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Abstract

Isospin is an approximate symmetry which treats the up and down quarks
as different eigenstates of the same particle. The mathematical structure for
describing the isospin of a system is identical to that of angular momentum.
We explore the implications of isospin. Specifically, we use isospin to predict
the ratios of cross-sections in pion-nucleon scattering with incredible accuracy.
We also derive the Gell-Mann–Okubo formula for baryons, 2(mN + mΞ) =
3mΛ + mΣ, which correctly predicts the mΛ mass within 1%. This method of
developing spurious symmetries is a powerful tool in quantum field theory.

1 Introduction and Motivation

Hadrons are particles comprised of quarks and governed primarily by the strong,

or “hadronic” force. If we have a system of hadrons, then our overall Hamiltonian

is H = H0
strong + H′

other, where H0
strong is due to the strong interactions—the main

governing force for quarks and nuclei. H′
other is a perturbative term that takes into

account all of the other forces affecting our system. For instance, the Coulomb energy

of the system is in this term because the strong force is independent of electromagnetic

charge, and the electromagnetic force is about 105 times weaker than the strong force.

H0
strong itself can be broken up into symmetry-preserving and symmetry-breaking

components, as we will see in §6. The symmetries we’ll be studying are based on
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treating different quarks as different eigenstates of the same particle, rather than as

different particles themselves. These will be approximate symmetries; our goal is to

get a feel for how good the approximation is. We know that perturbation theory is

good when the perturbing factor is small compared to H0. In our case, the relevant

energy scale is ΛQCD ≈ 500MeV∗, and the perturbative energies will be the differences

in quark masses, as discussed in §§2.1.[3]
Once we’ve developed the basic particle physics background we’ll need, we’ll see

how isospin—an approximate symmetry which holds with respect to H0
strong—can be

used to accurately predict scattering cross-sections for pion-nucleon scattering. We’ll

then expand our model to include three quarks instead of only two. We will derive the

Gell-Mann–Okubo formula, which provides an extremely good approximate relation

between baryon masses.

2 Some Introductory Particle Physics

2.1 Quarks

As mentioned in §1, quarks are the elementary particles that make up hadrons. We’ll

only concern ourselves with the three lightest quarks in this paper, but for complete-

ness, all six are summarized in Table 1. Quarks can combine to make two kinds

of hadrons that we will consider in this paper. The first is the baryon, which is a

bound system of three quarks, such as the proton. The second is the meson, which

is a bound quark-antiquark pair, such as a kaon. Everyday matter is made up of

baryons comprised of up and down quarks, that is, protons and neutrons. Particles

composed of heavier quarks are much less stable because a much higher energy is re-

quired to keep them intact. Quarks are confined to hadrons, so unlike leptons—such

as electrons and neutrinos—they are not observable as independent physical entities.

Determining their masses is therefore much more a matter of applying theories than

taking direct measurements. Methods similar to those used in §6 have been used to

put limits on the masses of the lighter quarks. [8]

∗Hadrons are typically of size ∼ Λ−1
QCD
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Flavor Symbol ≈Mass in MeV

up |u〉 4.2

down |d〉 7.5

strange |s〉 150

charm |c〉 1500

bottom |b〉 4700

top |t〉 176000

Table 1: Speculated quark masses.[8]

2.2 Internal Quantum Numbers

The typical 8.06 student is used to dealing with external quantum numbers, like n, �,

and m in Hydrogen. External quantum numbers can change—electrons in the same

atom, for instance, cannot have the same set of numbers. Internal quantum numbers,

on the other hand, correspond to properties inherent to the particle in question; they

help us identify and label the particle. For instance, the total spin of an electron

is always 1
2
, but the z-component can change. The total spin of the electron is an

internal quantum number, but the z-component is external.

“Good” internal quantum numbers are conserved in all interactions. The elec-

tromagnetic charge Q is a “good” example of this; an interaction in which the total

charge of the system has changed has never been observed. Many quantum numbers

simply count useful quantities. For instance, the baryon number B is always con-

served. Baryons get a baryon number of +1, while antibaryons get a baryon number

of −1; everything else has B = 0. Another way of thinking of this is to say that

every quark has a baryon number of +1/3, while antiquarks have a baryon number

of −1/3. S, or strangeness, is similar, but instead counts the number of strange

quarks—in units† of −1/3. Strangeness is a “mostly good” quantum number; it is

conserved in all interactions except for ones governed by the weak force.‡ As we will

see in §5, the hypercharge Y ≡ B + S of a particle will be more useful than talking

about just the particle’s strangeness. As for antimatter, a particle has the same mass

as its antiparticle, but opposite quantum numbers. For instance, |ū〉 has the same

mass as |u〉, but a Q = −2/3, B = −1/3, and S = 0. (The bar in |ū〉 notes that this
†An unfortunate remnant of history
‡We observed this when we studied kaon decay in 8.05.
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is the antiparticle.)[2, 4]

2.3 Invariance

The concept of symmetry is crucial to physics. When we say something is symmetric,

we mean that it it doesn’t change under a transformation. There is a famous theorem

by Noether that states that there is an inherent connection between transformations

(and thus symmetries) and conservation laws. Applied to physics, this is the basis

for conservation of momentum, which arises from the fact that the origin for our

coordinates and the directions of our axes are arbitrary—we can transform the system

by translating or rotating it, but the physics is still the same. Similarly, an abitrary

time t = 0 point leads to a conservation of energy. Charge conservation is due to

gauge transformations; our zero-point of A or φ is arbitrary because we can alter both

expressions with an aribitrary f(�x, t) without changing the physics of the system. [1]

We can also talk about transformations in eigenspace. Suppose we have a two-

state system, |↑〉 and |↓〉. We know that any 2×2 Hermitian operator can be written,

in matrix form, as Â = a0I + a1σ1 + a2σ2 + a3σ3 = a0I + �a · �σ. The generators

for this matrix, the Pauli matrices σi are said to be generators for SU2; with the

identity I, they form a basis for Hermitian 2 × 2 matrices. (SUn, sometimes written

as SU(n), means Special Unitary group in n dimensions—the n here is the same n

in the n× n matrices/n-state system we’re talking about. The “special” means that

they have determinant 1. As far as the “unitary” is concerned, remember that for

any Hermitian operator A, eiA is unitary.) It is very easy here to use the language

of rotations because SU2 also describes rotations in three-dimensional space. For

instance, our system might be invariant under a rotation of |↑〉 to |↓〉, by which we

mean that if we exchange all of our |↑〉 with |↓〉, then the physics our equations

describe is the same as before the transformation—it is symmetric. If we increase n

such that we have a 3 or 4 state system, the language is the same, but our math is

a little messier because we are then dealing with the 3 or 4 dimensional analogues of

the Pauli matrices. We will also find that a system with a greater number of states

is much less likely to be invariant under transformations.
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3 Isospin and SU2

As you can tell by glancing at Table 1, the masses of the up and down quarks are

both very small and very close to one another, relative to ΛQCD ≈ 500MeV. Because

of this, we can then describe them as if they are different eigenstates of the same

particle, but with different isospin. As the name suggests, this is analogous to spin.

Let us say we have an isospinor �I ≡ (I1, I2, I3). Like with angular momentum, the

algebra of this system is described by

[Îk, Îl] = iεklmÎm. (1)

|u〉 has an isospin of +1/2, that is, I3 |u〉 = 1
2
|u〉, while I3 |d〉 = −1

2
|d〉. Another way

of writing this is

Î3 =

(
+1/2

−1/2

)
in the

(
u

d

)
basis. (2)

In general, we’ll write our states as |I I3〉, where

Î2 |I I3〉 = I(I + 1) |I I3〉 (3a)

Î3 |I I3〉 = I3 |I I3〉 (3b)

As with spin, there are 2I + 1 possible eigenvalues of I3, ranging from −I to I. For

|u〉 and |d〉, Equations (3) work more as definitions than anything interesting. But

there is a lot we can learn by combining the states, i.e. creating particles.

It is postulated that the strong interactions are invariant under isospin rotations.

That is to say, if all up quarks were replaced with down quarks, the strong interactions

would be unchanged. This is an SU2 symmetry, as explained in §2.3. As a quantum

number, isospin is somewhat-good; it is conserved only by the strong force, but not

conserved in all other interactions. (For instance, |u〉 and |d〉 will interact differently
under electromagnetism because their electromagnetic charges differ.)

The proton and neutron differ by one up or down quark: |p〉 = |uud〉 and |n〉 =
|udd〉. If our approximation is valid, then the proton and the neutron would not

only have about the same mass (i.e., energy), but would also act the same in strong

interactions. The first prediction is indeed very true; note that the p and n masses

differ by less than 0.5% of a proton mass [8]. But what about the strong interactions?

Let us consider pion-nucleon scattering, πN → πN . First of all, the nucleon, N ,

is a two-state system. Its isospin-up eigenstate is the proton p, and its isospin-down
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eigenstate is the neutron, n. (That is, we are considering the proton and the neutron

to be two different eigenstates of the same particle.) As for pions, they are mesons,

which are quark-antiquark pairs. Quarks have opposite quantum numbers as their

antiquark pairs, so |ū〉 and ∣∣d̄〉 have isospin −1
2
and +1

2
respectively. The π-meson

triplet is a isospin-1 system. Pions and nucleons are summarized in Table 2. [2, 6]

State Composition |I I3〉
|π+〉 ∣∣ud̄〉 |1 + 1〉
|π−〉 |dū〉 |1 − 1〉
|π0〉 1√

2
(|uū〉 − ∣∣dd̄〉) |1 0〉

|p〉 |uud〉 ∣∣ 1
2
+ 1

2

〉
|n〉 |udd〉 ∣∣1

2
− 1

2

〉

Table 2: Summary of pion and nucleon quark composition and isospin.[2, 6]

If we take into account just elastic scattering (that is, we’re not going to end up

with any mesons or anything else that isn’t just a pion or a nucleon), then we need

only pay attention to only isospin conservation. Isospin must be conserved because

this is a strong interaction. The total isospin can therefore either be 1
2
or 3

2
. We can

predict the scattering amplitudes (i.e., the amounts of mixture) P1/2 and P3/2 using

the Clebsch-Gordan coefficients [6]:

|π+p〉 = |11〉 ∣∣1
2

1
2

〉
=

∣∣3
2

3
2

〉
|π0p〉 = |10〉 ∣∣1

2
1
2

〉
=

√
2/3

∣∣3
2

1
2

〉−√1/3
∣∣1
2

1
2

〉
|π−p〉 = |1 −1〉 ∣∣1

2
1
2

〉
=

√
1/3

∣∣3
2
−1

2

〉−√2/3
∣∣1
2
−1

2

〉
|π+n〉 = |11〉 ∣∣1

2
−1

2

〉
=

√
1/3

∣∣3
2

1
2

〉
+
√
2/3

∣∣1
2

1
2

〉
|π0n〉 = |10〉 ∣∣1

2
−1

2

〉
=

√
2/3

∣∣3
2
−1

2

〉
+
√
1/3

∣∣1
2
−1

2

〉
|π−n〉 = |1 −1〉 ∣∣1

2
−1

2

〉
=

∣∣3
2
−3

2

〉
(4)

The j in Pj corresponds to the I in the |I I3〉 on the righthand side. For example,

〈π−p| P |π−p〉 is given by

〈
π−p

∣∣P ∣∣π−p
〉
=

√
1

3

√
1

3
P3/2 +

√
2

3

√
2

3
P1/2 =

1

3
P1/2 +

2

3
P3/2 (5)

Similarly, 〈π−p| P |π0n〉 =
√

2
3
P3/2 −

√
2

3
P1/2. The amplitude squared gives us the

probability of having a certain outcome (e.g., |π0n〉) given a certain input (e.g., |π−p〉),
so these brackets are then related to the cross-sections σ by

σ+ : σ0 : σ− = 9|P3/2|2 : 2|P3/2 − P1/2|2 : |P3/2 + 2P1/2|2. (6)
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Here, σ+ denotes the cross-section associated with a π+ being involved, etc. As it

so happens, the pion and the nucleon form a “resonance” state—the ∆—which then

quickly decays. The ∆ is an isospin 3
2
particle, so it might be reasonable to assume

P3/2 � P1/2. This assumption lets us simplify (6) to

σ+ : σ0 : σ− = 9 : 2 : 1. (7)

This is an incredibly good approximation; the experimental ratios are (9.53± 0.63) :

(2.0±0.1) : (1.0±0.1) for pion kinetic energy from 120 MeV to 300 MeV. This means

that the scattering is most likely to take place in the I = 3/2 regime.[2, 6]

Our main tool in making this calculation was isospin—the assumption that |u〉
and |d〉 are merely different eigenstates of the same particle. (We also assumed that

scattering is in the I = 3
2
channel, but this only helped us with a final simplification.)

We know isospin to be an approximate symmetry because |u〉 and |d〉 have different
masses and different charges, but it is still an extremely powerful appoximation,

especially once we consider |s〉 as well. To do this, however, we will have need a

slightly more developed mathematical background.

4 SU3

The Gell-Mann matrices λj form the standard basis for 3 × 3 hermitian matrices,

the same way the Pauli matrices formed a basis in SU2. (Remember that any 2× 2

hermitian matrix can be written as Â = a0I2+�a ·�σ. Now, we have that any hermitian
3 × 3 matrix can be written as D̂ = b0I3 + �d · �λ.) Like the Pauli matrices, the λj

are all traceless. Furthermore, exp(iλj) is unitary. If we let the identity matrix be

λ0, then there are nine matrices.§ The first three matrices are easy; they’re just the

Pauli matrices again, such that λj =

(
σj 0

0 0

)
:

λ1 =


 0 1 0

1 0 0

0 0 0


 λ2 =


 0 −i 0

i 0 0

0 0 0


 λ3 =


 1 0 0

0 −1 0

0 0 0


 (8a)

§Remember that when we included the identity matrix as σ0 in U2, we had 22 = 4 basis matrices.
We now have the same thing in U3: 32 = 9 matrices.
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The next four Gell-Mann matrices are similarly constructed, but the extra 0’s don’t

go in the third row and column. This gives us:

λ4 =


 0 0 1

0 0 0

1 0 0


 λ5 =


 0 0 i

0 0 0

−i 0 0


 λ6 =


 0 0 0

0 0 1

0 1 0


 λ7 =


 0 0 0

0 0 −i

0 i 0




(8b)

The final Gell-Mann matrix,

λ8 =
1√
3




1 0 0

0 1 0

0 0 −2


 , (8c)

is special in that we can’t construct it directly from the Pauli matrices, and because

only it and λ3 are diagonal. We’ll come back to this point in §6.[4]

5 “The Eightfold Way”

Looking back at Table 1 in §2.1, we can also notice that the strange mass is small, at

least compared to ΛQCD. If we consider particles composed of just up, down, and

strange quarks, there is much to be learned. Before we begin, however, we need a

good way to visualize our particles. Gell-Mann introduced plotting Y versus I3, as

shown in the simple example of the |u〉, |d〉, and |s〉 triplet in Figure 1(a). Considering
just these three quarks, the hypercharge, Y , and the electromagnetic charge, Q, are

related by the Gell-Mann–Nishijima relation, Q = I3 +
1
2
Y , which is in turn related

to why hypercharge is called “hypercharge”.[2]

If we take into account baryons comprised of just the three lightest quarks, there

are ten completely symmetric states (which form a decuplet), one completely an-

tisymmetric state (the singlet), and eight states that are antisymmetric under one

interchange (an octet).¶ Gell-Mann initially started studying this octet, as well as a

similar octet of mesons, so this method of grouping hadrons has become known as

“the eightfold way.” We will be focussing on the octet of baryons, as shown in Figure

1(b).

The näıve way of doing math with this system is to create an 8-dimensional vector

to store all of eight of the baryons in. We could then let all of our operators be 8× 8

¶For those of you with a bit of an algebra background, these correspond to irreducible represen-
tations of SU3.
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|u〉|d〉

|s〉

Y

I3 +1
2

−1
2

Q = − 1
3 Q = + 2

3

S = 0

S = − 1
3

+1

−1

(a) The three lightest quarks.

|Σ−〉 |Σ0〉 |Σ+〉

|Ξ−〉 |Ξ0〉

|Λ0〉

|p〉|n〉

Q = −1 Q = 0 Q = +1

S = −2

S = −1

S = 0

I3

Y

−1

−1

+1

+1

(b) The baryon octet. |Σ0〉 and |Λ0〉 are at the
origin.

Figure 1: Weight diagrams. Note that (a) is an equilateral triangle and (b) is a

regular hexagon.[2, 4, 6]

matrices. But because this is big and clumsy, and because we can, we will condense

it into a 3-dimensional representation, the B (baryon) matrix, where

B =




Σ0√
2
+ Λ√

6
Σ+ p

Σ− −Σ0√
2

+ Λ√
6

n

Ξ− Ξ0 −2Λ√
6


 . (9)

B will transform like SU3, that is, all of the math that has already been developed

for SU3 is also applicable to B. In particular, our old 8 × 8 operators can now be

written as 3× 3 unitary matrices. We can now describe what we had before as Â8×8
�b

as U †
3×3BU3×3, where �b is an eight-dimensional vector, B is as defined in (9), and

U3×3 is in fact unitary. This works because 3 ⊗ 3̄ = 1 ⊕ 8, where the bar denotes

that we need to use the hermitian conjugate of one of the operators. (This tensor

multiplication/addition is similar to what we did with angular momentum, where, for

instance, we found that 1
2
⊗ 1

2
= 0⊕ 1.)

If this symmetry were exact—that is, if |u〉, |d〉, and |s〉 were in fact just different

flavors of the same particle—then all of these 8 baryons would have the same mass.
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While their masses are close—they range from 940MeV for the nucleon to 1320MeV

for Ξ—they are definitely not close enough to be “equal”. However, we can still learn

a lot by applying the SU3 symmetry (all three quarks have the same mass), and then

breaking it in such a way that isospin invariance still holds (mu = md �= ms). [2, 4]

6 The Gell-Mann–Okubo Formula

We want to now try to learn something about the masses of the baryons shown

in Figure 1(b). Following [4], we can write the Hamiltonian describing the strong

interactons as the sum of two parts of different strength,

HS = HV S +HMS. (10)

Think of Equation (10) as a perturbative equation. The first term is the contri-

bution from the “very strong” force; it preserves the SU3 symmetry that treats

mu = md = ms. The second part is our perturbative, symmetry-breaking term;

it is the contribution from a “medium-strong” force that treats mu = md �= ms. Note

that both H on the right hand side preserve isospin invariance. We don’t know what

exactly HMS is, but

HMS = λ8O (11)

is a good guess. Looking back to (8), we note that λ8 is a good choice here if we

want |u〉 and |d〉 to be treated equivalently. λ8 is also diagonal, which will make the

math easier. O is an operator describing the actual physics of the system; it has some

combination of particle creation and annihilation operators, etc. in it that we don’t

know exactly. But we do know that its matrix representation must have a certain

shape in order to preserve the symmetries we want it to.

To find the first order correction to the energy (or, equivalently, the masses of

our baryons), we must calculate the matrix element 〈B| HMS |B〉. 〈B|O |B〉 will be
invariant if we transform both B and O; that is, 〈B|UU †OUU † |B〉 = 〈B|O |B〉. This
is like rotating both our axes and a vector we are considering. On the other hand, if

we want something that is invariant under a transformation of just B or O, then there

are only two such quantities. That is, we find that there are only two independent

factors in the matrix for HMS. As matrix elements, these are

B†
ij [λ8]jkBkl = Tr(BB†λ8)

and B†
ij [λ8]jkBkl = Tr(B†Bλ8).

(12)
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For instance, if we take B → U †BU , then Tr(BB†λ8) → Tr(U †BUU †B†Uλ8), which

is just Tr(U †UBB†λ8) = Tr(BB†λ8) because trace is cyclic.[3] (The fact that there are

only two such independent quantities also follows from the Wigner-Eckhart theorem.)

Combining Equations (12), we have

〈B|HMS |B〉 =XTr(BB†λ8) + Y Tr(B†Bλ8)

=X([B†B]11 + [B†B]22 − 2[B†B]33)/
√
12

Y ([BB†]11 + [BB†]22 − 2[BB†]33)/
√
12.

(13)

(Remember that we are summing over repeated indices.) Looking back at our defini-

tion of B in (9), we notice that this gives us a relationship between all eight particles.

[B†B]ii gives us the sum of the squares of the elements in the ith row of B, while

[BB†]jj gives us the sum of the squares of the elements in the jth column. Happily,

when it is all combined, many terms drop out such that we get

〈B|HMS |B〉 =X(|Σ|2 + |Ξ|2 − |Λ|2 − 2|n|2)/
√
12

+Y (|Σ|2 + |n|2 − |Λ|2 − 2|Ξ|2)/
√
12.

(14)

Now we are ready to write a relationship between the masses of these four particles.

Note that the masses and energies are equivalent here, that is, mΣ = 〈Σ| HS |Σ〉 =
〈Σ|HV S |Σ〉 + 〈Σ| HMS |Σ〉, etc. If we add back in the mass m0 common to all four

from the HV S contribution, we get a system of equations:

mn = m0 − 2X/
√
12 + Y/

√
12

mΣ = m0 +X/
√
12 + Y/

√
12

mΛ = m0 −X/
√
12− Y/

√
12

mΞ = m0 +X/
√
12− 2Y/

√
12

(15)

There are four equations and three unknowns (m0, X, and Y ); after a little massaging,

we find that

2(mN +mΞ) = 3mΛ +mΣ. (16)

This is known as the Gell-Mann–Okubo formula.[5] We take mN = 940, mΣ = 1190,

and mΞ = 1320, all in MeV, where mΣ is the average mass of Σ−, Σ0, and Σ+, and so

forth. Plugging these values in to (16), we predict that the Λ mass will be 1110 MeV,

which is an astonishingly good approximation. The experimental result is 1115 MeV;

our approximation is good to within 1%.[6]
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7 Conclusion

As we have seen, the perturbative method of creating symmetries and then break-

ing them works as an extremely good modelling technique. We were able to predict

ratios of pion-nucleon scattering with incredible precision using just isospin symme-

try, Clebsch-Gordon coefficients, and simple scattering theory. We also found the Λ

mass within one percent of the experimental result using only isospin symmetry, the

Wigner-Eckhart theorem, and initial mass values of three baryons that were good to

only about 0.5%. While isospin is not physical—the up and down quarks are not

different eigenstates of the same particle!—this approximation works because their

energies are well below the characteristic energy of the strong force. This method

furthermore lets us use an old, familiar language to discuss a new system, which

helps us gain a better intuition and feel for what is really happening.

8 Historical Aside

Isospin was studied long before quarks were postulated. In 1920, when Rutherford

first postulated existence of a neutral subatomic particle, he speculated that its mass

would be about that of the proton. It wasn’t until 1932, shortly after the neutron’s

discovery, that Heisenberg started playing with rotations of p and n using the Pauli

matrices and all of the SU2 algebra in the non-physical space we now call isospin

space. In fact, it wasn’t until 1937 that the term “isospin” began to develop. Wigner

initially called it “isotopic spin”—which is actually a misnomer. Isotopes are not

related at all when it comes to isospin because two isotopes have differing numbers

of neutrons. Isobars, such as 57Fe and 57Co, etc., on the other hand, do form isospin

multiplets because they do have the same number of nucleons.

When Heisenberg first introduced the concept of the nucleon, he was trying to

figure out what exactly the neutron was. At first the idea was that it was a tightly-

bound proton-electron state, but that did not take long to debunk. Once it was

decided that the neutron was its own particle, it became even more important to

figure out what kind of forces held together the atomic nucleus. The big revolution

came when it was realized that this force had to be charge independent—that is, a

proton-proton interaction (or neutron-neutron) had to be just as strong as a proton-

neutron interaction. This was a big start in answering many questions, from why

nuclei are more likely to have an even number of particles to why the proton and
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neutron have masses that are so close. [4, 7]

In the early 1960s, Gell-Mann and others were trying to rationalize the observed

mass spectra of hadrons, specifically why particles seemed to come in “families”, like

the one shown in Figure1(b). Gell-Mann postulated that these multiplets could be

explained by an “orderly-broken symmetry”—isopsin.[5] He developed most of the

math needed to explain the structures of these multiplets, only to later discover that

this was a field well-known to mathematicians. It was also Gell-Mann who postulated

that there were certain multiplets, but not others, because the hadrons were made

of still smaller and more fundamental particles, which he called quarks. He then

predicted the existence of the Ω− particle, which was eventually discovered. The

quark model has since held up, leading to the current view of isospin.[1]
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