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Tratfic Grooming Algorithms for Reducing Electronic
Multiplexing Costs in WDM Ring Networks

Angela L. Chiu and Eytan H. Modiano

Abstract—We develop traffic grooming algorithms for uni-
directional SONET/WDM ring networks. The objective is to
assign calls to wavelengths in a way that minimizes the total cost
of electronic equipment {e.g,, the number of SONET add/drop
multiplexers (ADMs)]. We show that the general traffic grooming
problem is NP-complete. However, for some special cases we
obtain algorithms that result in a significant reduction in the
number of ADM’s. When the traffic from all nodes is destined
to a single node, and all traffic rates are the same, we obtain a
solufion that minimizes the number of ADM?’s. In the more general
case of all-to-all uniform traffic we obtain a lower bound on the
number of ADM’s required, and provide a heuristic algorithm
that performs closely to that bound. To account for more realistic
traffic scenarios, we also consider distance dependent traffic,
where the traffic load between two nodes is inversely proportional
to the distance between them, and again provide a nearly optimal
heuristic algorithm that results in substantial ADM savings.
Finally, we consider the use of a hub node, where traffic can be
switched between different wavelength, and obtain an optimal
algorithm which minimizes the number of ADM’s by efficiently
multiplexing and switching the traffic at the hub. Moreover, we
show that any solution not using a hub can be transformed into a
solution with a hub using fewer or the same number of ADM’s.

Index Terms—Add/drop multiplexers (ADM’s), optical network
design, synchronous optical network (SONET), SONET rings,
wavelength-division multiplexing (WDM).

1. INTRODUCTION

UCH of today’s physical layer network infrastructure
M is built around synchrenous optical network (SONET)
rings. Typically, a SONET ring is constructed using fiber (one
or two fiber pairs are typically used in order to provide protec-
tion} to connect SONET add drop multiplexers (ADM’s). Each
SONET ADM has the ability to separate a high rate SONET
signal into lower rate coraponents. For example, four OC-3 cir-
cuits can be multiplexed together into an OC-12 circuit and 16
OC-3’s can be nultiplexed into an QOC-48. The recent emer-
gence of wavelength-division multiplexing (WDM) technology
has resulted in the ability to support muitiple SONET rings on
a single fiber pair. Consider, for example, the SONET ring net-
work shown in Fig. 1, where each wavelength is used to form an
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OC-48 SONET ring. This network is used to provide OC-3 cir-
cuits between nodes and SONET ADM’s are used to combine
up o 16 OC-3 circuits into a single OC-48 that is carried on a
wavelength. With WDM technology providing dozens of wave-
lengths on a fiber, as many OC-48 rings can be supported per
fiber pair instead of just one. This tremendous increase in net-
work capacity, of course, comes at the expense of needing addi-
tional electronic multiplexing equipment. With the emergence
of WDM technelogy, the dominant cost component in networks
is no longer the cost of fiber but rather the cost of electronics.

The SONET/WDM architecture shown in Fig. 1 is potentially
wasteful of SONET ADM’s because every wavelength (ring)
requires a SONET ADM at every node. An alternative architec-
ture, shown in Fig. 2, makes use of WDM add drop multiplexers
(WADM’3) to reduce the number of required SONET ADM’s.
A WADM at a given node is capable of dropping and adding
any number of wavelengths at that node. ITn order for a node
to transmit or receive traffic on a wavelength, the wavelength
must be added or dropped at that node and a SONET ADM must
be used. Therefore, with a single WADM at each node it is no
longer necessary to have a SONET ADM for every wavelength
atevery node, butrather only for those wavelengths that are used
at that node. Therefore, in order to limit the number of SONET
ADM'’s used, it is better to groom traffic in such a way that all
of the traffic, to and from a node, is carried on the minimum
number of wavelengths. Notice that this is not the same as min-
imizing the total number of wavelengths used, a problem that
has received much attention recently [1].

Recent work on wavelength assignment in WDM networks
considered how to assign wavelength to calls, so that the total
number of wavelengths required is minimized [1]. The under-
lying assumption was that calls required a full wavelength. In
practice this is rarely the case. Typically, calls require a small
fraction of a wavelength and network providers use electronic
multiplexing to allow many users to share a wavelength. For ex-
ample, SONET multiplexers can be used to aggregate as many
as 16 OC-3 circuits onto a single OC-48, which in turn can be
carried on a single wavelength,

A large part of the cost in providing network services is in
the size and complexity of electronic multiplexing equipment.
There is a tradeoff between efficient use of the fiber and the elec-
tronic equipment. For example, if wavelengths were not limited,
each call can be supported on a dedicated wavelength and no
electronic multiplexing would be required. However, in most
cases, there is an insufficient number of wavelengths to support
all connections with dedicated wavelengths and electronic mul-
tiplexing is needed to allow low rate users to share wavelengths.
Hence, the network design goal is to minimize overall network
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Fig. 1. SONET/WDM rings.

costs not just the number of wavelengths. In this context, the
problem is to design traffic grooming algorithms to minimize
electronic costs at network edges and to make efficient use of
wavelengths.

In this paper we consider a unidirectional WDM ring network
with N nodes numbered 1, 2, ..., N distributed on the ring in
the clockwise direction. Each node, 7, has one WADM and I,
SONET ADM’s. Each SONET ADM is used to aggregate g low
rate circuits onto a single high-rate circuit that is carried on a
wavelength. For example, each SONET ADM can be used io
multiplex 16 OC-3’s (g = 16} or four OC-12’s (g = 4) onto a
single OC-48. The traffic requitement is for r;; low rate circuits
from node ¢ to node §, for any ¢ # §. With a WADM at a given
node, a wavelength can bypass that node if there is no traffic to
be received or transmitted from that node, which results in the
saving of a SONET ADM. The objective is to minimize the total
number of SONET ADM’s used in the network to support all of
the traffic by intelligently assigning traffic to wavelengths.

As a simple, illustrative example, consider a ring network
with four nodes. Suppose that each wavelength is used to sup-
port an OC-48 ring, and that the traffic requirement is for eight
OC-3 circuits between each pair of nodes. In this case we have
g = 16 (16 OC-3’s in an OC-48) and r;; = 8 forall ¢ # 3.
In this example we have six node pairs and the total traffic load
is equal to 48 OC-3’s or equivalently three OC-48 rings. The
question is how to assign the traffic to these three OC-48 rings

in a way that minimizes the total number of SONET ADM’s re-
quired. Consider, for example, the following two circuit assign-
ments of traffic: Assignment 1: Al: 1. — 2,3 & 4, A2: 1 &
3,2« 4, A3: 1 & 4,2 « 3; and Assignment 2: Al: 1 «
2,1-32:2-3,2—4,13:1 4,3 < 4, Since g =16
and r;; = 8 each wavelength can support all of the traffic be-
tween two pairs of nodes. With the first assignment, cach node
has some traffic on every wavelength. For example wavelength 1
carries the traffic between nodes 1 and 2 and the traffic between
nodes 3 and 4. Therefore, each node would require an ADM on
every wavelength for a total of 12 ADM’s. With the second as-
signment each wavelength contains traffic from only three nodes
and hence only nine ADM’s are needed. Notice that both assign-
ments carry the same amount of total traffic (8 OC-3"s between
each pair of nodes).

Most previous work in this area has focused on the virtual
topology design problem for known and fixed (static) traffic
patterns 2], [3]. The general problem of virtual topology de-
sign can be formulated as a mixed integer programming problem
which is known to be difficult. Heuristic algorithms have been
developed to design virtal topologies that minimize the number
of wavelengths, delays or blocking probabilities.

While the general topelogy design preblem is known to be
intractable, the traffic grooming problem is a special instance
of the virtual topology design problem for which, in certain cir-
cumstances, a solution can be found. For example, {4] considers
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Fig. 2. Using WADM'’s to reduce the number of SONET ADM’s,

traffic grooming for a bidirectional ring with uniform traffic.
In this paper we describe solutions for unidirectional rings. In
Secticn 11, we consider the simple case of an egress node from
which all of the traffic is directed and in Section III, we consider
the more general case of all-to-all uniform traffic in a ring net-
work. In Section IV, we extend our traffic model to account for
distance dependent traffic and in Section V, we consider the case
of a ring network with a hub node, where traffic can be switched
between different SONET rings vsing a SONET cross connect.
We summarize the results with remaining issues in Section VL

II. EGRESS NODE

We start by considering a very simple case of the traffic
grooming problem, where all of the traffic on the ring is
destined to a single node that we call the egress node. This case
is ‘of particular importance in access networks where traffic
from the various access nodes on the ring is all destined to the
telephone company’s central office.! In fact, in today’s access
networks most of the fraffic is destined to the central office
from where it is routed to more distant locations. Only a smatl
fraction of the traffic travels between nodes on the same access
ring. Further, the discussion of the egress node case is also
significant because it provides insight to the general traffic
grooming problem. For example, we use this case to show that
the general traffic grooming problem is NP-complere.

For simplicity of presentation, we discuss the egress node case. However,
this discussion also applies to the case of an ingress node where all the traffic
comes from one node as well as the case of a single node from and to which all
of the traffic is destined.

Egress node

Fig. 3. Unidirectional ring network with an egress node.

Denote the egress node as node 0 and assume that it lies be-
tween node N and node 1, as shown in Fig. 3.

The traffic rate between nodes ¢ and j takes on positive values
only when j =Oand¢ =1, ..., V. Since the ring is unidirec-
tional, all traffic has to go through the link between node NV and
node 0. Therefore, link (N, 0) carries the heaviest load, which
is given by Lynax = Zfil Ti0-

Hence the minimum number of wavelength required to sup-
port this load is, Winin = [Emax /g1

Without loss of generality, we can assume ;5 < g for all 1 for
the rest of this section. This is because when ;9 > g, the por-
tion of the circuits that can fill up a wavelength can be carried on
a separate wavelength without the need to be groomed together
with traffic from other nodes. That is, [r:p/g] wavelengths can
be filled with [rin/g] * g low rate circuits. The remaining cir-
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cuit can be groomed with fraffic from other nodes. Hence, the
problem is reduced to that of grooming traffic streams of rate
r;0 < ¢. The objective of the traffic grooming problem is to as-
sign circuits to wavelengths in such a way that the total number
of SONET ADM’s in the network is minimized.
We start by observing that the general traffic grooming
problem, even in this special egress node case, is NP-complete,
Theorem I: The traffic grooming problem is NP-complete.
Proof: We prove this result by showing that the Bin
Packing problem can be transformed into the traffic grooming
problem in polynomial time, Since the Bin Packing problem
is known to be NP-complete [5], the traffic grooming problem
must be NP-complete as well. First we show that there exists
an optimal solution such that no traffic from a node is split onto
two SONET rings. We prove this claim by showing that for any
solution with split traffic, there exist a corresponding solution
“without split traffic that uses the same number or fewer ADM’s.
Consider a circuit assignment that has traffic from a node split
onto two or more SONET rings. Clearly, each node with traffic
on two or more rings must have at least two ADM’s. Since
740 < g, all of the traffic from that node can be accommodated
on a separate SONET ring with two ADM’s (one at that node
and the other at the egress node), Hence, any circuit assignment
can be transformed into one where no node has traffic on more
than one ring using the same number or fewer ADM’s, Thus,
there exists a solution that minimizes the number of ADM’s
without splitting traffic from a node onto more than one ring.
For any optimal solution with no split traffic, only one ADM
is needed for each node while one ADM at each SONET ring is
needed for the egress node. Since at feast one ADM is needed at
every node, the problem is reduced to that of minimizing total
number of SONET rings used. This can be achieved by com-
bining the traffic from multiple nodes onto a single ring. This,
in fact, is the well known Bin Packing problem [3]. Specifically,
the wavelengths correspond to bins, where each bin has finite
capacity g; the r;5’s correspond to the sizes of the items to be
packed into the bins; and the goal is to minimize the number of
bins used. Hence, any solution to the traffic grcoming problem
can be used to obiain a solution to the bin packing problem in
polynomial time. Since it is known that for general g and 740’s,
the bin packing problem is NP-complete, we have shown that
the traffic grooming problem must also be NP-complete. No-
tice, also, that by showing that the traffic grooming problem
in the egress node case in NP-complete we have alsc shown
that the general traffic grooming problem with all-to-all traffic
is NP-complete. However, in the special case where all of the
40 are equal (i.e., r,p = + for all ¢) an exact solution for the
minimum number of ADM’s required and how they should be
assigned to circuits can be found.

A. Special Case: rig = v

Using the proof of Theorem 1 we know that there exists an op-
timal solution that dees not require traffic from a node to be split
onto multiple wavelengths. Since, without splitting traffic, we
can groom the traffic from at most |g/7 | nodes on one SONET
ring, the number of SONET rings needed is, W = [N/|g/7]].

Hence, the minimum number of SONET ADM’s Myin =
N + W, becaise one ADM is needed at every node (since

exactly one wavelength is dropped at each node) plus at the
egress node one ADM is needed for each wavelength (since all
wavelengths are dropped at the egress node). Note that the re-
sulting number of SONET rings may be larger than the min-
imum number of rings required (taking the case N =4, g =7,
and » = 5 as an example}. Next we provide a solution that uses
the minimum aumber of ADM’s required subject to using the
minimum number of SONET rings {or wavelengths).

B. Minimizing ADM's Subject 1o the Minimum Number of
Wavelengths

Here we require that the solution will use the minimum
number of wavelengths, W, and find an algorithm that
minimizes the number of ADM’s subject to this constraint.
Hence, the total number of ADM’s required will include Wiy,
ADM’s at the egress node (one for each ring), plus the total
number of ADM’s at all the regular nodes. Since we are now
restricted to using the minimum number of wavelengths, traffic
from a node may have to be split onto multiple rings and each
node will have one ADM for each SONET ring used to carry
its traffic. We say that a split occurs when some traffic from
a node is divided onto two rings. For example, if traffic from
a node is divided onto three rings two splits have occurred.
Clearly, for each traffic split, a new ADM is needed. Each
node needs one ADM plus an additional ADM for each traffic
$plit at that node. Hence the total number of ADM’s needed
is equal to Woin + N -+ § where S is the total number of
traffic splits over all nodes. Therefore, the minimum number of
SONET ADM’s subject to minimum number of SONET rings
is achieved by minimizing the total number of traffic splits.
Obviously, if all of the traffic can fit on the W;, rings with
no need for wraffic splitting then we have the minimum ADM
solution. For each ring with no split traffic, the maximum link
load is Lns = [g/r] # .

Let W, be the maximum number of rings containing no split
traffic, with L, circuits each. Since, the remaining (Wy,in —
W..,) rings contain at most g circuits, we have

Wns # Lo + (Wmin - VVns) * 4 > Lmax =7 N:

where Winin = [ N/g]. Therefore, the maximum number of

" rings with no split traffic is given by,

W,. = rnm{W ) [Q*Wn]in*LmaxJ}
ns — Irx Y *

g”Lns

If Wee = min then all of the traffic can be -accormnmo-
dated without any need to split traffic and the optimal solution
is found. Hence, in the following we focus on the case where
W,s < Woain. In this case not all of the traffic can be ac-
commodated without the need for traffic splitting which im-
plies that there exists at least one traffic-split. The algorithm
below assigns circuits to wavelengths in a way that minimizes
the number of traffic splits and hence the number of ADM’s.
The algorithm works for arbitrary positive integer values of g
and 7 and is not restricted to the case of r < g. The algorithm
is iterative with the following three steps.?

2The algorithm and its optimality proof were provided by Z. Tang of AT&T
Labs, 200 Laurel Ave., Middletown, NJ 07743 USA.



1) Algorithm:

Step 1:
Fill each of W = Whin rings with the
unsplit traffic from |g/r] nodes. The
remaining capacity for each of the W
rings is g1 = g — |lg/r]lr < r and the traffic
from Ny = N — |g/r]W nodes still needs
to be assigned. Notice that N; is less
than W, since the remaining unassigned
traffic, Nyr, needs to fit on the total
remaining capacity, mW.

Step 2
Fill the remaining capacity g¢; of each
of Ny rings by the traffic from each of
the remaining N{ nodes. The remaining
traffic of each of N; nodes becomes
TL=¥Fr —4§1.

Step 3:
Now, there are Wi, = W — N; rings that
each has capacity g; left, and N; nodes
that each has traffic 7y left. Update
W =W, g = g5, N =N, and r := n
and repeat Steps 1-3 until the traffic
from all nodes has been assigned (i.e.,
= 0).

2) Example—N =5, r=35,g=9,and W = 3: Instep 1,
we fill each of three rings with |9/53] = 1 node’s traffic. A ca-
pacity of four remains for each ring and the traffic of two nodes
has not yet been assigned. In step 2, we fill up all remaining
capacity of two rings by the traffic from each of two nodes left
over. There is only one ring left with capacity of four and a single
circuit from each of two nodes remains to be assigned. In step 3,
we assign those two circuits to the ring with remaining capacity.
The total number of traffic-splits resulted is two.

In order to prove the optimality of the above algorithm, we
start by showing that there always exists an optimal solution
that uses steps 1 and 2 of the algorithm. First, we show that
there always exists an optimal solution such that each of W
rings is assigned all of the traffic {rom | g/r | nodes without split-
ting (step 1). To see this consider an optimal soluticn such that
there is one ring, say ring 1, whose unsplit traffic is from fewer
than | g/r| nodes. By assumption, there exists at least one node
whose traffic is split, say node 1. We can swap node 1’s traffic
assigned to rings other than ring 1 with some split traffic as-
signed to ring 1 such that all node 1’s traffic is onring 1. Clearly,
such swapping will not increase the number of traffic-splits and
hence maintain the optimality of the traffic assignment. We can
repeal this process until each ring is assigned unsplit traffic from
Lg/7] nodes. Notice that | g/r] is also the maximum number of
nades whose traffic can be assigned to a ring without splitting.

Next, we also show that there exists an optimal solution such
that all traffic from |g/»| nodes is assigned without splitting
to each ring, and each of the remaining Ny = N — |g/r|W
nodes have their traffic assigned to the remaining capacity of a
ring in a one node to one ring fashion with N7 < W. That is,
the remaining capacity of each of N7 = N — |g/r|W rings
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is filled with traffic {from exactly one node (step 2). To see this
consider an optimal solution where each of the W rings takes all
traffic from | ¢g/r| nodes (without splitting the traffic) and one
ring has its remaining capacity, g. = ¢ — |g/r]r < r, filled
with split traffic from more than one node, say nodes 1, 2. We
can swap node 2’s traffic assigned to this ring with node 1°s
traffic assigned to other rings, and repeat this process for cases
with more than two nodes, until all the split traffic of this ring
is from node 1 only. Clearly, this swapping will not increase the
number of traffic splits and hence maintain the optimality of the
traffic assignment. This process can be repeated until the all the
remaining capacity of Ny = N — |g/r| W rings is filled by the
wraffic from each of the N1 = N — |g/r|W nodes.

Since the algorithm repeatedly uses steps 1 and 2 until all
traffic has been assigned, it results in the minimum number of
traffic splits. This is because after steps 1 and 2, we are left with
Ny = N — |g/r|W nodeseach with r; = v — ¢ traffic 1o be
assigned and W = W — N rings each with remaining capacity
g = ¢ — |g/r]r. Assigning the traffic from these Ny nodes to
the W) wavelength using steps 1 and 2 of the algorithm will,
again, resuit in the minimum number of traffic splits. Clearly,
repeating this process until all traffic has been assigned will re-
sult in an optimal solution.

Next, we consider the more general case of a ring network
with traffic between all node pairs.

III. ALL-TO-ALL UNIFORM TRAFFIC

In this section, we consider the more general case of all-to-all
traffic in the ring. Since the solution to the general problem
is NP-complete, we consider a more limited case of uniform
traffic. That is, r;; = r forall ¢ # j, where r is some positive in-
teger representing the number of low rate circuits between each
pair of nodes. Again, the traffic granularity, ¢, is equal to the
number of low rate circuits that can fit on a single SONET ring
(or wavelength), An interesting observation that significantly
simplifies the solution for unidirectional rings is that the routing
problem is eliminated. All circuits travel in the same direction,
and as long as traffic is symmetric (i.e., r;; = r;; for all ¢, 7),
alt links carry an equal load. This is in contrast to a bidirectional
ring where link loads depend on how calls are routed.

We begin with a few definitions that will help our discussion.
Let the node load be the number of low rate circuits originating
or terminating at a node, then Ly = (N — 1)r. Let the link
load be the number of low rate circuits traversing a link. Clearly,
L= N(N — 1)r/2, because there are N{N — 1)/2 node pairs
each with r circuits between each pair. Now, a lower bound on
the number of ADM’s needed is given by M > [Lg/g]N. This
number is simply the minimum number of wavelengths required
to carry the traffic to and from a node multiplied by the number
of nodes (since each wavelength dropped at a node requires an
ADM). A tighter lower bound is provided in the next section.
The minimum number of wavelengths required to carry all of
the traffic in the network is equal to the link load divided by g,
i.e., Wpin = [L/g]. This minimum can be achieved by drop-
ping every wavelengths at every node and would require Wi,
ADM’s at each node yielding an upper bound on the minimum
number of ADM’s, hence, My, < Whin ¥ N
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Similarly, an upper bound on the number of wavelengths used
is obtained by using dedicated wavelengths between each pair
of nodes. With this approach, [r/g]| wavelengths will be needed
for each pair of nodes and the total number of wavelengths
would be W, = [r/g] N(N — 1)/2, and the corresponding
number of ADM’s, M = 2W ..., which is another upperbound
on Min. Notice that when ¢ = 1 both the upper and lower
bounds on the number of ADM’s are equal to v N (N — 1) and,
therefore the solution is optimal.

A. Minimizing the Number of Wavelengths and ADM's
Simultaneously

In this section, we show that it is not always possible to
minimize both the number of wavelengths and the number of
ADM’s. Although the cost of electronics dominates network
costs, in order to minimize network costs, one would like to
find a solution that minimizes both the number of wavelengths
used and the number of SONET ADM’s. The example below
shows that this may not always be possible. Hence, for the
remainder of this paper we focus only on minimizing the
namber of ADM’s.

1) Example: In this example, a solution that uses both the
minimum number of wavelengths ang the minimum number of
ADM’s does not exist.

This example is of a ring with five nodes (N = 5), three
circuits between every pair of nodes (» = 3) and granularity of
four (g = 4) (i.e., OC-12’s on an OC-48 ring). Note that with
this example the link load L = 30 and the minimum number of
wavelengths W, = 8.

First we show that there is a solution that uses only 20 ADM’s
and then we show that any solution that uses only eight wave-
lengths has to use more than 20 ADM’s. With five nodes there
are ten node pairs and the traffic between each pair can be sup-
ported on a single wavelength requiring two ADM’s per wave-
length or a total of 20 ADM’s. Now, any solution using only
eight wavelength would have at least six of them full (contain
four circuits). In order to fill a wavelength with four circuits at
least three nodes would have to be on that wavelengths. There-
fore, each of the six full wavelength requires three ADM’s. In
addition, the remaining two wavelengths must have at least two
nodes and, thus, two ADM’s on each wavelength. Hence, the
minimum number of ADM’s needed for an eight wavelength
solution is 22, So we have shown that a minimum ADM so-
lution that uses the minimum number of wavelength does not
always exist. However, in many cases a solution using both the
minimum number of wavelengths and ADM’s can be found. In
particular, we have the following conjecture:

2) Conjecture: For v = 1 (i.e., one circuit per source/des-
tination pair) and uniform traffic, the minimum number of
ADM’s can be achieved with the minimum number of wave-
lengths.

While we are unable to prove this conjecture it appears to
hold for all of the cases that we studied. For the remainder of
this section we focus on the special case of » = 1. We begin
with the derivation of a lower bound on the number of ADM’s.

B. Lower Bound on Number of ADM’s (r = 1)

We obtain a lower bound on the number of ADM’s by finding
the most efficient ways to carry traffic between nodes on the
same wavelength, That is, we determine the maximum average
number of circuits that can be supported by an ADM, and use
that number to lower bound the number of ADM’s required in
the network, In this section we restrict our discussion to the case
of r = 1, however our approach can be generalized to other
values of 7 (for example, see Section IV on distance dependent
traffic), For a given wavelength, with » nodes (and n ADM’s),
we classify the traffic into two classes. In the first class, which
we call “all-to-all traffic” a circuit is set-up between every pair
of nodes. With n nodes on the wavelength, the total number of
cireuits is n(n — 1)/2 using n ADM’s. Since at most g circuits
can be supported on a wavelength, n(n—1) /2, must be less than
or equal to g. In the second class, which we call “cross traffic,”
the nodes on the wavelength are divided into two groups of size
ny and no where ny + ne = n, and a circuit is set-up between
every node in one group and every node in the other group. For
“cross traffic” the link load is 71 * ng, and again this load must
be less than or equal to g, For a given value of n, the link load
is maximized when n; = |n/2]. Note that with all-to-all traffic
among a group of nodes all of the circuits between members of
those groups are established. While with cross traffic, only those
circuits between members of the two groups are established but
circuits between the nodes within each individual group remain
unassigned.

Also notice that for a given number of ADM’s, “all-to-all
traffic” assignments can carry more circuits than “cross traffic”
assignments. This is because with cross traffic on average ap-
proximately n/4 circuits are supported per ADM while with
all-to-all traffic on average (n — 1)/2 circuits are supported per
ADM. For particular values of g, this concept can be used to
generate a lower bound on the number of ADM’s. For example,
we demonstrate this approach for obtaining a lower bound when
g =4 and g = 16. ‘

1) Example—g = 4 (e.g., OC-12 Circuits on an 0C-48
Ring}: It can be shown that with ¢ = 4 the most efficient
circuit assignment requires 1 ADM per circuit. There are three
ways in which circuits can be assigned to wavelengths requiring
one ADM per circuit:

1) three nodes per wavelength with all-to-all traffic among the
nodes, for a link load of three using three ADM’s;

2) four nodes with cross traffic between pairs of nodes, for a
link load of four using four ADM’s;

3) four nodés with all-to-all traffic among three nodes and cross
traffic between the fourth node and one of the three nodes,
for a link load of four using four ADM’s.

In all three cases, we can support one circuit per ADM on
average. Notice, that due to the maximum link load of four cir-

* cuits per wavelength, many assignments are not possible. For

example, all-to-all traffic among four nodes results in a link load
of six which cannot be supported on a single wavelength. It can
be easily determined that many other assignments can be more
efficient, Hence, no matter how circuits are assigned, we need at



least one ADM per circuit, leading to the following lower bound
on the number of ADM’s:

LB(g = 4) = (total link load L circuits)/
(1 ADM/cireuit) = N(N — 1)/2.

2) Example—g = 16 (e.g., OC-3 Circuits on an OC-48
Ring): It can be shown that the most efficient way to assign
nodes and circuits to a ring is six nodes with all-to-all traffic
between them. This results in a link load of 15 circuits using six
ADM’s and a utilization of 2.5 circuits per ADM. Alternatively,
eight nodes can be assigned to a ring with cross traffic between
two groups of four nodes resulting in a link load of 16 circuits
using eight ADM’s or an efficiency of two circuits per ADM.
Since the maximum efficiency that can be achieved is 2.5
circuits per ADM, an immediate lower bound on the number
of ADM’s is, LB(g = 16) = [L/2.5] where L is the total
link load and is equal to N(N — 1)/2. This bound can be
made slightly tighter by poticing that there is only a limited
number of wavelengths that can be filled with all-to-all traffic
and that some wavelengths will have to carry cross traffic. For
brevity, the details of the tighter bound are omitted. Similarly,
this approach can be extended to obtain lower bounds for other
values of g. Next we discuss heuristic algorithms that attempt
to assign circuits to rings in order to minimize the number of
ADM'’s required.

C. First Heuristic Algorithm

This algorithm attempts to maximize the number of nodes
that only require one ADM, then of the remaining nodes
maximize the number of nodes with two ADM’s and so on.
A node needs & ADM’s if it is on & wavelengths. Let, M,
be the number of nodes with & ADM’'s (k = 1 to Wia).
Then, the algorithms maximizes M, then maximizes M, .. .,
maximizes My, min —1. Clearly, the motivation of the algorithm
is that by maximizing the number of nodes that use fewer
ADM’s we ultimately reduce the total number of ADM’s used.
It can be shown that Mi, 1 =1, 2, ..., Wiin, is given by

2

h=0to H
M.

M; = max {H s.t.

-2

k=ltoi—1

(Nl—h,)gi*g}

The algorithm fills each wavelength before assigning traffic to
a new wavelength, hence it always uses the minimum number
of wavelengths W,,;, and Is optimal for Wy,;,, < 2. For cases
where W;, > 2, the algorithm is not necessarily optimal.
This is because by maximizing the number of nodes with only
a single ADM, the algorithim forces all other nodes to use their
ADM’s inefficiently. However, the algorithm results in substan-
tial savings over a system where all wavelengths are dropped at
all nodes as would be the case if no WADM’s were used. The
next algorithm, however, results in much more substantial sav-
ings in ADM’s.
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D. Second Heuristic Algorithm

This algorithm attempts to assign nodes to wavelength
by efficiently packing the wavelengths. The algorithm is as
follows:

Letn = |,/g] and divide N into G = [N/n] groups of
nodes, where the last group has only n; = (V mod n) nodes.
We assign different pairs of groups to each wavelength with
cross traffic between the two groups. By design, the cross traffic
between two groups of size 2 = | /7] is less than g cirevits and
can fit on a wavelength. In order 10 accommodate all of the cross
traffic between the G groups a total of G(G — 1) /2 wavelengths
are needed. The remaining traffic is the all-to-all traffic within
each group and is fit on the existing wavelengths if possible,
otherwise on additional wavelengths, We illustrate the idea with
the following two examples.

1) Example—y = 4 (0C-12"s on an OC-48 Ring): Since
g = 4 we divide the N nodes into groups of 2 and have the
following two cases.

a) N even=> G = Nf2: G(G — 1)/2 wavelengths can
be filled with cross traffic between different pairs of groups.
The all-to-all raffic would require additional [G/4] = [N/8]
wavelengths with four groups on each wavelength. Hence, each
node requires G = N/2 ADM’s for a total of N2/2. ADM’s.

b) Nodd => G = (N +1)/2; The first G — 1 =
(N — 1)/2 groups have two nodes and the last group has only
one nede. {G — 1)(G — 2)/2 wavelengths can be filled with
cross traffic between different pair of groups from the first G—1
groups. An additional [(G — 1)/2] wavelengths can be used
for cross-traffic with the node from the last group, where each
wavelength has two groups (four nodes) from the first (G — 1)
groups and the node from the last group. If one of the wave-
length in the previous step is not full [i.e., (G — 1)/2 is not an
integer], it can be used for the all-to-all traffic within two of the
first G—1 groups. The remaining all-to-all traffic can be handled
by assigning four groups to each wavelength. So the number of
ADM’s at each node is G = (N 4+ 1) /2 except for the last node
which uses [(G — 1)/2] = [(N — 1)/4] ADM’s. Hence, the
total number of ADM’s used when & is odd equals

(N=1)(N+1)/2+[(N-1)/4] = (N*=1)/2+ (N -1)/4].

Patting it all together the total number of ADM’s required with
g=4Iis '

ADM(g =4) =(N —1mod2) + N?/2 + (N mod 2)
#((N? =1)/2 + [(N = 1)/4]).

In both cases, since all the wavelengths except the last one
are filled with four circuits, the resulting assignment only uses
Winin wavelengths. However, for general g, the algorithm may
result in number of wavelengths that is slightly larger than
Wnlin-

2) Example—g = 16 (0C-3"s on an OC-48 Ring): Since
g = 16 we divide the NV nodes into groups of four. So we have
G= [N/4] groups where Gy = [N/47 of the groups have



CHIU AND MODIANO: TRAFFIC GROOMING ALGORITHMS IN WDM RING NETWORKS 9
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Fig. 4. Comparison of heuristic algorithms (g = 16, » = 1).

n = 4 nodes each and (G — ) group has ny =
nodes. We have the following three cases.

a) iy = (Nmod4) =0 => G = G = N/4: In this
case, G{(Z — 1)/2 wavelengths can be filled with cross traffic
between different pair of groups. The all-to-all traffic within the
groups can be handled by assigning two groups o each wave-
length with all-to-all traffic within each group. Hence, each node
has exactly G ADM’s for a total of NG = N2/4 ADM’s.

b) 1 = (Nmodd) = 1or2 => G = [N/4], Gy =
[ N/4}: In this case, Go(Go — 1)/2 wavelengths can be filled
~ with cross traffic between different pair of groups from the first
(g groups. An additional &g wavelength can be used to handle
the cross traffic between each of the first ¢y groups and the last
group. Those wavelengths can also be used to carry the all-to-all
traffic within each group. This resulis in link load of (4 + 3/2 +
2%1/244+2 =15)ifn; =20r(d*x3/2+4x1 = 10)
if ny = 1. So each node uses exactly Go ADM’s for a total
NGy = N|N/4] ADM’s.

c)n = (Nmodd) = 3 => G = [N/4], Gy =
[ ¥/4]: It can be shown, in a manner similar to that of the first
two cases, that the total number of ADM’s needed in this case is
equal to NGo+ N —2— | N/4| = N|N/4|+ N -2 | N/4].
Putting the three cases together we have

(N mod 4)

ADM(g = 16) = max{N, N|N/4]| + (N — 2 - |[N/4])
# [(Nmodd)/3]}.

E. Performance Comparison

In Fig. 4 we plot the number of ADM’s versus the number
of nodes on the WDM ring for g = 16 (OC-3 circuits on an
OC-48 ring). Plotted in the figure are the lower bound, the
number of ADM’s used by the first and second heuristic
aigorithms, the number of ADM’s that would be used if
all wavelengths were dropped at every node (no grooming)

17
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Fig. 5. Percent ADM savings due to grooming.

and lastly, the best solution that we have been able to find
via exhaustive search. As one can see from the figure, the
result of the second heuristic algorithm are very close to the
lower bound and almost mirror the best solution. In Fig. 5,
we plot the percentage of ADM savings that can be achieved
using the second heuristic algorithm over dropping all of the
wavelengths at every node. As one can see from the figure,
the most savings are achieved when g = 1. This, in fact, is
a trivial case because each wavelength can only carry the
traffic between two nodes and, hence, should only be dropped
at those two nodes. It is interesting to note, however, that
in general it appears that greater savings can be achieved
with smaller values of g. This is due to the fact that when
g is small each wavelength can be filled with traffic from
just a few nodes while when g is large it takes traffic from
many nodes to fill a wavelength.
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IV. DISTANCE DEPENDENT TRAFFIC

So far in this paper, we considered only uniform and hubbed
traffic models. While, admittedly, those traffic models are often
unrealistic, they proved very useful in providing analytically
tractable and insightful results. In order to account for more re-
alistic traffic, in this section we consider the distance depen-
dent traffic model from [4]. In this model, the amourit of traffic
between two nodes is inversely related to the physical distance
separating them. So that the amount of traffic between the most
distant nodes is one unit of traffic and the traffic demand in-
creases by one unif as the distance between nodes decreases by
one link. For nodes arranged in a ring topology, we take the
internode distance to be that which would result when using
shortest path routing (if the ring were bidirectional).? Thus, the
traffic demand between nodes  and j would be T} ; = [(N +
1)/2] - distance(s, j) ¥i # j and 0ifi = j. An example of
a distance dependent traffic matrix with 4 nodes is shown in
Table L.

With this traffic model, the total number of 01rcu1ts (traffic
units) is given by (for NV odd), 2N Zt”(N_ )2 = N{N2% -
1)/4. Accounting for the fact that traffic between a pair of nodes
is symmetric and can be supported on the same circuit, the total
number of circuits required, L, is N(N?—1)/8, Similarly, when
N is even, the total number of circuits required is N (N 249N —

4)/8.

A. Bounds on the Number of ADM's

Unfortunately, with this traffic model, we are no longer able
to obtain closed form expressions for the minimum number of
ADM’s required. However, we can still obtain some simple
bounds and a heuristic algorithm that performs relatively well
compared to those bounds. These bounds are a straightforward
extension of the hounds derived in Section IIL. First observe
that as before, the minimum number of wavelengths required a
is equal to the number of circuits divided by g, and that without
any grooming each of these wavelengths would have to be
dropped at every node. This remains our upper limit on the
number of ADM’s needed, i.e., N[L/g]. A sometimes tighter
upper-bound can be obtained by placing the traffic between
nodes on dedicated wavelengths, so that each wavelength
carries traffic between two nodes only, This bound becomes
tight when the traffic between nodes is relatively large and
approaches or exceeds g. With the distance dependent traffic
model, this bound becomes particularly useful. Also, an
obvious lower bound can be obtained by realizing that each
wavelength can at most carry ¢ circuits and has at least 2
ADM’s. Hence, at most g/2 circuits can be supported per
ADM and a lower bound on the humber of ADM’s is the total
number of circuits divided by g/2, i.e., [2L/g].

The lower bound above assumed that all of the ADM’s are
used in the most efficient way possible. However, not all the cir-
cuits between all pairs of nodes can be supported in such way.
For example when g = 4, if there are only three circuits be-
tween a pair of nodes, the associated efficiency is 1.5 circuit per

3Although shortest path routing would not be possible in a unidirectional ring,
the traffic demand between two nodes is stifl cotrelated to the shortest path dis-
tance,
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TABLE 1
DISTANCE DEPENDENT TRAFFIC MATRIX
WITH 4 NODES
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ADM, which is the next most efficient way in which ADM’s
can be used. So to improve the lower bound, we need to find
out the maximum number of circuits that can be supported in
the most efficient way with average of two circuits per ADM,
Then a tighter lower bound can be found by assuming that the
remaining circuits are packed in the next most efficient way
with average of 1.5 circuits per ADM. Let C(N} be the max-
imum number of circuits between two nodes. By definition of
the distance dependent traffic, for N > 3,C({N) = |[N/2].
Next, let P(k} be number of node pairs with & circuits be-
tween them, for £k = 1,2, ..., C({N). Again based on the
definition of the distance dependent traffic, P(k) = N for
k< C(N), P(C(N)) = N/2if N is even, and N otherwise.
Now, Mo, the maximum number of ADM’s that can be used
in the most efficient wa¥ (supporting two circuits per ADM), is
given by Mo = 2 |k/4] % P(k). Finally, the rest of
the circuits will be asmgned with at most 1.5 circuits per ADM,
leading to the improved lower bound for g = 4.

LB(g=4)= My + (L ~ 2% My)/1.5).

B. Heuristic Algorithm

We now use a simple “greedy” algorithm for assigning traffic
to wavelengths. The algorithm starts with wavelengih 1 and
node 1 and assigns as much tratfic between nodes 1 and the
other nodes (visited in sequential order). At each step, the al-
gorithm first attempts to assign traffic to the wavelength using
nodes that are already assigned to that wavelength. If that is not
possible, the algorithm will add a new node to the wavelength if
it can assign traftic between the new node and an existing node
already on that wavelength. If traffic cannot be assigned by the
addition of just one node, then the algorithm will start with a
new wavelength.

Algorithm
Start with wavelength 1 and node 1 as-
gigned to it.
Assign traffic to wavelength 4 by vis-
iting nodes in order as follows:
a) If possible, assign traffic among
nodes already assigned to wavelength i.
b) Otherwise, if there exists a node
that is not already assigned to wave-
length i and that has traffic to a node
already on wavelength ¢, add that node
to wavelength i (when multiple such
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nodes exist,
order) .

If wavelength ¢ is full or if it is not
possible to assign new traffic by just

adding a single node then start with a

new wavelength.

they can be visited in

The above algorithm does not attempt to pack the traffic in a
particularly efficient way but rather visits the nodes in order and
assigns the traffic on a first-fit basis. As an illustrative example
consider the traffic matrix of Table 1 with g = 4 (up to four cir-
cuits per wavelength). Start with the first wavelength and assign
io it the traffic between nodes 1 and 2 and nodes 1 and 3 and one
circuit between 2 and 3. Assign to wavelength 2 the traffic be-
tween 1 and 4 and the traffic between nodes 2—4. Finally, assign
the remaining traffic between nedes 2 and 3 and the traffic be-
tween 3 and 4 to wavelength 3. The resulting assignment would
then be: A1: 1-2, 1-3, 2-3 (1); A2: 14 (1), 2—4; A3: 2-3 (1),
3—4. Small improvements to the algorithms can be obtained by
packing circuits more cleverly. For example, on A1, instead of
putting the traffic between 1-3 and one circuit between 2-3, we
could have assigned the circuits between 1-4 to Al and placed
the circuit between 1-3 on a separate wavelength, This minor
improvement could result in a savings of one ADM (although
in this example it does not result in any savings).

Fig. 6 shiows the number of ADM’s needed for the distance
dependent traffic with &G = 4 (OC-12 circuits on an OC-48
ring), using the above algorithm. As can be seen from the figure,
the algorithm performs somewhere between the upper and lower
bounds and results in significant improvement over having to
drop all wavelengths at all nodes. As the number of nodes in-
creases the relative amount of ADM savings also increases. This
is due to the fact that with this traffic matrix, as the number of
nodes increase, so does the amount of traffic between nodes.
As the amount of traffic between nodes increases, significant
savings are obtained because traffic between pairs of nodes can
often be assigned dedicated wavelengths.

V. USING A HUB WITH A SONET CRroSss CONNECT

Here we allow one node io have a SONET cross-connect, say
node N, and we require that the cross-connect be present on
every wavelength, so that ali of the traffic can be routed through
it if needed. We denote this node as a hub. The hub can take
a circuit from one SONET ring and switch it to another ring.
Again, we focus on the case with all-to-all uniform traffic where
ri; = r forall ¢ # j, and we assume that Ly = r(N - 1) < ¢
(i.e., all of the traffic to and from a node can be carried on one
wavelength),

Theorem 2: The optimal solution with one hub is either as
good as or better than the optimal solution not using a hub in
terms of minimizing the total number of ADM’s.

Theorem 2 states that if we require the hub to be present on
every wavelength, the resulting number of ADM’s is not in-
creased. While it may appear that the addition of a hub node
should not result in any additional ADM?’s, it is not at all ob-
vious that fercing the hub to be on every wavelength does not
require additional ADM’s. The following proof shows by con-

ADM requirements with distance dependent traffic
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Fig. 6. ADM requirement for distance dependent traffic (g = 4),

struction that this is indeed the case, and in faci, the use of a hub
often results in significant ADM savings.

Proof: Letnode N be the hub node and consider any solu-
tion where node NV is not on every wavelength, there exists a cor-
responding solution with the hub on every wavelength using the
same or fewer ADM’s. Since the hub node is also a regular node,
every node has traffic going from and to the hub. Therefore each
of the nodes on those wavelength{s} without the hub must have
at least two ADM’s (one on some wavelength without the hub
and one on some wavelength with the hub). Since the traffic
from each node can be carried on a separate wavelength through
the hub using just two ADM’s, any assignment not using the hub
can be transformed into an assignment with the hub present on
every wavelength using no additional ADM’s. Of course, this
solution may not use the minimum number of wavelengths. A
further reduction in the number of ADM’s can be obtained by
packing the wavelengths optimally as we show next for the case
ofr =1L

A. Optimal Algorithm whenr = land Ly =N — 1< ¢

With the same argument as used for the egress node case, it
can be shown that there exists a minimum ADM solution such
that no traffic to and from a node is split onte two rings. This
means that only one ADM is needed for every node except the
hub, which has W ADM’s, where W is the number of wave-
lengths used. This reduces the problem to minimizing W, which
is equivalent to maximizing the number of nodes carried on a
wavelength. Let & be the maximum number of nodes on a wave-
length (including the hub node), then each wavelength with K
nodes needs to carry two types of traffic. All-to-all traffic within
the K nodes that does not need to go through the hub, of which
there are K (K — 1)/2 circuits; and cross traffic between the
K —1 (excluding the hub) nodes and the remaining N — K nodes
not on the same wavelengths of which there are (K —1)(N - K)
circuits. This combined traffic load must be less than or equal
to g, hence, K(K —1)/2+ (K — 1)(N — K) must be less than
or equal te ¢g. Expanding this expression and using the quadratic
formula we obtain

P 1 \/4N2—4N—89+1J

N4+ -
+2 2
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It can be shown that as long as K is less than N (K = N
corresponds to the case of W = 1 where all the traffic can
be carried on one wavelength), the above expression yields a
real value for K, The corresponding number of wavelength is
W = [{N — 1)/{K — 1)] and the corresponding number of
ADM's M = [(N —1)/(K — 1)] + N — 1, which is optimal.

VI. CONCLUSION

This paper studies the problem of assigning circuits to
wavelengths with the objective of minimizing the cost of
electronic multiplexing equipment. In particular, we consider
the special case of SONET/WDM unidirectional ring networks,
and attempt to minimize the number of SONET ADM’s. While
we show that the general problem is NP-complete, we are able
to obtain encouraging results for some special cases where
circuit rates are the same. In particular, in the case of an egress
node we obtain the solution that minimizes the number of
ADM’s as well as a solution that minimizes the number of
ADM'’s subject to using the minimum number of wavelengths.
For all-to-all uniform traffic, and distance dependent traffic,
we obtain a lower bounds on the number of ADM’s and simple
heuristic algorithms that perform close to the bounds.

We were also able to make a number of interesting obser-
vations and conjectures that provide insight into the traffic
grooming problem, For example, we were able to show that it
is not always possible to minimize both the number of ADM’s
and the number of wavelengths simultaneously. We conjecture,
however, that when » = 1 such a solution can be found.

Finally, we consider the use of a hub node where traffic can
be switched between SONET rings and show that, for the case
where all of the traffic to and from a node can be carried on a
single wavelength, a solution using a hub node always requires
fewer or the same number of ADM’s compared to a solution not
using a hub node. We also cbtain the optimal solution using a
hub node and the corresponding minimum number of ADM’s.

Yet, the work of this paper is preliminary and considers only
a select number of special cases. Many interesting problems re-
main to be solved. For example, we still need to find the op-
timal solution and the optimal algorithm in the all-to-all uniform
traffic case. Also, the benefits of using one or more hubs with a
cross-connect require further study.
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