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Abstract—We consider the problem of wavelength assignment
in reconfigurable WDM networks with wavelength converters.
We show that for -node -port bidirectional rings, a minimum
number of 4 wavelengths are required to support all pos-
sible connected virtual topologies in a rearrangeably nonblocking
fashion, and provide an algorithm that meets this bound using
no more than 2 wavelength converters. This improves
over the tight lower bound of 3 wavelengths required for
such rings given in [1] if no wavelength conversion is available.
We extend this to the general -port case where each node may
have a different number of ports , and show that no more than

4 + 1 wavelengths are required. We then provide a
second algorithm that uses more wavelengths yet requires signif-
icantly fewer converters. We also develop a method that allows
the wavelength converters to be arbitrarily located at any node
in the ring. This gives significant flexibility in the design of the
networks. For example, all 2 converters can be collocated
at a single hub node, or distributed evenly among the nodes
with min 2 + 1 converters at each node.

Index Terms—Dynamic traffic, optical network, ring network,
routing, wavelength assignment, wavelength division multiplexing
(WDM).

I. INTRODUCTION

I N RECENT years, optical networks using wavelength
division multiplexing (WDM) technology have emerged as

an attractive solution for meeting rapidly growing demands for
bandwidth. WDM allows the same fiber to carry many signals
independently as long as each uses a different wavelength.
Calls must therefore be routed and assigned to wavelengths
such that no two calls use the same wavelength on the same
link. This is known as the routing and wavelength assignment
(RWA) problem. Calls are additionally subject to the wave-
length continuity constraint, which requires that a call use the
same wavelength on all hops unless wavelength conversion is
available at intermediate nodes. If full conversion is available at
all nodes, the WDM network is equivalent to a circuit-switched
network; however, the high cost of wavelength converters often
makes it desirable to keep the amount of conversion used in the
network to a minimum.
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There has been considerable work done in the area of finding
efficient algorithms for the RWA problem. The literature adopts
a number of different approaches to the problem. In the static
traffic model, the traffic matrix representing the calls is fixed
and does not change over time. In the dynamic traffic model,
the traffic matrix is allowed to change over time to represent
call arrivals and departures.

In the static model, the objective is typically to minimize
the number of wavelengths, converters, or other cost parame-
ters [2]. This problem was shown to be NP-complete in [3], and
thus the literature has focused on the development of heuristics
and bounds. Other approaches include attempting to maximize
throughput for fixed capacity [4], to minimize congestion for
a fixed traffic set [5], or to maximize the number of calls sup-
ported for a fixed number of wavelengths [6]. However, this ap-
proach is limited in that it does not allow dynamic call setup and
removals.

The alternative is to use a dynamic model, where calls are
allowed to arrive and depart over time. One method of mod-
eling call dynamics is to adopt a statistical model for call ar-
rival rates and holding times and design algorithms to minimize
the call blocking probability. Numerous papers have focused on
blocking probability analysis under various approximations for
simple wavelength assignment algorithms such as the random
algorithm [7]–[12] and first-fit [13]. However, due to the large
state-space size of the problem, the blocking probability of a
WDM network for more sophisticated algorithms is extremely
difficult to analyze. As a result, most statistical algorithms rely
on simplifying approximations and heuristics [14].

An alternative approach considers designing the network
to accommodate any traffic matrix from an admissible set.
Call arrivals or departures are equivalent to transitioning from
one traffic matrix to another. If the transitions can be accom-
modated without rearranging any calls, the RWA algorithm
is called wide-sense nonblocking; algorithms which require
call rearrangement are called rearrangeably nonblocking. For
example, [15] considers a traffic set such that the maximum
load on each link is bounded by some constant, and attempts
to minimize the number of wavelengths used at that given
load; [16] works on minimizing the wavelength converter
usage for networks using a number of wavelengths equal to
the maximum link load. Another approach is taken in [1] by
admitting any traffic matrix where each node uses at most
ports. It is shown that for the case of a bidirectional ring with

nodes and ports, a lower bound of wavelengths
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is required to support the worst-case traffic set if no wavelength
conversion is employed. Moreover, in [1] a rearrangeably
nonblocking RWA algorithm is provided which achieved this
bound. An online version based on these ideas was presented
in [17] which additionally attempts to minimize the number
of rearrangements required; this algorithm was later extended
from rings to torus networks in [18]. The -port model is very
practical since the admissible set is based on actual device
limitations in the network. In this paper, we investigate new
rearrangeably nonblocking RWA schemes for this admissible
set where wavelength conversion is available.

A. System Model

We consider a bidirectional ring with nodes. Adjacent
nodes are connected by two fibers: one supporting wavelengths
travelling in the clockwise direction, the other supporting wave-
lengths in the counterclockwise direction. The two fibers are
represented by a single bidirectional link, where each link can
support calls travelling in both directions on every wavelength.

A wavelength converter, if available at a given node, can be
used to switch a call arriving to that node on one wavelength
onto a different wavelength departing the node. If no conversion
is employed, a call passing through a node on one wavelength
must exit the node on the same wavelength. The cost of pro-
viding wavelength conversion from one wavelength to another
is assumed to be fixed and independent of the frequency sep-
aration between the wavelengths. A traffic matrix or traffic set
consists of a set of calls that need to be set up in the network.
Each call consists of a source and destination pair. A traffic set
is connected if the directed graph corresponding to the set of
source-destination pairs is connected. In a single-port network,
each node is considered to have a single tunable optical trans-
mitter and receiver. Hence each node may at most originate one
call (using any available wavelength) and receive one call (on
any wavelength, possibly different from the one used by the
transmitter). In a -port network, each node has transmit-
ters and receivers, and hence can transmit and receive dif-
ferent calls. -port networks can be either symmetric, where

for all nodes, or asymmetric, where can differ for
each node. This is a natural problem to consider since equipment
constraints limit the number of ports each node has available.
The set of all traffic matrices which satisfy the -port require-
ment is called the admissible set. Routing and assigning wave-
lengths to each of these traffic matrices is the RWA problem,
considered in this paper.

We consider the problem of supporting any admissible traffic
set in a -port network in a rearrangeably nonblocking fashion.
In this context, there are a number of metrics which are relevant
to evaluating the performance of a RWA algorithm. One is the
worst-case number of wavelengths required by the algorithm –
the smaller the number, the better. Another is the total number of
wavelength converters the algorithm uses. Since converters are
expensive, an algorithm that uses converters sparingly is pre-
ferred. Finally, in general the converter requirements may be
different at each node. Certain distributions may be more desir-
able than others depending on the design criteria: for example, in
some cases, we may want a hub design where all converters are
placed at a single node; in others we may prefer the converters

to be distributed equally at all nodes. We consider algorithms
which attempt to design a RWA for these metrics.

In Section II, we derive a lower bound on the number of wave-
lengths required to support the worst-case traffic set, and present
two RWA schemes for both connected and unconnected traffic
sets in single-port networks: an optimal algorithm which uses
the minimum possible number of wavelengths to support all
traffic sets, and a suboptimal algorithm which uses more wave-
lengths but requires significantly fewer converters. These results
are extended to multi-port networks in Section III. In Section IV
we develop a method for changing the location of wavelength
converters in a given RWA, and apply the method to the algo-
rithms in the previous sections.

II. SINGLE-PORT RING NETWORKS

A. The Algorithm for Connected Rings

We consider here the case of a single-port network, and
require that the RWA algorithm be able to route any connected
traffic set in a rearrangeably nonblocking fashion. Our ini-
tial goal is to design a RWA algorithm which minimizes the
number of wavelengths used. The following theorem gives a
lower bound on the number of wavelengths required by the
worst-case traffic set for this network.

Theorem 1: For a single-port -node bidirectional ring, at
least wavelengths are required by the worst-case traffic
set for even, and wavelengths for odd.

Proof: Consider the case where is even, and envision a
cut which divides the network into two sets of nodes each.
Since the nodes were formed in a ring, this cut consists of two
links. Consider a traffic set where each of the nodes in one
set wishes to communicate to one of the nodes in the other set.
In this case, a total of calls must cross the cut in either
direction, for a total of calls. Since each link in the cut can
support at most two calls on a single wavelength (one clockwise,
one counterclockwise), a minimum of wavelengths are
required to support the calls across the cut. Similar reasoning
for odd gives a bound of .

It is worth noting that this bound cannot be achieved by a
simple routing scheme such as shortest-path. To see this, con-
sider a ring with an even number of nodes , and number the
nodes in increasing order from 1 to in the clockwise direc-
tion. Consider the traffic set where each node sends a call
to node . (We use to denote addition modulo

.) Then shortest-path would route all calls in the clockwise
direction, with each call requiring hops to accommo-
date it. Since there are calls total, this would require at least

wavelengths to support it.
We next describe the operation of our first RWA algorithm

and assert that it is optimal in the sense that it requires no more
than the lower bound of wavelengths. The proof follows
the description.

Consider an arbitrary connected traffic set
consisting of source-destination pairs . We term a pair of calls
adjacent if the destination node of the first call is the source node
of the second. In a connected traffic set, it is always possible to
traverse all calls in the traffic set in adjacent order; i.e., there are
no sub-cycles within the traffic set. Therefore without loss of
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generality we can renumber the calls so that they are indexed in
adjacent order; that is, is adjacent to for every .

Denote the number of hops required to route a particular call
in the clockwise direction by . Denote the average number

of hops required in the clockwise direction by

Then the algorithm is as follows:

THE ALGORITHM
1) TRAFFIC SET PARTITIONING: Let

. Find a set of adjacent calls
with average clockwise hop length less than or equal
to . Call this set the clockwise set. Designate all calls
not contained in the clockwise set to be members of the
counterclockwise set. (We will shortly show that such
sets always exist.)

2) ROUTING: Route all calls in the clockwise set in the
clockwise direction. Route all calls in the counterclock-
wise set in the counterclockwise direction.

3) WAVELENGTH ASSIGNMENT (CLOCKWISE SET):
Assign wavelengths to calls using a forward pass and a
reverse pass as follows: Index all calls in the clock-
wise set in adjacent order. Index the wavelengths in
arbitrary order. Initialize and .

a) FORWARD PASS: In this part, beginning with the first
call and proceeding in adjacent order, assign as many
calls as possible to the first wavelength without using
conversion. When a call cannot be fully assigned to the
wavelength, assign it entirely to the next wavelength
(without conversion) and repeat, until all wave-
lengths are used. This is made explicit below:

i) Assign call entirely to without using any con-
version.

ii) Increment : .
iii) If call can be assigned entirely to without

conversion, goto (i). Otherwise continue.
iv) Increment : .
v) If , goto (i). Otherwise stop.

b) REVERSE PASS: In this part, the remaining calls are
assigned to the wavelengths in the reverse of the order
they were filled in the forward pass, using converters
as necessary. More explicitly:

i) Assign as much of the unassigned portion of call
to as possible.

ii) If is completely assigned, increment and goto
(i). Otherwise continue.

iii) Using a wavelength converter, convert the last hop
of allocated in (i) from to .

iv) Decrement : .
v) If all calls have been assigned, stop. Otherwise goto

(i).

4) WAVELENGTH ASSIGNMENT (COUNTERCLOCK-
WISE SET): Repeat Step 3 with the counterclockwise set
in the counterclockwise direction.

Fig. 1. (a) The routing and wavelength assignment of calls in the clockwise
set after the forward pass. The inner arrows represent calls on � , the outer
arrows are calls on � . (b) The complete RWA on the clockwise direction after
the backward pass.

We will refer to this as the algorithm. The following
example illustrates the use of the algorithm for a partic-
ular traffic set.

Example 1: Consider an 8-node ring, where .
Number the nodes from 1 to 8 in the clockwise direction. Con-
sider a traffic set consisting of the following calls, listed in adja-
cent order: (1,4), (4,6), (6,2), (2,5), (5,8), (8,3), (3,7), and (7,1).
We will apply the algorithm to this problem.

The average clockwise hop length , and
.

Choose the clockwise set to be the set of calls {(1,4), (4,6), (6,2),
(2,5), (5,8)}, with average hop length

. The counterclockwise set then consists of the remaining
calls, {(8,3), (3,7), (7,1)}. Note that the average hop length
obeys in the clockwise direction.

In the forward pass on the clockwise set, calls (1,4) and (4,6)
are assigned to the first wavelength, while (6,2) and (2,5) are
assigned to the second wavelength. This situation is shown in
Fig. 1(a). In the reverse pass, the final call (5,8) is assigned partly
on each wavelength and employs a converter at node 6. The final
RWA for the clockwise set is shown in Fig. 1(b).

In the forward pass on the counterclockwise set, calls (8,3)
and (3,7) are assigned to the first and second wavelengths, re-
spectively. In the reverse pass, (7,1) is assigned partly to both
and again requires a converter.

We make two claims regarding this algorithm. First, it is al-
ways possible to find a set of adjacent
calls with average clockwise hop length less than or equal to .
Second, using this algorithm, any admissible traffic set requires
at most wavelengths and converters. These
claims will be formalized as Lemma 1 and Theorem 2.

Lemma 1: There exists a set of adjacent calls with average
clockwise hop length less than or equal to the average clock-
wise hop length of the entire traffic set , for any .
Furthermore, the calls in the complement of that set have
average clockwise hop length .

Proof: We will conduct a proof by contradiction. Suppose
there did not exist any set of adjacent pairs with average hop
length less than . In particular, this would imply that
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Summing the entire set of inequalities, we obtain

where the coefficient of each term is unity, since each is
involved in exactly of the inequalities and is scaled by a factor
of . Equivalently,

But since by definition is the average hop length, this cannot
be true. Hence there must exist a set of adjacent pairs with
average hop length less than .

The second half of the proof also uses contradiction. Suppose
for the remaining calls, the average clockwise hop length

. From the definitions of and , we have that

Combining the preceding two inequalities and dividing by ,
we then obtain

which contradicts the definition of being the average hop
length.

For our purposes, we will mainly be interested in applying
Lemma 1 for the case of in the proof of the following
theorem.

Theorem 2: Given any connected traffic set, the algo-
rithm requires only wavelengths and at most
converters.

Proof: By Lemma 1, it is always possible for the algo-
rithm to find valid clockwise and counterclockwise sets. Con-
sider first the clockwise set. For simplicity, consider those cases
where the total number of wavelengths is an integer. (For
all other cases, fictitious nodes can be added to increase
to the nearest integer.) First note that wavelengths in an

-hop ring can support contiguous hops of traffic. By
choice of the clockwise set, the average clockwise hop length in
the clockwise direction . Then the total number of hops
required to accommodate the clockwise set, denoted by , is

Since all required hops are contiguous due to the adjacency of
all calls in the set, the clockwise set fits in wavelengths.

Next consider the counterclockwise set, which contains the
remaining calls. If , then and the coun-
terclockwise set is empty and requires no wavelengths, com-
pleting the proof. Therefore assume . Denote
the average clockwise hop length ; this implies that the av-
erage counterclockwise hop length is . Since by Lemma 1

, it must be that the average counterclockwise hop length
. Denote the total number of contiguous hops re-

quired to accommodate the counterclockwise set by . Then

We show in Appendix A that for even, the last quantity is
maximized at , giving us

which also fits in the wavelengths. Note that there is no
loss of generality in the assumption of even, as explained
earlier and in the Appendix .

By construction, the algorithm requires up to one con-
verter on each wavelength (except the last) in each direction, for
a total of converters. Additionally, consider the loca-
tion of the converters: each converter, where needed, is located
at the destination node of the last call on each wavelength after
the forward pass on the clockwise and counterclockwise sets.
Since we are dealing with a single-port network, each node is
the destination of no more than a single call. This implies that
no node requires more than a single converter at most.

Later, in Section IV, we will show how the wavelength assign-
ment can be modified to distribute the converters
almost arbitrarily among all nodes in the ring.

B. The Algorithm for Connected Rings

Although the algorithm achieves the minimum
number of wavelengths, it may require as many as
converters to do so. Since converters may be costly, it is de-
sirable to reduce the number of converters required. In [1]
an algorithm is provided that does not require converters but
uses wavelengths. Motivated by a desire to find a
compromise between these two extremes, we present our next
algorithm that requires wavelengths and only
converters.

We will begin by restating a result from [1] regarding the
routing of adjacent pairs and giving a new lemma on routing
adjacent triplets. Then, using these results, we will give an al-
gorithm which divides the connected traffic set into smaller sets
of 7 adjacent calls and routes each set of 7 calls onto two wave-
lengths (in each direction).

Lemma 2: Given an adjacent pair of calls, it is possible to
fit the calls onto a single wavelength in either the clockwise or
counterclockwise direction with no wavelength conversion.
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Fig. 2. Beginning at node n , since we first encounter node n before n

when travelling in the clockwise direction, we must encounter n before n

when travelling in the counterclockwise direction.

Proof: See [1].
Lemma 3: Given a direction around the ring and given an

adjacent triplet of calls, if it is not possible to fit the calls into a
single wavelength (using no converters) in that direction, then it
is possible to fit the calls into two wavelengths (using a single
converter) in the opposite direction.

Proof: Denote the calls by their source-destination pairs
as follows: , , and . Without loss of gen-
erality, suppose by Lemma 2 that and fit on a
single wavelength in the clockwise direction. (If the opposite is
true, then simply reverse the clockwise/counterclockwise direc-
tions to follow.) We prove the lemma first for the choice of the
clockwise direction, then the counterclockwise.

CLOCKWISE: Suppose the choice of direction was clock-
wise. If all three calls can be routed in the clockwise direction,
then this part of the proof is complete. Suppose they cannot; i.e.,
part of the path overlaps part of the path in the
clockwise direction. This implies that, travelling in a clockwise
direction from node , we first encounter node before node

. Reversing the directions, it must therefore also be the case
that travelling in a counterclockwise direction from , we first
encounter node before node . This is illustrated in Fig. 2.

We can route and each onto separate wave-
lengths and in the counterclockwise direction. This leaves
the links between to on and to free on . Since
travelling in the counterclockwise direction we reach node
before , the third call can fit into the free links on

and in the counterclockwise direction using a converter
at node .

COUNTERCLOCKWISE: Next consider if the choice was
counterclockwise. It is not possible to fit all calls into a single
wavelength in this direction, so therefore we must show it is
possible to fit all calls in two wavelengths in the clockwise di-
rection. This is done by noting that since by assumption the first
two calls can fit on a single wavelength in the clockwise direc-
tion, the third can fit alone on a second wavelength.

Figs. 3 and 4 illustrate examples of applying Lemmas 2 and
3, respectively. We will now use the two preceding lemmas to
describe a method for fitting any set of 7 adjacent calls onto at
most two wavelengths.

Theorem 3: Given a set of 7 adjacent calls, the entire set can
be routed using at most two wavelengths (in each direction).

Fig. 3. (a) This adjacent pair cannot be placed on a single wavelength in the
clockwise direction. (b) Therefore by Lemma 2, it can fit without converters on
a single wavelength in the counterclockwise direction.

Fig. 4. (a) The adjacent triplet (n ; n ), (n ; n ), (n ; n ) cannot be placed
on a single wavelength in the clockwise direction. (b) Therefore by Lemma 3, it
can fit on two wavelengths in the counterclockwise direction using only a single
converter. The converter is required at node 4 in this case. Notice also that the
triplet can fit using two wavelengths in the clockwise direction.

Proof: We will provide a proof by construction. Consider
the first four adjacent calls. Divide them into two adjacent pairs.
By Lemma 2, each pair can be routed using a single wavelength
in either the clockwise or counterclockwise direction. First sup-
pose that the two wavelengths are in different directions. Then
they can share the same wavelength, and the first four paths can
be routed using a single wavelength. Of the remaining three
calls, by Lemma 2 the first adjacent pair can again be fit on a
single wavelength in one direction; placing the remaining call
on the same wavelength in the opposite direction completes the
construction in this case.

Next suppose that the first two pairs can only fit on single
wavelengths in the same direction. Without loss of generality,
let this direction be clockwise. Consider the remaining adjacent
triplet.

If these calls can be placed onto a single wavelength in the
clockwise direction, then do so. Also place the first pair on a
second wavelength in the clockwise direction. Then place the
two calls in the second pair on the same two wavelengths in the
counterclockwise direction, each using their own wavelength.

If the last three calls cannot be placed onto a single wave-
length in the clockwise direction, then by Lemma 3 they can be
placed onto at most two wavelengths in the counterclockwise
direction. The first two pairs can then be routed onto the same
two wavelengths in the clockwise direction, each pair using its
own wavelength.
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In general, we can route any connected traffic set by dividing
it into adjacent sets of 7 calls and applying the construction in
the proof of Theorem 3 to each set. We will call this the
algorithm.

THE ALGORITHM
1) Divide the traffic set into adjacent sets of 7,

each denoted by , . Let .
2) Route each set of 7 calls using 2 wavelengths, following

the proof of Theorem 3, for a total of wave-
lengths.

Converter Requirements: During the RWA construction, the
traffic set is divided into sets of 7 adjacent calls; each set
of 7 calls uses at most a single converter. Using these facts, we
can show that the total number of converters required is upper-
bounded by .

To see why we can use only rather than con-
verters, we need to consider two cases: where is and is not
divisible by 7. Supposing is divisible by 7,
and the distinction is irrelevant. Next suppose is not divisible
by 7. Then the first sets require at most

converters. The last set has at most 6 adjacent calls. (If
it has less, insert fictitious calls.) Further divide this set into two
sets of 3 adjacent calls. Each set of 3 calls can be routed using
a single wavelength without conversion by putting the first two
adjacent calls onto a single wavelength in one direction without
conversion (guaranteed by Lemma 2 ) and putting the remaining
call in the other direction on the same wavelength.

The converter in each set, if required, is located at the desti-
nation of one of the calls. Since we are considering a single-port
network wherein each node form the destination of only one call
in the traffic set, no node requires more than one converter. We
later show in Section IV how the wavelength assignment can be
modified to distribute the converters almost arbitrarily
among all nodes.

C. Handling Unconnected Traffic Sets

Thus far we have limited our discussion to connected traffic
sets. We next consider unconnected traffic sets; that is, traffic
sets where in the corresponding directed graph there exist nodes
which do not communicate. For single-port traffic, we will see
that this implies that the traffic set is composed of a number of
cycles.

We consider only maximal traffic sets; i.e., traffic sets con-
taining the maximum number of calls given the single-port re-
striction. Note that any nonmaximal traffic set can be converted
to a maximal set by adding fictitious calls; hence it is sufficient
to consider the RWA of maximal sets. We can construct the cy-
cles as follows:

1) Initialize .
2) Choose an arbitrary node, called the cycle start node. Find

the call originating at that node. Move to the destination of
that call. Now find the call originating at this new node,
and move to the destination of that call. Repeat. By the
maximal assumption, each node must originate a call, so
this is always possible. The cycle is complete when the
start node is revisited. Designate all calls traversed in this
step as members of the cycle .

3) Remove all calls in from the traffic set. By the single-
port assumption, since each node encountered in the pre-
vious step is the source and destination of some call in ,
they are not involved in any remaining calls in the traffic
set.

4) If the traffic set is not yet empty, increment and
goto Step 2.

This construction divides the traffic set into cycles involving
disjoint sets of nodes. Next we will give a method for dealing
with traffic sets with cycles by using an additional wavelength
to turn it into a different RWA problem for a connected traffic
set that does not contain cycles. The connected traffic set can
then be processed using either of the previous algorithms.

Theorem 4: Suppose there exists an algorithm that uses at
most wavelengths for any admissible connected traffic set in
a single-port ring network. Then any admissible traffic set with
cycles can be routed using at most wavelengths with
the addition of a number of converters equal to the number of
cycles.

Proof: The proof is by construction using the following
algorithm.

Step 1 – CYCLE FORMATION: Consider a traffic set
with cycles. Group the calls into sets based on which
cycle they belong to. Number these cycles .
From each set, arbitrarily choose a single call and denote
the source and destination nodes of that call by and ,
respectively, for the set . Without loss of generality, renumber
the cycles so that are in counterclockwise order;
i.e., after renumbering, travelling counterclockwise around the
ring beginning with , one encounters each in order of
increasing index .

Step 2 – SUPERCYCLE FORMATION: The idea is that we
will break each cycle at the call and connect it to the
next cycle, thus forming a single connected supercycle. Con-
sider a given cycle . Remove the call from the traffic
set, and replace it with a new call . This connects all
nodes in cycle with cycle . Repeat for all cycles. At the
end of this procedure, we have formed a new traffic set called
the supercycle, denoted by . Note that the supercycle is also a
maximal, admissible traffic set that obeys the single-port restric-
tions, since essentially all it did was permute the destinations of
the various calls of the original set.

Step 3 – RESIDUAL SET: We next need to add a set of addi-
tional calls, which we call the residual set , to make
equivalent to the original traffic set. The residual set consists of
calls for . Then for a given cycle , we
can combine the calls and from and

, respectively, to form the original call . At most a
single converter is needed at if the two calls are on dif-
ferent wavelengths.

Step 4 – RWA OF AND : The RWA algorithm for
connected traffic sets can be used on using at most wave-
lengths by assumption. Thus it remains only to show that can
be fit onto a single additional wavelength. The calls in this set
consist of . Note
that this traffic set simply traverses all the ’s in descending
order. Since the ’s were chosen in counterclockwise order by
ascending , it follows that they must be in clockwise order by
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Fig. 5. The RWA for superset T of Example 2.

Fig. 6. The RWA of residual set T .

descending . Therefore all calls in can be fit onto a single
wavelength in the clockwise direction.

Corollary 1: The algorithm can handle unconnected
traffic sets using at most wavelengths.

Corollary 2: The algorithm can handle unconnected
traffic sets using at most wavelengths.

The following example demonstrates the application of this
approach to a traffic set with two cycles.

Example 2: Consider an 8-node ring with nodes num-
bered from 1 to 8 in the clockwise direction. Consider
a traffic set consisting of the following calls, listed in
adjacent order: (1,4), (4,6), (6,2), (2,5), (5,1), (8,3),
(3,7), and (7,8). Note that the traffic set has two cycles:

, and
. We arbitrarily choose the calls (1,4)

and (8,3) from and , respectively. Then , and
. Since there are only two nodes, they are trivially in

counterclockwise order and we do not need to renumber the
cycles.

In addition to the previously noted values of and , we
also have that and . Following the preceding
approach, in the superset call (1,4) becomes .
Similarly, (8,3) becomes . The superset is

.
Reordered into adjacent order, we have

.
The residual set is

.
We can now route using any algorithm we choose. Here

we will route it using the algorithm. The set can by
choice fit into a single wavelength. The RWA for and are
illustrated in Figs. 5 and 6 respectively. Finally, the calls that

Fig. 7. (a) and (b) show the final RWA for Example 2 in the clockwise and
counterclockwise directions, respectively. Note that although the call (8,3) in
(b) ended up being routed partly in the counterclockwise direction and partly
in the clockwise direction, the hops in the clockwise direction do not require
an additional wavelength since those hops are free on one of the existing
wavelengths in (a). Also note that the RWA could be simplified by routing
call (8,3) entirely in the clockwise direction, although this does not result in a
savings in total wavelengths used.

were split during the creation of and are reconnected
using wavelength converters in Fig. 7.

Converter Requirements: By construction, one converter is
required per cycle in addition to any converter requirements by
the RWA algorithm.

III. MULTI-PORT RING NETWORKS

A. The Algorithm

1) Symmetric Multi-Port Networks: We first consider the
case of connected symmetric -port networks. By symmetric,
we mean that each node has the same number of ports . In
such a network, each node has transmitters and receivers,
and can therefore send and receive calls. Since each node
is the source of at most calls, and there are nodes, a full
traffic set contains at most calls. Again using a cut-set
bound, it is apparent that a minimum of wavelengths
are required to support the worst-case traffic set.

If the logical topology is connected, then the directed graph
contains a directed Euler trail [19] which contains all edges of
the graph. By finding and following the Euler trail, we can ob-
tain the calls in adjacent order. We can apply a modified
version of the algorithm, which we will call the
algorithm, to this traffic set.

THE ALGORITHM
1) TRAFFIC SET PARTITIONING: Let

. Find a set of adjacent
calls with average clockwise hop length less than or
equal to . Call this set the clockwise set. Designate all
calls not contained in the clockwise set to be members
of the counterclockwise set.

2) ROUTING: Route all calls in the clockwise set in the
clockwise direction. Route all calls in the counterclock-
wise set in the counterclockwise direction.

3) WAVELENGTH ASSIGNMENT: Assign wavelengths to
calls using a forward and reverse pass on both the clock-
wise and counterclockwise sets, as in the original
algorithm.
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This algorithm requires at most wavelengths. The
proof follows the same procedure as Section II-A.

For the algorithm, up to one converter on each wave-
length (except the last) is required in each direction, for a total
of converters. However, since we have a -port
network, similar examination of the construction of the wave-
length assignment shows that since each node can be the desti-
nation of up to calls, it may require at most converters.
Again, in Section IV we will show how the wavelength as-
signment can be modified to distribute the con-
verters nearly arbitrarily among all nodes. In particular, a mod-
ified wavelength assignment can be given that requires no more
than converters per node.

The algorithm can also be applied to general un-
connected networks containing cycles by using the approach of
Section II-C, where one additional wavelength is used to con-
vert the traffic set into a connected traffic set.

2) General Multi-Port Networks: We next consider general
networks where each node has ports, and is able to transmit
and receive at most calls. Under this model, the nodes can
now be heterogeneous, and consequently it allows the model a
great deal of generality.

Let be the total number of calls in the
system. The following theorem states that for any admissible
traffic set, connected or unconnected, it is possible to obtain a
RWA for any admissible traffic set using at most
wavelengths.

Theorem 5: For a general multi-port network with a traffic
set containing a maximum of calls, the algorithm
requires at most wavelengths to provide a RWA
for any arbitrary admissible traffic set.

Proof: First, if the traffic set is unconnected, we use an
approach similar to the one in Section II-C to turn it into a con-
nected set. This requires using a single additional wavelength in
the clockwise direction.

From this point on, we can assume that the traffic set is con-
nected, and apply the algorithm, with the only dif-
ference being that the clockwise set is chosen to be of size

calls. By a proof similar to the
one used for Lemma 1, it can be shown that the existence of
a clockwise and counterclockwise set is guaranteed. Thus it re-
mains only to show that no more than wavelengths
are required by both the clockwise and counterclockwise sets.

First consider the clockwise set. Since the total number of
calls is , and the average (clockwise) hop length is at most

, then the number of contiguous clockwise hops required is

Since each wavelength can support contiguous hops of traffic,
no more than wavelengths are re-
quired in the clockwise direction.

Next consider the counterclockwise direction. Again if
the counterclockwise set is empty, so the only case of in-

terest is when . Here the total number of calls
is , and the average (counterclockwise) hop
length is at most , so the number of contiguous counterclock-
wise hops required is

Applying the inequality and proceeding,

where in the last line we used the fact that . Next, to
eliminate the dependence on , we would like to maximize the
right-hand side over . To do this, we take the derivative with
respect to and set it to zero:

Knowing that the maximizing value of is , we substitute
that value back into the original equation to obtain

The total number of required wavelengths is then

Note that one additional wavelength is required to accommodate
the counterclockwise set. However, if the original traffic set was
unconnected and required the approach of Section II-C to turn
it into a connected set (using an extra wavelength in the clock-
wise direction), it can share the same extra wavelength since the

algorithm uses only an extra wavelength in the coun-
terclockwise direction. In other words, for an unconnected gen-
eral -port traffic set, only a single extra wavelength is required,
not two.
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Here a total of at most converters are required.
Each node requires no more than converters.

B. The Algorithm

Again we consider the case of a connected network. The net-
work can be either symmetric or asymmetric; again let node
have ports, and define to be the total number
of calls in the system. Find the Euler trail and list the calls in ad-
jacent order.

By dividing the calls into adjacent sets of 7, the results of
Theorem 3 can be applied to route each set using at most 2
wavelengths. Therefore a total of . For a symmetric
network, , where is the number of ports per node,
and this number simplifies to . For this reason, this
slightly modified algorithm is called the algorithm.

For a connected network, a total of at most con-
verters are required. Again, in Section IV we will show how
the wavelength assignment can be modified to distribute the
converters nearly arbitrarily among all nodes. In particular, for
symmetric networks, a modified wavelength assignment can be
given that requires no more than converters per node.

IV. THE CONVERTER-SHIFTING ALGORITHMS

A. The Converter-Shifting Lemmas

In general, when a RWA algorithm gives a wavelength as-
signment for a traffic set, it will also specify the number of con-
verters required at each node to support its wavelength assign-
ment. However, this may result in inefficient use of converters
since the network will have to be designed with the maximum
number of converters (over all possible admissible traffic sets)
at each node that the algorithm may require. For example, con-
sider a 2-node network that sees one of two possible traffic sets,
A and B. Suppose for a particular RWA traffic set A requires
that node 1 have 3 converters and node 2 have 6, whereas in
the RWA for traffic set B node 1 requires 6 and node 2 re-
quires 3. Then if sets A and B are to be supported in a rear-
rangeably nonblocking manner, nodes 1 and 2 must both have

, for a total of 12 converters between
them, even though at most 9 converters are ever used at any
given time.

In this section we provide a procedure for modifying a given
wavelength assignment so that the conversion requirement can
be moved arbitrarily from any node to any other node while
preserving the routing of the calls. If certain criteria are met,
removing one converter from a given node will require the ad-
dition of only one converter at a different node. We call this a
one-to-one exchange. Otherwise, removing one converter from
a given node will require the addition of two converters at a dif-
ferent node; we call this a one-to-two exchange.

We first define some terminology that we will find useful.
A wavelength converter, when in use, converts an input wave-
length to a different output wavelength. Suppose two converters
are operating in the same direction (either clockwise or counter-
clockwise). If the output wavelength of converter 1 is the same
as the input wavelength of converter 2, then we say that con-
verter 1 is adjacent to converter 2, and vice versa. In particular,
converter 2 is forward adjacent to converter 1, and converter 1

is backward adjacent to converter 2. Converters cannot be adja-
cent if they are operating in different directions.

The next two lemmas give conditions under which converters
can be moved from one node to another in a one-to-one ex-
change. The lemmas differ in the direction a converter is shifted
relative to its adjacency to the destination.

Lemma 4: If for a given RWA a converter at node is for-
ward adjacent to a converter at node , a modified wavelength
assignment can be devised that does not require a converter at
node but may require an additional converter at node .

Proof: Without loss of generality, suppose the converters
are operating in the clockwise direction. Call the set of all links
encountered travelling from to in the clockwise direction the
swap set. Let the input and output wavelengths of be and

, respectively. Let the output wavelength of be .

Move all traffic in the swap set on wavelength to , and
move all traffic in the swap set previously on to . Now

is no longer required, since the call coming into node on
continues on after the swap. Also notice that calls in the

swap set on must have started at or after node . The input
wavelength of becomes after the swap, since the call which
previously had been coming in on was moved to . The
output wavelength of remains the same.

There remains one loose end to tie up. There may previously
have been a call which entered node on and continued out
on . Since after the swap this call is now entering on , an
additional converter is required to convert it to for it to con-
tinue out on as before. Note that if the call had terminated at
node , then this converter would not be needed.

Lemma 5: If for a given RWA a converter at node is for-
ward adjacent to a converter at node , a modified wavelength
assignment can be devised that does not require a converter at
node but may require an additional converter at node .

Proof: The proof is very similar to the proof of Lemma
4. Call the set of all links encountered travelling from to in
the clockwise direction the swap set. Let the input and output
wavelengths of be and , respectively. Let the output
wavelength of be .

Move all traffic in the swap set on wavelength to , and
move all traffic in the swap set previously on to . Now
is no longer required, since the call previously entering node
on has been moved to , and may continue on without
needing a converter. The output wavelength of becomes
after the swap, since the call which previously exited on was
moved to . The input wavelength of remains the same.

Again there is a loose end to tie up. There may previously
have been a call which entered node on and continued out
on . Since after the swap this call is continuing on , an
additional converter is required to convert it from to . Note
that if the call had started at node , then again this converter
would not be needed.

An example of a one-to-one exchange of the type described
in Lemma 4 is shown in Figs. 8 and 9. Finally, we have a gen-
eral theorem for shifting converters if no adjacent converter is
available at the destination node.

Lemma 6: If for a given RWA there does not exist any con-
verter at node that is adjacent to any converter at node , a
modified wavelength assignment can be devised that requires
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Fig. 8. (a) The original RWA of calls on the clockwise direction. Note that
there is no requirement that the traffic set obey a P -port condition. Converters
are used at nodes i and j. (b) The same ring, with related calls marked. Calls
affected by the converter shifting are in bold, while unaffected calls are in light
grey. The swap set consists of the dotted calls and parts of calls.

Fig. 9. All calls or parts of calls in the short dotted lines have exchanged
wavelengths with those on the long dotted lines. Note that while a converter
is no longer required at node i, an extra one is now being used at node j.

Fig. 10. (a) The original RWA of calls on the clockwise direction. A single
converters is used by node i. Calls affected by the converter shifting are in bold,
while unaffected calls are in light grey. The swap set consists of the dotted calls
and parts of calls. (b) All calls or parts of calls in the short dotted lines have
exchanged wavelengths with those on the long dotted lines. Note that while a
converter is no longer required at node i, two are used at node j.

one less converter at but may require up to two more converters
at node .

Proof: The proof is identical to the proof of Lemma 4,
except that since there is no existing adjacent converter to
use at node , a new one is required.

An example of one-to-two exchange is shown in Fig. 10.
The proofs of the preceding lemmas provide an algorithm for
shifting converters from node to node.

In the following two subsections, we use the con-
verter-shifting lemmas to first describe a method for moving
all converters to a single node (typically called the hub), then
describe a method for distributing them arbitrarily among all
nodes while requiring at most one additional converter per
node. The techniques used in these two examples can then be
applied in a straightforward manner to implement any other
configurations of interest.

B. Applications to the Algorithm

In this section, we demonstrate the use of the con-
verter-shifting lemmas on the algorithm to create
two interesting network architectures, the hub architecture and
the symmetric node architecture.

1) Hub Architecture: It may be desirable to concentrate all
converters at a single node, called the hub. This can be done
using the converter-shifting lemmas to move all converters to
the hub at a cost of at most two additional converters.

Recall that by construction at most converters
are used in each direction. Consider first the clockwise direction.
Since by construction the converters can be traversed in adjacent
order, without loss of generality we may index the converters so
that converter has input wavelength and output wavelength

, for .
Suppose node is chosen to be the hub node. According to

Lemma 6, we can move to node using a one-to-two ex-
change. Next, move converter to node . Since by choice of
indexing the input wavelength of is the output wavelength of

, by Lemma 5 it can be moved using a one-to-one exchange.
Iterating through the rest of the converters, the same argument
can be applied to perform one-to-one exchanges. After all ex-
changes are complete, there are a total of converters
at the hub – one more than the previous total, due to the initial
one-to-two exchange.

The same procedure can be repeated for the counterclockwise
direction, resulting in an additional converters being
collected at the hub. After this procedure, all conversion is now
concentrated at the hub, which requires converters.

2) Symmetric Node Architecture: In other cases, we may
prefer to have each node have the same number of converters.
Again, this can be accomplished by using the converter-shifting
lemmas to move the converters such that each node has no more
than converters.

The procedure is as follows: first, apply the method of the
previous section to create a hub architecture. There are now

adjacent converters at the hub in either direction. Di-
vide the remaining nodes into two sets of equal size (
odd). Call one set the clockwise set, and the other the coun-
terclockwise set. First consider the clockwise direction. Move

of the converters in adjacent order to one of the
nodes in the clockwise set. The first requires a one-to-two ex-
change, while all remaining converters are moved one-to-one.
This places converters at that node. Repeat with all
remaining nodes in the clockwise set. At the end of the proce-
dure, all nodes in the clockwise set have converters
in the clockwise direction.

Repeat this procedure with the counterclockwise set using
the counterclockwise converters. This leaves all nodes in the
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counterclockwise set with converters in the coun-
terclockwise direction. The hub itself has a total of con-
verters, half in either direction. Thus no node requires more than

converters.
Finally, recall that the original algorithm required no more

than converters at any given node. We always retain the option
of not doing any converter shifting if . (As a
side note, we point out that the only time this occurs is at

.) Therefore the final result is that the number of converters
required per node is given as .

C. Applications to the Algorithm

In this section, we demonstrate the use of the con-
verter-shifting lemmas on the algorithm to again
create a hub and symmetric node architectures.

1) Hub Architecture: The converter-shifting lemmas can be
used to move all converters to a single node. For the
algorithm, converter adjacency is not guaranteed, and hence re-
distribution requires one-to-two exchanges. Hence the hub has
at most converters.

2) Symmetric Node Architecture: The converter-shifting
lemmas can also be used to move converter requirements to
ensure that each node requires no more than converters.

The procedure is as follows. Locate the nodes which require
more than converters. Define these nodes to be members
of the set requiring relocation. Consider the first converter in
the set . Locate a node not contained in which currently has
fewer than converters, and move it to that node. We call
this the relocation step, which is at worst a one-to-two exchange.
Repeat the relocation step until the number of converters at that
node drops to . Remove that node from the set , then
move onto the next node in and repeat, until the set is empty.

We claim that we can always perform the relocation step for
all nodes in ; that is, we never run out of nodes with fewer
than converters while there remain nodes in with con-
verters which need to be relocated. This claim is formalized in
the following theorem.

Theorem 6: Define the excess demand for converters to be
the sum of the minimum number of converters which need to be
removed from each node so that the number of the converters
at the node does not exceed . Define the excess capacity

to be the sum of the maximum number of converters which
could be added at each node without exceeding . Denote
by the quantity of converters required at node by a given
RWA. Mathematically, these quantities are related by:

where denotes the complement of ; i.e., is composed
of those nodes not contained in .

Then the theorem asserts that

Proof: Index the nodes such that
all have more than converters, while the remaining nodes

do not. By this choice of indexing, the set is
composed of the nodes . The expressions for
and can be written as

To prove the theorem, we must show that . To
see this, begin with

where the first inequality arises from the fact that the total
number of converters required , and the
second is from the removal of the floor and ceiling functions.

We next need to determine an upper bound on the excess de-
mand . To develop this bound, we formulate an equivalent
problem involving balls and jars. Consider the problem of dis-
tributing balls into jars, where each jar can hold at
most balls stacked vertically, in order to maximize the total
number of balls in the jars exceeding a height of . This is
illustrated in Fig. 11. The balls correspond to converters, the jars
to nodes, and the number of balls which exceed height is
equal to the quantity .

An algorithm for maximizing the number of balls placed
which exceed height is to begin at the first jar, fill it with
as many balls as possible, move to the next jar, and repeat. Then
the number of jars required is

, and each jar has an excess capacity of at most
. Therefore the excess

demand is at most .
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Fig. 11. An example of the ball distribution problem. The excess capacity
(represented by balls falling in the shaded area) is maximized by filling each
jar as much as possible before moving onto the next jar.

Using this inequality in (1), we then have

which proves the theorem.
A direct corollary of this theorem is that converters can be

equally distributed so that no node needs more than
converters. The one-to-two shifting is the reason for the extra
“ ” term. In the worst case, it is possible that a converter may
be shifted to a node outside the set which prior to the shifting
had converters; in this case, adding two additional
converters gives it a total of .

Again, since the original algorithm required no more than
converters per node, we retain the option of doing no shifting if

. Therefore in the final assessment the number
of converters required per node is .

V. CONCLUSIONS

We considered the problem of implementing all virtual
topologies on an -node -port network in a rearrangeably
nonblocking fashion while trying to minimize the number
of wavelengths and converters required. We show that for
symmetric -port networks, a lower bound on the number
of wavelengths is . We present an algorithm which
achieves this lower bound by using wavelengths
for connected topologies while using a total of no more than

converters. We also present a second algorithm
which uses wavelengths but requires fewer con-
verters, a total of no more than . The first algorithm
achieves the minimum number of wavelengths required, while
the second uses more wavelengths but greatly reduces the
number of converters used. We also show how to turn the
problem of implementing an unconnected traffic set into a
modified problem of implementing a connected set by using
a single additional wavelength. We then extend the results to
general -port networks, where we allow the number of ports

at each node to vary, and show that for such networks
the algorithm requires no more than
wavelengths for connected and unconnected traffic sets. A sim-
ilar extension for the algorithm shows that it requires
only wavelengths.

Finally, we demonstrate a method for changing wavelength
assignments to move converters arbitrarily from one node to
another. If certain conditions are met, we show that this ex-
change is one-to-one; otherwise, the exchange is one-to-two.

We also show how to apply this method to both the
and algorithms. For symmetric -port networks, we
demonstrate a hub topology for the algorithm which
uses converters at the hub and no converters elsewhere,
and a symmetric node topology which uses converters
at each node. We also give a hub topology for the al-
gorithm which uses converters at the hub and no con-
verters elsewhere, and a symmetric node topology which uses
at most converters at each node. For asymmetric net-
works, the expressions are the same except that
replaces .

It is worth comparing the worst-case wavelength requirement
to the wavelength requirement for static and uniform all-to-all
traffic. In all-to-all uniform traffic, each node communicates
with every other node. For odd, this requires
wavelengths [20], [21]. In our terminology, all-to-all traffic be-
longs to the admissible set of an -node network with
ports, which have a worst-case bound of wave-
lengths. Thus designing a network to support calls
per node uses twice as many wavelengths as a uniform all-to-all
design. However, the -port traffic model provides significantly
more flexibility than the uniform all-to-all model. Furthermore,
an argument given in [1] can be used to show that a large number
of topologies require the lower bound of wavelengths
for the -port case, showing that this bound is not inflated to
support only a small number of worst-case scenarios.

APPENDIX

In this section we consider the number of wavelengths re-
quired by the algorithm in the counterclockwise direc-
tion for the case of . Recall that the number of
hops of traffic in the counterclockwise set was given by

Consider the maximization of the right-hand side; that is, the
function

(1)

The number of nodes must obviously be an integer, and we
can also deduce that the average hop length is also integer. To
see this, recall that we assumed the traffic set was connected.
This implies that, starting at any node, we can proceed in ad-
jacent order through all the calls in the clockwise direction and
return to the same node. Thus, the total number of hops of traffic
in the clockwise direction must be an integer multiple of .
Therefore the average hop length, which we obtain by dividing
the total hop length by the number of nodes , must also be
integer.

For the proof we will also only consider the case where
is even. There is no loss of generality because in all cases of
practical interest, this assumption holds. To see this, consider a
ring network with odd. We can add a fictitious node
to make the total number of nodes even. We alter the traffic
set by arbitrarily picking any call from the original traffic set.



CHEN AND MODIANO: EFFICIENT ROUTING AND WAVELENGTH ASSIGNMENT FOR RECONFIGURABLE WDM RING NETWORKS 185

Suppose this call is from node to , denoted by .
We remove this call from the traffic set and replace it by two
calls and . Observe that this new traffic set, over
the -node ring, is now a maximal single-port traffic set.
It also retains connectedness.

The number of wavelengths required to route the new traffic
set using the algorithm is . Since for odd

, no additional wavelengths are required
by this procedure. Once routes have been found for all calls, re-
move the fictitious node . Then use the route determined for the
calls and to route the original call . This
shows that it is sufficient to consider the case of only even,
because it allows us to also perform RWA for odd without
using any additional wavelengths.

Returning our attention to the function , we are inter-
ested in finding an upper bound. The goal will be to show that
the total hops of traffic is no greater than , and by com-
bining this with the fact that each wavelength provides hops
of traffic capacity, we will also prove that the counterclockwise
set requires no more than wavelengths.

The proof will proceed by showing the following two rela-
tions:

1) For all ,
2) For all ,
Together, the two relations show that is maximized at

. Since , this leads to the desired
result.

We proceed with showing the first inequality. We first intro-
duce a useful lemma, followed by the proof of the theorem.

Lemma 7: For and integer,

Proof: We begin by showing

Using this result, we can then also show that

and therefore

Taking the floor of both sides

where the last step follows from the fact that both and
are integers. This proves the lemma.

Theorem 7: For and integer,

Proof: Beginning at the definition of , we have:

where the last inequality was obtained using Lemma 7. Contin-
uing, a few additional algebraic steps gives us

Since , this shows that

which proves the theorem.
The proof of the second inequality parallels the development

of the proof of the first very closely. Again, a helpful lemma will
first be developed before the theorem is presented.

Lemma 8: For and integer,

Proof: We begin by observing

Using the above, we have

Taking the floor of both sides,

where the last line follows from the fact that both and are
integers. This proves the lemma.

Theorem 8: For and integer,
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Proof: Beginning at the definition of and applying
Lemma 8, we have:

Since , this shows that

which proves the theorem.
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