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Abstract

In this paper we consider circuit assignment algorithms for
dynamic traffic in unidirectional WDM/SONET ring networks.
Our objective is to minimize the cost of electronic Add/Drop
Multiplexers (ADMs) in the network, while being able to support
any offered traffic matrix in a rearrangeably non-blocking
manner. The only restriction on the offered traffic is a constraint
on the number of circuits a node may source at any given time.
We provide a lower bound on the number of ADMs required and
give conditions that a network must satisfy in order for it to
support the desired set of traffic patterns. Circuit assignment and
ADM placement algorithms that perform closely to this lower
bound are provided. These algorithms are shown to reduce the
electronic costs of a network by over 30%. Finally, we discuss
extensions of this work for supporting dynamic traffic in a wide-
sense or strict sense non-blocking manner as well as the benefits
of using a hub node and tunable transceivers.

I. Introduction

Optical WDM systems have increasingly been deployed as
a point-to-point technology to increase the number of
wavelengths in a network. Typically these networks have a
SONET ring architecture and each additional wavelength is
used to add an additional SONET ring between the nodes.
The nodes in the ring use SONET Add/Drop Multiplexers
(ADMs) to electronically combine lower rate streams onto a
wavelength, e.g. 16 OC-3 circuits can be multiplexed onto
one OC-48 stream. The cost of these electronic multiplexers
dominates the costs of such a network.

The number of electronic ADMs can be reduced by
employing WDM Add/Drop Multiplexers (WADMs) which
allow a wavelength to either be dropped at a node or to pass
through optically. When a wavelength is not dropped at a
node an electronic ADM is not required for that wavelength.
The required number of SONET ADMs can be further reduced
by grooming the lower rate traffic so that the minimum
number of wavelengths need to be dropped at each node.

The benefits of grooming with WADMSs have been looked
at in several papers including [1], [2], [3] and [4]. In [1] it
was shown that the general grooming problem is NP-
complete. However for several special cases, algorithms have
been found that significantly reduce the required number of
ADMs.  For example, for uniform all-to-all traffic,
algorithms have been found for both bidirectional rings [4]
and unidirectional rings [1]. In this paper, instead of
considering only a single traffic matrix, we consider
minimizing the number of ADMs needed to support any
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traffic matrix out of a given set. The resulting network can
support traffic that dynamically changes within this set.

We consider a unidirectional ring network with N nodes.
Each node has one WADM and a SONET ADM for every
wavelength dropped at that node. The WADMs are static, i.e.
the wavelengths that are dropped at each node are fixed. The
SONET ADMs multiplex g low rate streams onto a single
wavelength. A traffic matrix represents the number of low
rate circuits, R; desired between nodes i and j. We assume
that every connection is bi-directional so that R; =R;. Nodes
do not have SONET cross-connects or optical wavelength
changers, so a connection occupies a portion of the same
wavelength around the entire ring. We limit each node to
sourcing at most ¢ bi-directional circuits at a given time, L.e.

YRy <t foralli 1

This will be the only constraint on the set of traffic patterns
which must be supported. We will call any traffic matrix
satisfying (1) t-allowable. We will refer to a traffic matrix as
t-maximal if it is t-allowable and if the addition of any other
circuit would make it not t-allowable. Clearly if a network
can support every t-maximal traffic matrix it can support
every t-allowable one.

For any t-allowable traffic matrix, the maximal load,
Lax, on any link in a ring is given by

Ly =|Nt/2], @)

and thus the minimum number of wavelengths, W, that
can accommodate any t-allowable traffic matrix is given by

Woin =[ 87! LNe/2]]- 3)

If we use W,,;, wavelengths and drop each wavelength at
each node, then such a topology can clearly support any t-
allowable traffic matrix. Thus NW,,;, gives an upper bound
on the required number of ADMs. We will focus on reducing
this number of ADMs while still supporting any t-allowable
traffic matrix using W, wavelengths. In [1] it is shown that
the minimum ADM solution often uses the minimum
number of wavelengths. Hence, restricting our solutions to
those using the minimum number of wavelengths is sensible
not only because it makes efficient use of wavelengths but
also because it is likely to yield a nearly optimal solution.

The problem we address can be stated as follows. For
given values of N, g and t, we wish to specify a topology,
i.e. which of the N nodes have ADMs on each of the W,
wavelengths, and this topology must be able to support any
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t-allowable traffic matrix using the minimum number of
ADMs. In the next section we will lower bound the number
of ADMs needed and provide necessary and sufficient
conditions that a network must satisfy to support such traffic.
We then use these conditions to develop algorithms for
allocating ADMs to nodes in the network. Finally, in
section -V, we develop extensions to the basic model that
allow a network to be non-blocking in a strict sense; and the
use of a hub architecture and tunable lasers in order to achieve
further reductions in electronic multiplexing costs is
considered.

II. Lower Bound on the number of ADMs.

We start by deriving a lower bound on the required
number of ADMs conditioned on using the minimum number
of wavelengths. Minimumizing the required number of
ADMs is equivalent to starting out with every node having an
ADM on each wavelength and maximizing the number of
ADMs that can be removed while still supporting every t-
allowable traffic matrix. Let X ={l,...,N} be the set of
nodes and let M; be the set of nodes with ADMs removed
from wavelength i for i=1...W_;,. The following lemmas
will help us to bound the maximum number of ADMs which
can be removed from each wavelength.

Lemma 1: If a network with W, wavelengths can
support every t-allowable traffic set then for all i=1...W,

miny
M| < (Wi —1)g /1. @)

Proof. First we show that if we can support every t-
allowable traffic set then for all / we must have [M,-]< N/2.
Assume this is not true, i.e. for some i, |M,-'Z N/2and
additionally assume that N is even. In this case we can
construct a t-maximal set where every connection involves a
node in M; and thus no circuit in this set can be supported on
wavelength i. Furthermore this set will require at least W,
wavelengths and so can not be supported. To see how such a
t-maximal set can be formed pair each node not in M; with a
node in M; Next, pair the remaining nodes within M; among
each other and assign t circuits between each pair of nodes.
Since N is even, every node can beé paired up in this way and
thus the traffic load for this set will be L,,,,. Clearly, this set
requires W, wavelengths and each connection involves a
node from M;. When N is odd, by a slightly more
complicated argument we can construct a similar set.

Now we prove the lemma by contradiction, i.e. assume
for some i that (4) is not true but we can support every t-
allowable traffic set. We have just shown that |M;|< N/2.
In this case we can pair up each node in M; with a distinct
node in X - M;. We form a t-allowable traffic set by setting
up t circuits between each pair. The resulting traffic matrix
consists of |M,»|t circuits, none of which can be placed on
wavelength i. This set must be placed on the remaining
Wuin —1  wavelengths, but these wavelengths can
accommodate at most (W,;,-1)g circuits. Thus this t-

allowable set can not be supported, yielding a contradiction.
a

Lemma 2: If a network with W, wavelengths can
support every t-allowable traffic set then

min(|M;| M)} € (W —2)g/t forall i j. (5

Proof : We prove this in a similar manner to Lemma 1. That
is we show that we can always construct a t-allowable set

with min(|M;}|M,))e circuits which can not be carried on

either wavelength i or j and thus must be carried on the other
Wow-2  wavelengths. Since each wavelength can
accommodate at most g circuits, (5) must be true for this set
to be supported. The proof will be completed once we show
how to construct the above set.

Consider two wavelengths i and j and assume that
|M1|S|M,«|. Let K be the set of nodes removed from both i

and j (K may be empty). From the proof of Lemma 1, we
can assume that |M;| and |M;| are both less than N/2. Thus,
we can pair each node in K with a distinct node in X — M.
Likewise, we can pair up every node in M;—~K with a
distinctnode in M; - K. If we put ¢ circuits between each
pair, this gives the required t-allowable set. B

An immediate corollary of lemma 2 is that for every
wavelength except one we must have

| M| € (Winin —2)g /2 (©6)

Lemma | gives a bound on the ADMs that can be removed
on the remaining wavelength. Thus, we have the following
upper bound:

ADMs removed < t?(wmjn - 2)J(Wmin — 1) + t%(Wmin - 1)J ©)

The following example shows that this bound is tight for
some choices of N, t,and g.

Example 1: Suppose we have a network with N =35, 1 =
2, and g = 2. For this ring, W, =3 and the above upper
bound yields that at most 4 ADMs can be removed. Figure 1
shows a network topology that achieves this bound.
Consider the 2-allowable traffic set consisting of calls {1-2,
1-3, 2-3, 4-5, 4-5}. This can be supported on a ring
provisioned as in figure 1 by assigning {1-2, 2-3} to the first
wavelength, {4-5, 4-5} to the second wavelength, and {1-3} to
the third wavelength. Such an assignment can be found for
any other 2-allowable traffic set.

A
M ® . wavelength Dropped
A % . Not Dropoed

Node: 1. 2 3 45

Figure 1: Provisioning of ring in Example 1.

In the next section we will establish a connection between
this problem and bipartite matching problems. Exploiting
this connection we will come up with necessary and sufficient
conditions for an allocation of ADMs to be able to support
any t-allowable traffic matrix. This will then be used to

1725



develop several heuristic algorithms for removing ADMs
from wavelengths.

III. Bipartite Matching formulation

A bipartite graph, (C,D,E), is a graph with two disjoint
sets of nodes, C and D, and a set of edges, E, where each edge
is between a node in C and a node in D. For a given ring
network, we want to construct a bipartite graph which
represents the possible placements for each call from a given
t-allowable traffic matrix. We will denote one set of nodes in
the graph by D={A,... 4, A2 ,... Aw,.c}.  This set
contains g elements for each of the W, wavelengths
corresponding to possible circuit assignments on that
wavelength. The other set of nodes will correspond to the set
of requested circuits, we will denote this set by C. There is
an edge in the graph between A;; and a circuit involving
nodes k and / if both nodes k and [ have an ADM on
wavelength i.

Example 2: Consider the allocation of ADMs and the
traffic set from example 1. The corresponding bipartite graph
is shown in Figure 2.

A'l.l
A2
)"2.1
Az
Az
A3

-2
-3

w

2 AN = =
[V I }

Figure 2: A Traffic matrix and the corresponding bipartite graph.

A matching, M, in a bipartite graph is a set of disjoint
edges. Being able to accommodate a traffic matrix on a given
set of ADM:s is equivalent to being able to find a matching in
the corresponding bipartite graph which uses all the nodes in
the set of requested circuits. Such a matching is called a C-
saturating matching. A necessary and sufficient condition for
the existence of such a matching is given by Hall's theorem
which we state below. First we need the following
definition: For a bi-partite graph (C,D,E), if S is a subset of
nodes in C, then the open neighborhood of S, N(S), is a
subset of nodes in D such that d is in N(S) if and only if there
is an edge between d and a node in S.

Hall's Theorem: Let G=(C,D,E) be a bipartite graph.
There exists an C-saturating matching if and only if for all
subsets S of C, |[N(S)[219] -

A proof of this theorem can be found in many texts on
combinatorics such as [6]. As stated, this theorem is useful
to check that a single traffic matrix can be supported, but for
the problem at hand we are interested in supporting every t-
allowable traffic matrix. The following theorem provides a
necessary and sufficient condition for accommodating every t-
allowable matrix.

Theorem 1: For a given topology with W,
wavelengths, any t-allowable traffic matrix can be supported
if and only if the following two conditions are satisfied:

1) For every pair of nodes i and j there exists a wavelength
on which both i and j have an ADM.

2) For any group of m wavelengths, there exists at most
gm circuits, out of any t-allowable set, which must be routed
on this group. We say a circuit between nodes i and j must
be routed on a set of wavelengths if for any wavelength not in
this set, either i or j does not have an ADM on that
wavelength.

Proof: We first show that the above conditions are necessary.
Clearly, if 1 is not satisfied then any t-allowable set
containing a circuit between i and j can not be accommodated.
If 2 is not satisfied then there exists a set of m wavelengths
on which we must route more than gm circuits in some t-
allowable set, C. Consider the bipartite graph corresponding
to C. Let S be the subset of C containing the above circuits,
then we have |N(S)=gm and |S|>gm. Thus by Hall's
theorem there exists no C-saturated matching, and this traffic
matrix can not be accommodated.

Next we show that these conditions are suficient.
Assume that they are not sufficient, so that there exists an
assignment of ADMs to W, wavelengths which satisfies 1
and 2 above, but which can not support some t-allowable
traffic set C. Since C cannot be supported, by Hall's theorem
there exists a subset S of C such that [N(S)|<|S|. Let k be a
nonnegative integer such that (k-1)g<|S|<kg. For a
bipartite graph corresponding to an allocation of ADMs,
[N(S)| will always be a multiple of g. Thus. [N(S)|<|S]
implies that |[N(S)|<(k—1)g. Therefore this set of more
than (k —1)g calls must be routed on a set of k—1 or fewer

wavelengths, which contradicts condition 2, completing the
proof. @

IV. Algorithms for removing ADMs

We now use the results of the previous section to develop
algorithms for removing ADMs from wavelengths. First
note that if W,;, = 1, we cannot remove any ADMs and still
support all t-allowable traffic matrices. If W, =2, we have
to leave every node on one wavelength and can remove at
most | g/¢] nodes from the other wavelength. This follows

directly from Lemmas 1 and 2. Furthermore, we can always
remove | g/t | nodes from one wavelength. To see this note

that the most circuits that will be forced on 1 wave ength is
|_g/ tjt < g. So, by the Theorem 1 we can accommodate all

Thus for W ;, £2 we have a trivial

algorithm which yields the minimum number of ADMs.
Therefore in the following we shall only consider the case
where W, 3.

n <~

t-allowable circuits.

In order to use Theorem 1 to verify that an allocation of
ADMs can support every t-allowable traffic pattern we have
to test condition 2 for every possible subset of wavelengths.
There are 2%- such possible subsets, and checking each set
is not an appealing prospect. In the following we avoid this
by removing ADMs in certain symmetric patterns which
require us to check many fewer cases.

For a circuit to be forced on a set of i wavelengths, one of
the two nodes in the circuit must be removed from each of the
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remaining W, —{ wavelengths. When W, —i>2 then at
least one of the two nodes must have an ADM removed from
more than one of the wavelengths. So if we remove at most
one ADM for each node, we only have to check condition 2
for sets of W, -1 and W,;,-2 wavelengths. Clearly, we can
remove | N/ W, | nodes from each wavelength so that no
node will be removed from more than one wavelength. Also
if we remove | (Wain —2)g/ ¢ | or fewer nodes per wavelength,

then no more than (W,;-2)g circuits will be forced on any set
of W,,- 2 or W, - 1 wavelengths. Thus if we remove

M, = min(| (Wain =2)g/1 b LN/ Wan )

ADMs per wavelength and no more than one ADM per node,
condition 2 of theorem 1 is satisfied. Condition 1 is also
easily satisfied in this case. Thus we have proved the
following lemma which immediately yields an aigorithm for
allocating ADMs.

Lemma 3: For Wy, > 2, one can always remove M,
ADMs from each of Wy, wavelengths such that no node has

more than one ADM removed and any t-allowable traffic
martrix can be supported.

Recall that according to lemma 2 we can remove more
than | (Wi —2)g/t] nodes from at most one wavelength.
Thus if

| (Wain =2)g/ 2| <| N/ Wi | ®)

the above algorithm removes the most nodes possible from
every wavelength except possibly one. When W, becomes
large for a given N, then the inequality in (8) is reversed and
the procedure in lemma 3 results in removing only a small
number of ADMs from each wavelength. In such cases, we
have to consider removing nodes from more than one
wavelength.

We consider a procedure that allows nodes to be removed
from multiple wavelengths. This procedure is a generalization
of the one in Lemma 3. For now we assume that N2> W,,.
For given integers x and k, suppose we remove nodes
(=DIN/Wuin [+1 10 ((i+x=2) N/ Wpin ]+ k)mod N
from wavelength i, where 0<k<|N/Wy,|. Thus we
remove (x—1)|N/Wy, |+k nodes from each wavelength,
and a node is removed from at most x wavelengths. Traffic is
then only forced onto groups of W_-2x or more
wavelengths. If we set x=1, then each node has at most one
ADM removed. In this case, by Lemma 3 if k<M, we can
support all t-allowable traffic. For an arbitrary value of x, as
long as x is less than W,;./2 then condition 1 of Theorem 1
is satisfied. We only need to check condition 2 for sets of
Wiin-2x or more wavelengths. The most circuits that can be
forced on a set of W, -2x wavelengths is kz. This occurs
when we consider 2x adjacent wavelengths and note that there
are k nodes without an ADM on any of the first x
wavelengths and k other nodes without an ADM on the next
x wavelengths. If we pair up each node in the first set with a
distinct node in the second set and establish ¢ circuits between
these nodes, then this set of calls can not be supported. By

similar reasoning we can find the most circuits that can be
forced on sets of W, -(2x -1) to W, -1 wavelengths. In
this manner we get the following set of inequalities which
must be satisfied for condition 2 to hold.

(Wn —2x)g 2 kt
(Wain = (x +0))g 2 (x = 1= ))LN/ Wi [+ 2k)t, Vi=1,.,x—1
(Wi =g 2 ((x = DN/ Wain |+ k), Vi=1,.,x

Out of this set of 2x inequalities, it can be shown via
algebraic manipulations that if the following three

inequalities are satisfied then the entire set of 2x must also
be.

(Wmin _(2x - 1))8 22kt (])
(Whin =(x +1))g 2 ((x = 2)LN/ Woia | +2k)t (i)
(Whin — x)g 2 ((x = D[N/ Wyyin | + k)t iii)

From this it follows that the most ADMs that be
removed in this manner is given by the solution to the
following integer program:

max (x— DN/ Wi [+K
subject to:
(Wiin —(2x = 1))g 2 2kt

(Wain = (x +1))g 2 ((x = 2)LN/ Wain ]+ 2k}t (P)
(Wain = %)g 2 ((x = DLN / Wigin ]+ k)t
0<k <N/ Win |
1< x S| Win /2]

Where x and k are constrained to be integers. This
optimization problem can be solved in the following manner:
First set k=0 and find the largest value of x which satisfies
the constraints. Next, fix x at this value and find the largest
value of k satisfying the constraints. Again we summarize
these results in the following lemma.

Lemma 4: Consider a ring with W;, >2. Then we can
remove (x—1) N/ Wy, ][+k ADMs per wavelength in the
above manner where x and k are solutions to the integer
program (P) and still support every t-allowable traffic matrix.

This lemma immediately yields an algorithm for
removing ADMs. The following provides an example of this
algorithm along with the algorithm in Lemma 3.

Example 3: Consider a ring with 15 nodes, g = 16, and ¢
= 10. For this ring, W, = 5 and | N/ W] = 3. Thus
using the algorithm from Lemma 3 we can remove 15
ADMs. Using the algorithm in Lemma 4, one finds that x =
2 and k = 1, and thus one can remove 4 nodes per wavelength,
for a total of 20 ADMs removed. For comparison, the upper
bound on the number of ADMs removed from (6) is 22. The
resulting allocation of ADMs for both algorithms is shown
in Figure 3.
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Figure 3a: Allocation corresponding to Lemma 3.
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Figure 3b: Allocation corresponding to Lemma 4.

In Figure 4 we have plotted the number of ADMs
resulting from both of these algorithms as ¢ ranges from 1 to
14. The number of ADMs with no grooming is also plotted
along with the lower bound from (6). With the grooming
algorithm from Lemma 4, the number of ADMs is reduced by
up to 27%. In [1] it was found that approximately 60 ADMs
were needed to support uniform all-to-all traffic in this
network. Uniform all-to-all traffic is (N-1)-maximal. In this
example, supporting all (N-1)-allowable traffic requires 77
ADMs, but this is a much less restrictive set of traffic.

ADMs needed for various values of t

120

100 4
—®—Wmin N
80
2 =8| ower Bound
Z 601
< = ====lemma 3
40
—X—1lemma 4

Figure 4. Required ADMs for heuristic algorithms, N=15, g=16.

When W, is larger that N, then | N/ W, | = 0 and the
above algorithms as stated will not remove any ADMs. We
will describe a way that these algorithms can be modified to
be useful in this case. First note that for positive integers s
and r, a traffic set is (s+r)-allowable if and only if it can be

written as the union of a s-allowable set and a r-allowable set.
When W,;,, > N we can use this to decompose the allowable
traffic into smaller sets such that each set will fit on N or
fewer wavelengths. Suppose we want to support all t-
allowable traffic sets and this requires more than N
wavelengths. Let k =|7/(2g)| and let 1" =r—2kg. Consider

decomposing each t-allowable traffic set into k 2g-allowable
sets and one t-allowable set. Each 2g-allowable set can be
accommodated on N wavelengths and the remaining set

requires ﬂ_Nt’/ 2_]g“-| wavelengths. Note that

kN +[| Nt 12])1g]=[Nt/2]/ g]

i.e. decomposing traffic in this way requires no more
wavelengths. Now since the number of wavelengths needed
for each set in this decomposition is less than cr equal to N,
we can apply the above algorithms to remove ADMs from
each set to get an allocation of ADMs which will support all
t-allowable traffic sets.

Example 4: Consider aring with N =5, g =2, andt =6
so that W, =8. Applying the above procedure we get one
set of 5 wavelengths which must support 4-allowable traffic
and one set of 3 wavelengths which must support 2-allowable
traffic. Applying Lemma 4 to both of these sets, we find we
can remove 1 ADM from each wavelength and thus eliminate
a total of 8§ ADMs.

V. Extensions to the basic model.

In this section we will describe a number of extensions to
our basic model. First, we discuss the application of our
approach to a system with a hot-spot node which can source
an unlimited number of circuits. We then discuss the use of a
strict sense non-blocking network to support rapidly changing
traffic and finally we discuss the benefits of using a hub node
and tunable lasers.

A. Hot-spot node

Suppose there is one node in the network which has no
restriction on the number of circuits it can source. We will
refer to this node as a "hot spot". Such a node can be used to
model a ring with a central office node. In this case the
minimum number of wavelengths required to suppor: all t-
allowable traffic is given by:

Wain =[(N=1)1/ g ©)

Clearly the hot spot node needs an ADM on each
wavelength. Consider applying the grooming algorithms to
the set of nodes not including the hot spot with the above
number of wavelengths. The resulting provisioning of the
network will then handle all t-allowable traffic between these
nodes. This allocation is also sufficient to handle all t-
allowable traffic including the hot spot node. To sze this
note that by including the hot spot node we are forcing no
additional calls onto any group of wavelengths, and thus by
Theorem 1 we can still support any t-allowable traffic matrix.
This procedure applies with an arbitrary number of hot spots.
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B. Supporting
rearranging calls

dynamic traffic without

In the above sections we examined finding minimal
allocations of ADMs needed to support any t-allowable traffic
matrix. Given such an allocation of ADMs , one then needs
to find how to assign calls from a given traffic matrix to the
proper ADMs. When ¢t is only one, there are
NI(2-N2) J((N /2)!) different maximal traffic matrices and an
assignment is needed for each of these. For a given traffic
matrix one could set up a bipartite graph as in section III, and
solve the maximum matching problem. Polynomial
algorithms for solving this problem are known and can be
found, for example, in [7]. In many cases an assignment can
be found by inspection and the above matching problem
would not need to be solved. These assignments can be all
computed off-line and stored in a look-up table. Also, in
some cases, the assignments can be stored in a more compact
form than simply listing every possible assignment.

In this section we want to consider traffic which is
dynamically changing, but is always t-allowable. When
discussing provisioning rings for dynamic traffic we will use
some standard definitions from switching theory which we
repeat here. A ring is strict sense or strictly non-blocking if
any t-allowable circuit between nodes can be established
without interference from any other existing allowable
circuits. A ring is wide sense non-blocking if any t-allowable
circuit between nodes can be established without interference
from any other existing allowable circuits, provided that the
existing circuits have been established according to some
algorithm. A ring is rearrangeably non-blocking if any t-
allowable circuit can be established by possibly re-routing
any existing circuits. Clearly the following relationship
holds:

Strict sense = Wide sense = Rearrangeable
The converse implications do not in general hold.

A ring provisioned according to the algorithms in section
IV is rearrangeably non-blocking but not necessarily strictly
or wide-sense non-blocking. If traffic changes frequently then
the control overhead associated with re-arranging existing
circuits may not be acceptable. In such a case, one may
prefer a ring that is either wide-sense non-blocking or strictly
non-blocking. If every node has an ADM on each of W,
wavelengths then the resulting ring is strictly non-blocking.
The following result shows that for a ring with ¢ =1 and W,
wavelengths to be strictly non-blocking then each node must
have an ADM on every wavelength, in other words one
cannot save on the cost of ADMs by grooming.

Theorem 2: A strictly non-blocking ring with ¢ = 1
and W .. wavelengths must have an ADM for each node on
each wavelength.

Proof: When W, =1 the theorem is clearly true. For W,
=2, we know that all the nodes must be on one of the
wavelengths. If we remove only one node, say node j, from
wavelength 1. We can find a set of g circuits not involving
node j and place them on wavelength 2. Then any additional
circuit involving node j cannot be established without re-

arranging these existing circuits, and so the ring is not
strictly non-blocking.

For W, >2, we will proceed by induction. First note
that there must be at least (N/2)+1 nodes on each
wavelength for the ring to be even rearrangeably non-
blocking; this follows from the proof of Lemma 1. When
Woie > 2 and ¢t = 1, it follows from the definition of W,
that N/2>2g+1. Thus there must be more than 2g+2
nodes on each wavelength. Now assume that the theorem is
true for W, = k wavelengths, and consider the case when
Wain =k +1. Without loss of generality we can assume that
nodes 1,...,2g + 2 are on wavelength 1. Thus we can
consider any 1-allowable set of g circuits between 2g of these
nodes and place these circuits on wavelength 1. Then any
other l-allowable set of calls between the remaining N-2g
nodes must be placed on the remaining k wavelengths. If we
consider a ring with these N-2g nodes, then the minimum
number of wavelengths for this ring is k. Therefore, by the
induction hypothesis, we can't remove any of these N-2g
nodes from the remaining k wavelengths. The original 2g
nodes were picked arbitrarily from the set of 2g +2 nodes that
must be on wavelength 1, and by choosing different sets and
repeating this argument we have that every node must be on
the remaining k wavelengths. Likewise by repeating this
argument but starting with a different initial wavelength we
see that every node must be on every wavelength. Thus the
theorem is true for W, = k+1, and by induction is true for
any ring withr=1. I

Though we have only proved this for ¢ = 1, the proof can
be modified for an arbitrary value of . As a consequence of
this theorem, if we want to save on ADMs for dynamic traffic
without re-arranging, we must consider wide-sense non-
blocking networks. Analyzing wide-sense non-blocking rings
is more difficult than the other cases due to the fact that a
routing algorithm must also be considered. The following
gives an upper bound on the ADMs that can be removed for a
wide-sense non-blocking ring.

Lemma 5: Consider a unidirectional ring with W,
wavelengths. Let M; be the set of nodes removed from
wavelength i. For the ring to be wide-sense non-blocking for
t-allowable traffic, where ¢ is even, we must have for all i:

|M;] £ max(2Wning/t — N, 1)

Proof: First note that clearly we must have |M,|<SN-2.
We will show that if |M;|>1 then it must be less than
2Woing/t—N, the lemma then follows. If
2<|M;|< N —2then we can form the following t-maximal
set which also has the maximal link load. This set consists
of two groups of traffic. One group consists of [M|r/2
circuits which are only between nodes in M,. The other group
consists of [N — M|t/ 2circuits only between nodes in N —
M,. Let X be the subset of these remaining circuits which are
routed on wavelength i (X can not be empty since this set has
the maximal link load and thus uses W ;, wavelengths).

First we prove if the ring is wide-sense non-blocking,
then:
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|X|2|M;|/2 (10)

Assume this is not true. Suppose the circuits in X were
disconnected as well as |X] of the circuits involving the nodes

in Ma' We can then find a set of 21X new circuits where each

circuit involves only one node in M; and one node which
previously was in a circuit in X. Adding this set of circuits
to the remaining calls results in a new t-maximal set, and
none of these new calls can be routed on wavelength i. This
new set will also have the maximum link load and thus
requires all W ;. wavelengths. This means that these calls
cannot be accepted without rearranging some of the other
active calls. This is a contradiction and so (10) must be true.

If (10) is true, beginning with a t-maximal set as above,
assume that the |M;]r/2 circuits involving the nodes in M;

are disconnected along with |M;|¢/2 circuits involving nodes
from X. Then we can form |M;|f circuits as above, where

each circuit is between one node from M; and one node that
was in a circuit in X. These additional circuits must be
routed on the remaining W, -1 wavelengths without
rearranging the active calls. This means that at most
(Wain — 1)g —|M;|t calls not involving the nodes in Mj can be

routed on these wavelengths. There are (N —|M|)s/2 circuits

in the original maximal set not involving nodes in M;, thus
we must have

X2 (N = M)t /2 = (Wain —1)g + M}

We also must have |X|< g; combining these and performing
some algebra yields the desired result. W

Note we assumed that ¢ was even in this lemma just to
simplify the proof, a similar bound could be found for ¢ odd.
Consider our previous example with N =15, g = 16, and ¢ =
10. In this case the above bound is |M;|<1 so for the
network to be wide-sense non-blocking the most ADMs that
could be removed is 5. Compare this with 20 ADMs that can
be removed for a rearrangeably non-blocking ring. In fact for
this example with ¢ taking on any even value between 2 and
14, the size of M, is always bounded to be less than or equal
to 1, resulting in at most an 8% reduction in ADMs.

These results suggest that to get great benefits from
grooming with dynamic traffic, some rerouting of existing
traffic is needed, at least within the unidirectional ring model
considered here.

C. Using a hub node and tunable lasers

By investing in a more sophisticated components else
where in the network, one can gain further reductions in the
cost of the electronic layer multiplexing. Two examples of
this which we will consider is the use of a hub node and the
use of tunable lasers. First we consider a hub node. By a
hub node we mean a node which has ADMs on every
wavelength and has a SONET cross-connect. By similar
arguments to those used in [2] we can show that making one
node in the ring such a hub node will not require any more
ADMs than were required without the hub. Assuming that
t<g we can then show that the minimum number of

ADMs needed to support all t-allowable traffic with a single
hub node is given by

1+(N—1) ADMs

[l’gljﬂ

For example suppose that we have aring with N =7, g =
2, and ¢t = 1. Using the algorithm from Lemma 4 we need 12
ADMs to support all t-allowable traffic. By making one node
a hub node, we can support this traffic using only 10 ADMs.
We can also reduce the required number of ADMs if instead of
having fixed tuned lasers, each node is equipped with tunable
lasers. For example, again consider the ring with N=7, g =
2,and r=1. If nodes are equipped with tunable lasers then
each node only needs one ADM, and thus we need only 7
ADMs for the entire ring. In this case using tunable lasers
reduced the required number of ADMs by 58%.

Clearly with tunability a node needs no more than ¢
ADMs, thus when ¢ is small there is a clear advantage to
tunability. On the other hand for larger values of ¢ the gain
from tunability is not as obvious and is an open issue.

VI. Coaclusion

In this paper we examine the problem of designing a
WDM ring network to support dynamic SONET traffic. The
goal of our design is to minimize the number of electronic
multiplexers (e.g., SONET ADMs) used in the network. We
developed a number of algorithms for assigning ADMs to
wavelengths in a way that supports every t-allowable traffic
matrix in a rearrangeably non-blocking manner.  These
algorithms are shown to reduce the number of ADMs :eeded
by up to 33%. We also derive a lower bound on the number
of ADMs required to support all t-allowable traffic and show
that in some cases our algorithms perform close to this
bound. Finally, we discuss extensions of our model to
include supporting dynamic traffic in a strictly non-blocking
manner and to hot-spot traffic where some nodes have a
heavier traffic load.
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