opportunity for
simple deterministic distributed algorithms to obtain 100%
throughput. Mesh routers are usually equipped with multiple
radios (transceivers) and can transmit and receive on multi-
ple channels simultaneously [2,3,15]. Hence, channels have
to be allocated to the links and the transmissions on each
link have to be scheduled to avoid collisions. By allocating
different channels to different links, several non-interfering
subnetworks can be constructed. We study which subnet-
work topologies enable simple distributed scheduling algo-
rithms to achieve 100% throughput. Based on these results,
we develop network partitioning algorithms that decompose
the network into such subnetworks.

Although in arbitrary topologies the worst case perfor-
mance of simple distributed maximal scheduling algorithms
can be very low, there are some topologies in which they
can achieve 100% throughput. This observation is based on
a recent theoretical work by Dimakis and Walrand [10] in
which they study the performance of the Longest Queue
First (LQF) scheduling algorithm in a graph of interfering
queues?. The LQF algorithm is a greedy maximal weight
scheduling algorithm that selects the set of served queues
greedily according to the queue lengths. We note that un-
like a mazimum weight (i.e. optimal) solution a mazimal
weight solution can be easily obtained in a distributed man-
ner. Dimakis and Walrand [10] present sufficient conditions
for a maximal weight algorithm to provide 100% through-
put. These conditions are referred to as Local Pooling (LoP)
and are related to the properties of all maximal independent
sets in the conflict graph.?

In this paper we conduct the first thorough study of the
implications of the LoP conditions on the network perfor-
mance. We start by presenting a motivating example demon-
strating that channel allocation algorithms that take into
account LoP can enable distributed throughput maximiza-
tion while increasing the overall capacity. We then conduct
an extensive numerical study of the satisfaction of LoP by
conflict graphs of up to 7 nodes. We show that out of 1,252
graphs, only 14 do not satisfy LoP. It is an indication of the
strength of maximal weight scheduling for achieving 100%
throughput regardless of the network topology, aside from a
few “bad” topologies. Due to computational limitations, ex-
haustively verifying the satisfaction of LoP in graphs with
more than 7 nodes seems infeasible. In order to be able
to utilize larger graphs, we study what general properties
of conflict graphs assist or hinder the LoP conditions. For
example, we show that cliques (complete graphs) that are
connected to each other in different manners satisfy LoP.

These observations provide several building blocks for par-
titioning a graph into subgraphs satisfying LoP. In order
to demonstrate this capability and for the ease of presenta-
tion, we focus on scheduling under primary interference con-
straints (studied in [4,7,8,19,23,25,26]). For example, we
show that a tree network graph, when subject to the primary
interference constraints, yields an interference graph which
satisfies LoP. Hence, in such a tree, maximal weight algo-

2A graph of interfering queues can be constructed from the
network graph according to the interference constraints and
is usually referred to as an interference or conflict graph [14].
3More technical details can be found in Section 3.

rithms achieve 100% throughput. We also study bipartite
network graphs that provide insights regarding the number
of required subgraphs. For instance, we show that in any
K>, bipartite graph (i.e. a 2 X n input-queued switch) max-
imal weight matching algorithms achieve 100% throughput.

Building upon our observations, we design channel allo-
cation algorithms. Similarly to [2] and to the static channel
assignment in [15], we assume that a channel is assigned to
a radio interface for an extended period of time. Under this
assumption, using the minimum number of channels requires
a partitioning of the network into the minimum number of
subnetworks satisfying LoP. The general LoP conditions are
extremely challenging to incorporate into a channel alloca-
tion algorithm. Fortunately, our study provides some useful
building blocks. Since tree network graphs satisfy LoP, a
possible approach (which we pursue) is to partition the net-
work into non-overlapping forests, such that each edge will
be part of a single forest and each forest will use a differ-
ent channel. This problem is closely related to the matroid
intersection and matroid partitioning problems.

Given k channels, the problem of partitioning the graph
into k forests such that the number of edges included in
the forests is maximized is referred to as the k-forest prob-
lem [11]. A simple approach is to obtain an approzimate
solution by a Breadth First Search (BFS) algorithm. Alter-
natively, since the k-forest problem is actually a specific case
of a Matroid Cardinality Intersection problem, an optimal
solution can be found by the Matroid Cardinality Intersec-
tion (MCI) algorithm of [16] (having polynomial complex-
ity). We show that the MCI algorithm can be adapted to
take into account the scenario in which different nodes have
different numbers of radios. Using either the BFS algorithm
or the MCI algorithm enables a simple distributed schedul-
ing algorithm to achieve the capacity region (i.e. achieve
100% throughput). Yet, the capacity region itself may not
be the best possible. This results from the undesirable prop-
erty that the sizes (number of edges) of the forests are un-
balanced. Therefore, and since the capacity of the largest
forest may be significantly lower than the capacity of the
smallest forest, the network capacity may be affected.

We present three algorithms that aim to expand the ca-
pacity region, while maintaining the LoP conditions in all
the subnetworks. The main objective is to balance the num-
ber of edges across channels and to reduce the node degrees
in each channel. Two of these novel capacity expansion al-
gorithms make use of augmenting paths (in the spirit of the
MCI algorithm of [16]) to balance the node degree across
channels. Thus, they can be viewed as balanced Matroid
Cardinality Intersection algorithms. We evaluate the per-
formance of the algorithms via simulation. We show that
the MCI algorithm significantly outperforms the BFS algo-
rithms. We also compare the performance of the capacity
expansion algorithms and the MCI algorithm and show that
a large capacity improvement can be gained by using these
algorithms. We conclude by exploring the tradeoffs between
the capacities and the algorithms’ complexities.

The main contributions of this paper are two-fold. First,
we conduct a rigorous study of the properties of network
graphs satisfying Local Pooling. The second contribution is
the development of network partitioning (i.e. channel allo-
cation) algorithms that generate subnetworks with large ca-
pacity regions, while enabling distributed throughput max-
imization in each of the subnetworks.



v M(Vi) =

s

o
& w0
o )
- o
—
—ooo~

o~oco~

—o R oo

~ o~o~o

(a) * (b) (c

Figure 1: (a) A network graph Gy, (b) the corre-
sponding interference graph G; under the primary
interference constraints, and (c) the matrix M(V7) of
maximal independent sets in G;.

To the best of our knowledge, this is the first attempt to
study the algorithmic implications of Local Pooling. This
work is not only different from previous works on distributed
stability, due to the focus on partitioning mesh networks,
but also different from previous works on optimizing mesh
networks that mostly rely on traffic statistics.

This paper is organized as follows. In Section 2 we present
the network model and formulate the problem. In Section 3
we present and clarify the LoP conditions and demonstrate
their effect on the channel assignment problem. Section 4
studies the characteristics of conflict graphs satisfying LoP.
In Section 5 we present network partitioning and capacity
expansion algorithms and in Section 6 we evaluate their per-
formance. We summarize the results and discuss future re-
search directions in Section 7. Due to space constraints,
some of the proofs are omitted and can be found in [6].

2. MODEL

We consider the backbone of a Wireless Mesh Network
modeled by a network graph Gy = (Vn, En), where Vy =
{1,...,n} is the set of nodes (mesh routers) and Enx =
{(4,7) : i,j € Vn} is the set of bi-directional links, with
m = |En|. Depending on the context, we denote a link ei-
ther by (i,j) or by ex. We assume that the time is slotted,
denoted by ¢, and that the packet length is normalized so as
to be transmittable in a unit time slot. We denote by K,
a clique having n vertices and by K; ; a complete bipartite
graph with ¢ and j vertices.

Different wireless technologies pose different constraints
on the set of transmissions that can take place simultane-
ously. For example, under primary interference constraints,
the set of possible transmissions is the set of all possible
matchings on Gn. More generally, in many cases an inter-
ference graph (also known as a conflict graph) Gr = (Vr, Er)
can be defined based on the network graph Gy [14]. We as-
sign Vi £ En. Thus, each edge e; in the network graph
is represented by a vertex wv; of the interference graph and
an edge (vs,v;) in the interference graph indicates a conflict
between network graph links e; and e; (i.e. transmissions
on e; and e; cannot take place simultaneously). In graph
theoretic terminology, the interference graph resulting from
primary interference constraints is called a line graph [12].
For example, Figure 1 illustrates a network graph and the
corresponding interference graph under primary interference
constraints (i.e. the line graph corresponding to the network
graph). Here, We note that the model can be easily gener-
alized to capture network graphs with directional links. In
such a case, link (7, j) may interfere with different links than
those link (7, ) interferes with. Accordingly, the interference
graph will include a node for each directional link.

We consider the application of Local Pooling to multi-
radio multi-channel WMNSs. Following the model of [2], we

assume that each node v is equipped with R(v) interfaces
(radios). There are k available orthogonal channels and it
is assumed that each of the R(v) interfaces operates on a
different channel. Similarly to [2] and to the static model of
[15], we consider a static channel allocation model in which a
channel is allocated to each interface for an extended period
of time. Such an approach enables the use of commodity
802.11 radios [2]. We note that the extension of the model
for a dynamic channel allocation is a subject for further
research. We assume that transmissions in different channels
cannot collide. Therefore, once the different channels are
allocated, k disjoint interference graphs are generated.

For the simplicity of presentation, we consider single-hop
bi-directional traffic.* Let A;;(t) denote the number of pack-
ets arriving at node ¢ or node j that need to be transmitted
on link (7, 5) by the end of time-slot ¢. A;;(t) can be viewed
as the cumulative number of packets arriving at node (4, 5)
of the interference graph. We assume that arrivals are mutu-
ally independent and temporally i.i.d. processes with arrival
rate \;j, that is E[A;;(1)] = As. Let the column vector
A = (Nij, (4,j) € En) denote the arrival rate vector.

Let Q;;(t) denote the number of packets waiting to be
transmitted on link (7, j) at the beginning of time-slot ¢ and
Q(t) denote the queue-size vector. We will use Q(t) as the
system state at time ¢. Let II(Gn) denote the set of all feasi-
ble link activations in the network graph Gn. In particular,
let m = (mij, (4,7) € En) € II(Gn) be a (0,1) column vec-
tor representing a possible link activation. Under primary
interference constraints, II(Gn) includes all possible match-
ings, while in general, it corresponds to all independent sets
in the interference graph G;. Following the notation of [10],
we denote by M (V7) the matrix that includes all the mazi-
mal independent sets in Gy (i.e. all the maximal elements of
II(Gw)). For example, Figure 1(c) shows the matrix M (V7)
for the interference graph G in Figure 1(b). We can now
define the stability region (also known as the capacity re-

gion).

DEFINITION 1 (ADMISSIBLE RATE-VECTOR). An arri-
val rate vector A is called admissible, if there exists a collec-
tion of link activations, m;,1 <1 < L such that

L L
AgZalm, a; > 0, Zal<1.
=1

=1

DEFINITION 2  (STABILITY REGION). The set of all ad-
missible rate vectors A is called the stability region and is
denoted by A*.

A scheduling algorithm has to select a schedule that sat-
isfies the transmission constraints at each time slot. Let
Si;(t) € {0, 1} be the indicator variable of whether link (3, j)
is active at time ¢ and S(¢) denote the scheduling decision
vector. Then, S(¢) € II(Gn). Under a scheduling algorithm,
the state of the system (Q(t),t > 0) evolves according to a
Markov Chain. A stable algorithm is defined as follows.
We will also refer to it as an algorithm that achieves 100%
throughput or a throughput optimal algorithm.

DEFINITION 3 (STABLE ALGORITHM). A scheduling al-
gorithm is stable, if for any admissible A the Markov Chain
(Q(t),t > 0) is positive recurrent.

4Under this assumption, the joint routing and scheduling
problem reduces to a scheduling problem.



Tassiulas and Ephremides [24] established the existence of
a stable scheduling algorithm. In particular, the algorithm
that schedules according to S*(t) where
* !
§7(t) =arg max Q(t)r (1)
is a stable algorithm (Q’ denotes the transpose of vector Q).
Given an interference graph Gy, the algorithm of [24] has to
find the mazimum weight independent set in G at each time
slot. Namely, it has to solve an NP-Complete problem in
every time slot. In the context of switch scheduling and pri-
mary interference constraints, this algorithm has to schedule
the edges of the Mazimum Weight Matching at each time
slot, where the edge weights are the queue sizes. The maxi-
mum weight matching in any graph can be found in O(ns)
computation time, using a centralized algorithm [16]. How-
ever in wireless networks, implementing a centralized algo-
rithm is not feasible and distributed algorithms (e.g. [13])
can obtain only an approximate solution, resulting in a frac-
tional throughput. Hence, even under very simple transmis-
sion constraints, it is difficult to obtain 100% throughput in
a distributed manner. This motivates us to develop chan-
nel allocation methods that will enable simple distributed
scheduling algorithms to obtain 100% throughput. There-
fore, we provide a general definition of the Channel Alloca-
tion Problem below. In Section 5 we will develop algorithms
for specific versions of this problem.

DEFINITION 4 (CHANNEL ALLOCATION PROBLEM). Gi-
ven a network graph Gn, k channels, and R(v) radios at
each node v € Vv, assign channels to links (i,j) V(i,7) € En
such that at most R(v) channels are used by links adjacent to
v and simple (e.g. greedy) distributed algorithms are stable
in each subnetwork operating in a different channel.

3. LOCAL POOLING CONDITIONS

3.1 Definitions

In this section we restate the definition and implications of
Local Pooling (LoP) presented in [10]. We also present and
demonstrate a somewhat simpler set of definitions. Recall
that M (V7) is the collection of maximal independent vertex
sets on Gy, organized as a matrix (an example appears in
Figure 1). Denote by Co(M) the convex hull of the columns
of matrix M. We now restate the definition of LoP.

DEFINITION 5  (LocAL PooLING - LoP [10]). The set
of nodes (queues) V. C Vi satisfies local pooling, if there
exists a monzero vector o € R‘Jy‘ such that o/ ¢ is a positive
constant for all ¢ € Co(M (V). Local pooling is satisfied, if
every V. C Vi satisfies local pooling.

In this paper, we separate the definition of Local Pooling
to two different definitions and present a somewhat simpler
definition for the satisfaction of LoP by a set of nodes. We
show that although this definition does not take into account
the convex hull of M, it is equivalent to the definition in [10].
We designate by e the vector having each entry equal to
unity. We deliberately avoid specifying its size, because it
will be obvious by the context of its use.

DEFINITION 6  (SUBGRAPH LOCAL PoOoOLING - SLOP).
An interference graph Gp satisfies Subgraph Local Pooling,
if there exists a € RLYI‘ and ¢ > 0 such that o/ M(Vr) = ce'.

LEMMA 1. The definition of Subgraph Local Pooling and
the satisfaction of Local Pooling by a set of nodes (Definition
5) are equivalent.

PROOF. Suppose the set of nodes V' C V; satisfies local
pooling as defined in Definition 5. Then, there exists ¢ > 0
and a € RLY‘ such that o’¢ = ¢ for all ¢ € Co(M(V)).
Clearly each column of M (V') belongs to Co(M (V')), which
gives o’ M (V) = ce’. Thus the subgraph of G over nodeset
V satisfies SLoP. Conversely, suppose that the subgraph of
(1 over nodeset V satisfies SLoP. Then there exist ¢ > 0
and a € ]RL:/‘ such that o’ M (V) = ce’. Now consider ¢ €
Co(M(V)), which must equal by definition M (V)@ for 8 €
RMYU with ¢ = 32,8, = 1, B; > 0,V and [M(V)
equal to the number of columns in M (V). Then, we have
ag = aM (V)3 = ce'3 = c. Note that this value is constant
regardless of the choice of ¢. Thus, the set of nodes V'
satisfies local pooling as defined in Definition 5. [

We can now define the notion of Overall Local Pooling
which requires that Subgraph Local Pooling (SLoP) will be
satisfied in any subgraph of a given interference graph in-
duced by selecting a subset of the nodes.

DEFINITION 7 (OVERALL LOCAL POOLING - OLOP).
Interference graph Gr satisfies Overall Local Pooling if each
induced subgraph over the nodes V- C Vi satisfies SLoP.

We continue with the example of the interference graph
G and the corresponding matrix M (V;) depicted in Fig-
ure 1. We can see that G satisfies SLoP since for a =
(1,1,1,1,1), &’ M(V7) = 2¢’. Similarly, the subgraph com-
posed of the vertex set {2,3,4} satisfies SLoP, since for
a = (1,1,0), ’M({2,3,4}) = €’. In a similar manner, it
can be shown that all subgraphs of G satisfy SLoP, and
therefore, G satisfies OLoP.

We can now describe the stability of the system when
the service in each time slot is scheduled according to the
Longest Queue First (LQF) algorithm. This algorithm is an
iterative greedy algorithm that selects the node of G; with
the longest queue, and removes it and its neighbors from the
interference graph. This process is repeated successively un-
til no nodes remain in the graph. When two queues have
the same length a tie-breaking rule has to be applied. The
set of selected nodes is a maximal independent set in the
interference graph. Hence, since the nodes are selected ac-
cording to their weights, we will refer to the LQF algorithm
as the Maximal Weight Independent Set algorithm. Such a
greedy algorithm can be easily implemented in a distributed
manner. In [10] the following theorem is proved:

THEOREM 1  (DIMAKIS AND WALRAND, 2006 [10]). If
interference graph G satisfies the OLoP conditions, a Max-
imal Weight Independent Set scheduling algorithm achieves
100% throughput.

To conclude, the satisfaction of OLoP by an interference
graph is a sufficient condition for distributed maximal weight
algorithm to be throughput optimal (i.e. in that case, there
is no need to obtain an optimal solution to (1) in each slot).

3.2 Channel Allocation Example

The following simple example demonstrates the applica-
tion of the LoP conditions, presented above, to a channel
allocation (network partitioning) problem. We consider the



V23 V45

V12 V56

V61

Figure 2: A 6-node ring network graph and the cor-
responding interference graph.

6-node ring network graph, depicted on the left in Figure 2.
Under the primary interference constraints, this graph has
a corresponding 6-node ring interference graph representa-
tion, which is illustrated on the right in Figure 2. Under
primary interference constraints, the maximal weight inde-
pendent set in the interference graph is equivalent to the
maximal weight matching in the network graph. A maximal
weight matching can be obtained in a distributed manner by
the greedy algorithm of Hoepman [13].

If a single radio is located at each node of the 6-node ring
illustrated in Figure 2(a), then no two adjacent edges can
be simultaneously active. The stability region A* is then
characterized by the following inequalities:

A2 + A2z < b, Aoz + Azg < b, Azg + A5 < ),
A5 + Ase < b, Ase + Ae1 < b, Ae1 + A1z < b, (2)

where b = 1. This stability region can be achieved by a cen-
tralized algorithm that finds a maximum weight matching
(i.e. obtains the optimal solution to (1)) in each time slot.

It was shown in [10] that in the 6-node ring, OLoP does
not hold, and that in general a mazimal weight matching
algorithm does not achieve 100% throughput in the 6-node
ring®. According to [17], a mazimal weight matching algo-
rithm can only guarantee stability for arrival rates that are
50% of the rates in the region above (A*). Hence, the guar-
anteed distributedly achievable region is given by (2) with
b=0.5.

If we allow two channels to be used simultaneously, and
provide two transceivers to each node, then in every time
slot a node can transmit two packets on the selected link
(similarly to a speedup of two, defined in [9]). Thus, the
guaranteed achievable region (using maximal weight match-
ing) is again given by (2) with b= 1.

Alternatively, links (1,2),(2,3), and (3,4) can use one
channel, while the remaining links use the other channel.
The interference graph on each channel is now a tree (e.g.
the line connecting v12, v23, and vz4). Since [10] shows that
the maximal weight independent set algorithm is throughput
optimal in tree interference graphs, the distributedly achiev-
able stability region is now given by

A2 + A2z <1, Aoz + Aza < 1,
Aas + As6 < 1, Ase + 61 < 1. (3)

This provides a strict performance improvement over the re-
gion achievable by using two channels (speedup of two) in
the interference graph represented in 2(b). Yet, it is clear
that this channel allocation is not the best possible: the allo-
cation in which links (1, 2), (3,4), and (5, 6) use one channel,

°In [10], it was shown that under restricted arrival processes
(subject to a variance constraint and a large deviation
bound), a maximal weight matching algorithm is stable in
the 6-node ring. In this work the arrival processes are not
restricted in this way.

while the remaining links use the other channel can provide
each network link with a stable rate of one unit per time
slot (i.e. A\j; <1V(4,5) € En).

For a general network operating under primary interfer-
ence constraints with a speedup of two (similar to allocating
two channels to each link), a greedy maximal weight algo-
rithm (implementable in a distributed manner) can achieve
the network stability region A* [17]. Our example above
shows for a particular network scenario that when two chan-
nels are allocated such that each component satisfies OLoP,
the stability region (that can be achieved by a distributed al-
gorithm) is strictly larger than the original stability region
A*. This strict performance improvement can be demon-
strated in any network with primary interference constraints
that can be partitioned into two non-trivial components sat-
isfying OLoP (for more details see [6]).

This simple example demonstrates that careful channel al-
location that takes into account topologies that satisfy OLoP
can provide provable and significant improvements over ar-
bitrary channel allocation. Moreover, it shows that parti-
tioning into different OLoP-satisfying components can re-
sult in different capacity regions. Therefore, it provides the
motivation to study the characteristics of network topologies
satisfying OLoP and to design channel allocation algorithms
that take advantage of these characteristics.

4. A STUDY OF LOCAL POOLING

4.1 Exhaustive Numerical Search

We performed a numerical study in which we searched
over all interference graphs of up to 7 nodes. We employed
Mathematica to identify all simple graphs, and Matlab to
determine the maximal configurations (i.e. to obtain the ma-
trices M (V7)) and to verify the satisfaction of the OLoP
conditions for each interference graph. The OLoP condi-
tions are based on the SLoP conditions that were verified
using the following linear program presented in [10].

¢" = maxc
(N7
st. M(Vi)p > M(Vi)v + ce
ep=1, ev=1
;1,71/€RLYI‘7 ceR

It has been shown in [10, Proposition 1] that the graph G
satisfies SLoP if and only if ¢* = 0.

In order to simplify the presentation of the numerical re-
sults, we first show that the OLoP conditions are satisfied
by the disjoint union of two graphs (not sharing any vertices
in common) satisfying the OLoP conditions. This allowed
us to restrict our search to connected simple graphs.

PROPOSITION 1. A graph Gr = G} UG? (disjoint union)
satisfies OLoP, if and only if G+ and G? satisfy OLoP.

PROOF. Suppose G satisfies OLoP. Consider all induced
subgraphs restricted to the vertices of Gt. Then, any such
induced subgraph satisfies the SLoP conditions by our as-
sumption that G satisfies OLoP. Thus, G} satisfies OLoP.
The same reasoning provides that G? satisfies OLoP.

Suppose that G} and G? satisfy OLoP. Then, any induced
subgraph of G can be split into disjoint induced subgraphs
on G} and G%. For the induced graph on G, our assumption
provides that there exists nonzero a; > 0 that multiplies



U4

V6
U7 6

(a) (b)

Figure 3: 7-node graphs that fail OLoP: (a) con-
figurations where the induced graph over the outer
6 nodes is a 6-ring (the dotted lines indicate edges
that can exist), (b) The only 7-node graph that has
no induced 6-ring subgraph and fails SLoP.

any maximal independent vector on the induced subgraph
to yield a constant c¢;. Similarly, there exists a2 and co for
the induced subgraph on G?. Every maximal independent
set of the induced subgraph of G; must be the disjoint union
of a maximal independent set of the induced subgraph on
G} and a maximal independent set of the induced subgraph
on GZ%. Thus, the augmented vector (i, ) must yield a
constant value of ¢; + c2 for all maximal independent sets
of the induced subgraph on Gy. O

We note that in the following section we will present sev-
eral additional theoretical results regarding LoP in general
graphs. A specific case of one of the results that will be pre-
sented there (Lemma 2) is that graphs that have a node with
degree 1 satisfy SLoP. This allowed us to restrict our search
to graphs that do not have vertices of degree 1, thereby
significantly reducing the computation time. We first con-
sidered all connected interference graphs having up to 5 ver-
tices that do not have vertices of degree 1. There are 15 such
graphs. We obtained the following numerical result.

NUMERICAL RESULT 1. All connected simple graphs of up
to 5 nodes that do not have vertices of degree 1 satisfy SLoP.

This immediately implies that all graphs having up to 5
vertices (there are 52 such graphs) satisfy OLoP. Next, we
considered graphs of 6 vertices (there are 61 such connected
graphs without degree 1) and obtained the following result.

NUMERICAL RESULT 2. All graphs of 6 vertices except the
6-node ring satisfy SLoP.

Numerical Results 1 and 2 together imply that all graphs of
up to 6 vertices except the 6-node ring satisfy OLoP.

Finally, we considered all graphs of 7 vertices. We first
removed from consideration all such graphs having a 6-ring
as an induced subgraph, since due to the failure of SLoP in
a 6-ring, OLoP fails in these graphs by definition. There are
12 such graphs, and their general form is depicted in Figure
3(a). Among the remaining graphs of 7 vertices, we can
then guarantee that there are no induced subgraphs, having
6 vertices or fewer, that fail the SLoP conditions.

NUMERICAL RESULT 3. There is one graph of 7 vertices
which does not have an induced 6-ring on any subset of 6
nodes that fails the SLoP conditions. This graph is depicted
in Figure 3(b).

To conclude, almost all 1,252 graphs of up to 7 nodes
satisfy OLoP (specifically, 14 fail OLoP). All attempts at
numerical evaluations for graphs of greater than 7 vertices
suffered computational difficulty. Therefore, in the following
section we focus on generating large graphs satisfying OLoP
from small components.

U1

V4
V2 Ky o—oKj;

v3

Figure 4: An interference graph composed of two
cliques and the corresponding tree of cliques graph.

4.2 Constructive Approach

Our first observation is about connecting a graph and a
clique (complete graph).

LEMMA 2. If Gy satisfies OLoP, then the graph G, which
consists of G sharing a single vertex with clique Kp,n > 2,
satisfies OLoP.

PRrROOF. Assume that G satisfies OLoP. Denote by v the
vertex of G that is shared with clique K,. We need only
consider the induced subgraphs of G} containing a vertex
v™ # v belonging to the clique K, since all other induced
subgraphs are subgraphs of GGr and satisfy SLoP by our
initial assumption. Clearly, the maximal independent sets
of any such induced subgraph (whose vertex set is designated
by V') either include vertex v or v*, but never both vertices.
Consequently, the vector « having all zero entries except at
the indices corresponding to vertices of K,,, where the entries
are set to 1, yields ' M (V) = ¢’. Thus, such a subgraph
satisfies SLoP. This holds for all induced subgraphs of G7
that include v*, and we conclude that G7 satisfies OLoP. [

From the proof of Lemma 2 it can be seen that a graph
that has a node with degree 1 (such a graph can be viewed as
a graph G sharing a node with K>) satisfies SLoP. Recall
that we have used this result in Section 4.1 to reduce the
number of graphs in our numerical search. Moreover, the
observation in [10] that any interference graph that is a tree
(or forest) satisfies OLoP can be immediately obtained using
Lemma 2. We note that in Section 4.3 we will show that even
under the simple primary interference constraints, the only
interference graph that can be a tree is a line. Therefore,
we now study more complicated interference graphs.

LEMMA 3. Every complete graph satisfies OLoP.

ProOOF. Consider the complete graph Gy = K,. Then
clearly any subset of the nodes of G, labeled V, also gen-
erates a complete induced subgraph. Each maximal in-
dependent set of a complete graph can only contain one
vertex, from which we conclude that M (V) is the identity
matrix of size |V|. Thus, we can use o = e, which yields
o' M(V) = €' for any V, from which we conclude that every
induced subgraph satisfies SLoP, and consequently that G
satisfies OLoP. [

We define a tree of cliques as follows (an example is pro-
vided in Figure 4) and derive the following Theorem.

DEFINITION 8. A tree of cliques is composed of cliques
connected to each other in a tree structure. Its nodes can be
equated to cliques and its edges imply a shared vertex between
two adjacent cliques. No vertex can be shared by more than
two adjacent cliques.

THEOREM 2. A tree of cliques satisfies OLoP.



PROOF. Consider any clique G on the tree. By Lemma 3
this clique satisfies OLoP. Then, consider any clique adjacent
to G7 in the tree of cliques, and denote the graph of the two
combined cliques G2. Since G} and the adjacent clique share
only a single vertex, we can apply Lemma 2 to conclude that
G? satisfies OLoP. By iteratively adding successive cliques
to the overall graph under consideration, we see that each
resulting graph must satisfy OLoP by Lemma 2. Thus, the
overall tree of cliques must satisfy OLoP. [

The next theorem considers cliques connected by disjoint
edges, where no two connecting edges share any vertices
in common. Consequently, at most min{m,n} edges can
connect K,, and K, while maintaining an overall simple
graph. The proof of Theorem 3 is omitted and can be found
in [6]. It considers four possible subgraph configurations
and demonstrates SLoP for each type. The main idea is
that each clique usually contributes a single vertex to every
maximal independent set of each subgraph.

THEOREM 3. If two cliqgues are connected by any number
of disjoint edges, the combined graph satisfies OLoP.

We now consider a generalized structure of the one defined
in Definition 8, which we term “tree-of-blocks”. Here, we
generalize the types of structures that can correspond to
each vertex of a tree. We have already shown that a clique is
one such structure. We next show that two cliques connected
by any number of disjoint edges is another such structure.
As before, we require that two “blocks” can only share at
most one vertex in common. The proof of the following
theorem is along similar lines as the proof of Theorem 3 and
can also be found in [6].

THEOREM 4. A “tree-of-blocks”, where each block is ei-
ther a clique K,,,n > 2 or a pair of cliques Kn, K, n,m >
1, connected by any number of disjoint edges, satisfies OLoP.

4.3 Primary Interference Constraints

As mentioned above, the primary interference constraints
yield an interference graph Gy which is the line graph of the
network graph G . In this section, we study the restrictions
imposed on such interference graphs. We begin by consider-
ing the only 7-node graph, which does not have an induced
6-ring, that failed SLoP (depicted in Figure 3(b)).

PROPOSITION 2. Under primary interference constraints,
the interference graph presented in Figure 8(b) cannot cor-
respond to any valid network graph.

PROOF. According to [12] a graph is a line graph, if and
only if it does not contain any one of 9 specific induced
subgraphs. In particular, the following graph is one of the 9
subgraphs, with vertices of Figure 3(b) labeled appropriately
to show the correspondence.

vz V2

04@1)6

v U7 |

We conclude that only the 6-ring leads to failure of the
OLoP conditions in any network graph having 7 edges or
fewer. By similar arguments, we can show that other inter-
ference graphs cannot exist under primary interference con-
straints. For example, we can show that there is no network

A7

Figure 5: An example of a network graph whose
interference graph satisfies OLoP.

s1 S (s1,dn) (s2,dn)
[ 1 i .... N @
di dy ds dn (s1,d1) (s2,d1)

Figure 6: A network graph for a K>, bipartite graph
(2 x n input-queued switch) and the corresponding
interference graph.

graph whose interference graph (line graph) is a tree having
a node degree greater or equal to 3. Any such tree has as an
induced subgraph the complete bipartite graph K 3 (also
known as the “claw”). According to [12], the existence of
such an induced subgraph precludes the possibility that this
interference graph is the line graph of any network graph.

Although there is no interference graph that is a tree, a
network graph that is a tree can of course exist. It can be
shown that the interference graph of such a network graph is
always a tree of cliques, defined in Definition 8. The follow-
ing corollary is an immediate result of Theorem 2. Accord-
ing to this corollary, maximal weight matching algorithms
are stable (provide 100% throughput) in trees. To the best
of our knowledge, this corollary provides the first non-trivial
network structure in which simple distributed algorithms are
stable. The channel allocation algorithms that will be pre-
sented in Section 5 are based on this observation.

COROLLARY 1. Under primary interference constraints,
the interference graph of a tree network graph satisfies OLoP.

Based on the results presented in Section 4.2, we can con-
struct other non-trivial networks in which maximal weight
matching algorithms are stable. For example, Theorem 4
implies that the network described in Figure 5 satisfies OLoP,
and thus is stable under distributed scheduling. Developing
network partitioning algorithms that efficiently take advan-
tage of such topologies is a subject for further research.

‘We have obtained additional results that concern bipartite
graphs. Although mesh networks are usually not bipartite,
bipartite graphs provide insight regarding the performance
of our partitioning algorithms. Since input-queued switches
are bipartite graphs with primary interference constraints,
an additional byproduct is insight regarding switches. The
following corollary generalizes a recent result presented in [5]
regarding a 2 X 2 input-queued switch.

COROLLARY 2. A mazimal weight matching algorithm ach-
teves 100% throughput in a Ko, bipartite graph (i.e. in a
2 X n input-queued switch,).

Proor. A K, , bipartite network graph is depicted on
the left in Figure 6. Its interference graph can then easily
be shown to be two cliques of size n (K,), connected by n
disjoint edges, as depicted on the right in Figure 6. The
result is then directly derived from Theorem 3. [

It follows that a K4, bipartite graph can be partitioned
into two subgraphs, each of whose interference graphs satis-



fies OLoP. In Section 5.2, we will use this observation to eval-
uate the performance of our channel allocation algorithms.

5. CHANNEL ALLOCATION

The Channel Allocation Problem, introduced in Defini-
tion 2, seeks to assign a channel to every link such that each
partition (operating in a different channel) can achieve 100%
throughput by a distributed maximal weight scheduling al-
gorithm. In this section our objective is to develop channel
allocation algorithms that: (i) provide a large stability re-
gion and (ii) allow simple distributed algorithms to achieve
100% throughput in this region. As in Section 4.3, in or-
der to demonstrate the presented concept, we assume that
primary interference constraints hold.

In terms of LoP conditions, we seek to partition the net-
work edges into channels such that the interference graph
in each channel satisfies OLoP. The OLoP requirement is
extremely challenging to incorporate into an optimization
algorithm that generates a channel allocation, because it
seeks the SLoP property for every subgraph on each chan-
nel. However, Corollary 1 shows that network graphs that
are trees satisfy OLoP. Thus, it is sufficient to partition the
edges of the network graph into channels such that each
channel’s network graph is a forest. This is the basis for our
channel allocation algorithms.

Our channel allocation problem is equivalent to a coloring
problem on the network graph. Namely, we seek to color
the network edges such that edges of a single color do not
compose a cycle (i.e. each color composes a forest). The
minimum number of colors is known as the graph arboricity
and can be found by an O(m?) algorithm [11].

Initially, we assume that all nodes have the same num-
ber of radios and that this number is equal to the number
of channels (i.e. R(v) = k Vv € Vy).® When the number
of available colors (channels) k is fixed, the k-forest prob-
lem [11,16] seeks to find the maximum number of edges of
the graph that can be colored using only k colors without
closing a single color cycle. This problem can be formulated
as a matroid’ partitioning or a matroid intersection problem.
In order to enable the development of capacity expansion
algorithms, we focus on the matroid intersection formula-
tion. Under this formulation, the k-forest problem makes
use of two matroids: the graphic matroid and the partition
matroid. In our setting, we define these matroids by consid-
ering the graph G% = (V& £), equal to k disjoint copies of
the network graph Gn. The graphic matroid My = (€,7,)
assigns to Z; all possible forests in G%. The partition ma-
troid M2 = (£,72) partitions £ into m £ |En| sets, where
the i-th set, &, contains all k copies of edge i. The collec-
tion Z> contains all sets of edges that have no more than a
single element in any set of the partitions: I € Z; implies
[IN&| <1fori=1,...,m. By associating with each copy
of Gn in G% a unique color, it can be seen that the sets
belonging to Z1 NZ> can be equated to colorings, where each
subgraph of a particular color is a forest. This directly cor-
responds to a valid channel allocation, where each channel’s
network graph is a forest. The k-forest problem is to find for

5We will show below that this assumption can be relaxed.
" A matroid is a combinatorial structure M = (£, Z) in which
£ is a finite set of elements, and Z is a collection of subsets
of € satisfying (i) € Z, and if I € Z, then all proper subsets
of I belong to Z, and (ii) if I1,l> € T with |l = |I1]| + 1,
then there exists e € I such that I; U{e} € T.

a given k the largest set of edges belonging to the matroid
intersection of the graphic and partition matroids.

5.1 Partitioning Algorithms

Our first algorithm for the k-forest problem is the subop-
timal Breadth-First Search (BFS) algorithm. Such an algo-
rithm was used in [21] as a heuristic solution to this problem.
Its major advantage is its low complexity of O(k(m + n)).
Yet, in Section 6 we will show that there is a large gap be-
tween the BFS solution and the optimal solution.

Therefore, we selected an optimal algorithm as a basis for
developing our capacity expansion algorithms. The optimal
solution to the k-forest problem can be found in polynomial
time [11,16] by several algorithms. One of these algorithms
is the Matroid Cardinality Intersection (MCI) algorithm of
Lawler [16]. Given a valid coloring I € Z; N Z,, the MCI
algorithm searches for an augmenting path, consisting of an
alternating sequence of edges not in I and edges in I, such
that when the edges of the path belonging to I are removed
from I and those not belonging to I are added, the resulting
coloring (channel allocation) belongs to Z; N Z, and its car-
dinality has increased by 1 (for more details see [16]). The
complexity of the MCI algorithm is O(km?n’ + k*mn(n’)?),
where n’ = min{n, m/k}. In the description of the follow-
ing algorithms, we refer to two copies of the same edge on
different colors in G%; as parallel edges.

Our channel allocation framework admits the practical sit-
uation where each node v is equipped with R(v) radios (in-
terfaces). Namely, different nodes have a different number
of radios. In the formulation of the matroid intersection
problem, we define the graph G% as the disjoint union of
k identical copies of the network Gn. This corresponds to
the case, where each node is equipped with exactly k radios.
Essentially, rather than generating k copies of each network
graph edge, each network link should only have an edge rep-
resented in the i-th copy of the network graph Gn when
there is a radio for that link available for use of the i-th
channel.® Without loss of generality we refer to any graph
defined in this manner as G% = (V#, £). The matroid inter-
section properties, the MCI algorithm, and the algorithms
described in Section 5.2 can then be applied to G%.

Once the channel allocation is performed, at each time
slot, one can use the distributed approximation algorithm
of [13] that finds the maximal weight (greedy) solution,
thereby providing 100% throughput. The (local) computa-
tional