CHAPTER 4

Dylan Thomas’s meters

Nigel Fabb and Morris Halle
University of Strathclyde / MIT

This chapter applies to Dylan Thomas’s metrical poetry the theory of meter developed in collaboration with Carlos Piera in Fabb and Halle (2008). We explain the various properties of the strict and loose meters used by Thomas. We also discuss some poems which can be analyzed as simultaneously in two meters at the same time: a strict syllable-counting meter and a loose stress-based meter. These polymetrical poems may reflect the influence, possibly mediated through Gerard Manley Hopkins, of the Welsh poetic tradition.

1. Introduction

We examine some of the unusual meters used by Dylan Thomas in the poetry which he wrote from his teenage years in the 1920s until his death in 1953.\(^1\) We show how these meters are explained by Bracketed Grid Theory, the metrical theory demonstrated in Fabb and Halle (2008), which includes a chapter on Southern Romance meters by Carlos Piera. Thomas placed complex formal constraints on his poems, often involving elaborate rhyme schemes, or other kinds of sound patterning, and his experimentation with meter was part of this general inventiveness and formal creativity.

Verse is language which is organized into lines, and verse is either metrical or non-metrical (the latter includes ‘free verse’). In metrical verse, the lines are subject to restrictions, of which the most important is that metrical units are counted, where ‘metrical units’ usually means ‘syllables’. So, for example, in the common English meter iambic pentameter, the lines must be ten syllables in length. Other restrictions usually also apply, and relate to the counting of syllables: in English iambic pentameter, the even-numbered syllables tend to be stressed. In contrast, in non-metrical verse, the number of metrical units (e.g., syllables) in a line is not controlled; Thomas wrote several non-metrical (free verse) texts, mainly in 1930–1931.\(^2\)
In this chapter we consider only metrical texts, and we make a distinction between two kinds of metrical verse, both used by Thomas: strict meter and loose meter.\(^3\) In Thomas's strict meter poems, the number of syllables is controlled, with some permitted variation. In these strict meter poems, there is some control over the placement of stressed syllables, but importantly there is no control over the number of stressed syllables in the line (only the number of syllables overall). Thomas's strict meters include iambic dimeter (4 syllables), iambic trimeter (6 syllables), iambic tetrameter (8 syllables) and iambic pentameter (10 syllables); in each case there is some variation, permitting an extra or missing syllable. We have found no examples of the other types of strict meter found in English – trochaic, anapaestic and dactylic. All these strict meters are 'accentual syllabic,' which means that in addition to controlling the number of syllables in each line, they also require a designated subset of the stressed syllables to be in specific positions relative to the overall count: in an iambic meter, stressed syllables in polysyllables must be in even-numbered positions. However, there are also some strict meters which set no conditions on rhythm, and these are called 'syllable counting meters'; though syllable counting meters are rare in English poetry, Thomas does use them.

In contrast, in Thomas's loose meters, the number of stressed syllables is controlled, but there is much looser control over the overall number of syllables as such. In a loose iambic tetrameter line, there are four stressed syllables but there could in principle be anything between four and thirteen syllables overall. The following texts illustrate the difference between a strict iambic tetrameter (1) and a loose iambic tetrameter (2).

\begin{quote}
(1)
\text{Be said to weep when weather howls?}
\begin{tabular}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\end{tabular}

\text{Shall rainbows be their tunics' colour?}
\begin{tabular}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\end{tabular}

'Shall gods be said to thump the clouds'
\end{quote}

\begin{quote}
(2)
\text{Dead men naked they shall be one}
\begin{tabular}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\end{tabular}

\text{With the man in the wind and the west moon;}
\begin{tabular}{cccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 \\
\end{tabular}
\end{quote}

1933 (Thomas 1971:65)
When their bones are picked clean and the clean bones gone,

1 2 3 4 5 6 7 8 9 0 1
'And death shall have no dominion'

1933 (Thomas 1971: 49)

The strict iambic tetrameter text (1) has eight syllables in the first line and nine in the second (showing a common variation in iambic meters where there is an extra syllable at the right edge of the line). The stressed syllables (marked with / above) tend to be even-numbered, with a certain type of stressed syllable (the syllable carrying main stress in a polysyllable) required to be even numbered, as in 'weather', 'rainbows', 'tunics' and 'colour'. Note that the number of stressed syllables can vary: there are four in the first and three in the second line, even though the lines are in the same meter. In contrast, in the loose iambic tetrameter text (2), the lines have eight, ten and eleven syllables, showing a much wider range of variation than is permitted for a strict meter. However, each line has four stressed syllables; note that the location of stressed syllables is not strictly controlled (though they are never separated by more than two unstressed syllables, so there is still some indirect control).

For both strict and loose meters, Thomas often allows meters to vary within a poem (while staying within the same family): for example, "Conceive these images in air" (1931) has three kinds of strict iambic meter: tetrameter (8 syllables), trimeter (6 syllables), and dimeter (4 syllables with a 5 syllable variant).

2. **Strict meter**

In a strict meter, the number of syllables in the line is controlled by the metrical rules. How is this achieved? In most theories of meter, the problem of controlling the number of syllables is ignored; a template with a certain number of positions is just assumed to exist, and the syllables are matched to the template. In Fabb and Halle (2008) we take a very different approach. There we propose that metrical rules generate a grid from a line of verse; for each meter, the rules will generate a well-formed grid only from a line with a specific number of syllables, and this is how the syllable count is controlled. The theory of Fabb and Halle (2008) differs from most other linguistic metrical theories in its focus on the line as the basis of metrical rules; without lines, there is no meter, in this theory.

Consider for example the poem "Among those killed in the dawn raid was a man aged a hundred" (1941). This is a kind of sonnet: a poem of fourteen lines, of which three have 10 syllables, nine have 11 syllables, and two have 12 syllables. We suggest that all fourteen lines are in the same meter, which is a variant form
of iambic pentameter, and that the rules for this meter project a well-formed grid from either 10 or 11 metrical syllables, but that some syllables are not counted (which explains the two 12 syllable lines).

2.1 The grid-building rules

To illustrate our approach, we show how the eleven syllables of the first line are counted by the metrical rules.

(3) When the morning was waking over the war

The first rule is stated in (4), and when applied to the line in (3), the rule generates the structure in (5).

(4) Project syllables as asterisks on gridline 0

(5) When the morning was waking over the war

 * * * * * * * * * 0

Syllables are projected as asterisks, and it is asterisks which are 'counted.' Counting is a side-effect of applying a set of rules to the line, as we will see. Iterative rules insert parentheses into the line of asterisks, and thereby form groups of asterisks by the principle that a left parenthesis groups the asterisks to its right, and a right parenthesis groups the asterisks to its left. Once parentheses have been inserted into the first line, there are five groups and one ungrouped asterisk, as shown in (6).

(6) When the morning was waking over the war

 * (* * (* * (* * (* * 0

The rule which inserted the parentheses in (6) is stated in (7); the rule is iterative, meaning that it repeats the action of inserting a parenthesis, from left to right, across the line.

(7) Gridline 0: starting just at the L edge or one asterisk in, insert a L parenthesis, form binary groups, heads R.

The rule has the option of inserting the first parenthesis at the left edge, or one asterisk in, and in this case inserts the parenthesis one asterisk in. The underlying point is that this is a meter in which there are five binary groups of syllables, and in which an extra syllable is permitted at the left edge (beginning) of the line. The option of skipping the leftmost asterisk permits the extra syllable to exist and for the rules still to generate a well formed grid.
(8) When the morning was waking over the war
 \[
 * (\star \star \star \star \star \star \star \star \star \star \star) \quad 0
 \]

Since the rule forms binary groups, the next parenthesis is inserted after a sequence of two asterisks.

(9) When the morning was waking over the war
 \[
 * (\star \star \star \star \star \star \star \star \star \star \star) \quad 0
 \]

And continues in this fashion:

(10) When the morning was waking over the war
 \[
 * (\star \star \star \star \star \star \star \star \star \star \star) \quad 0
 \]

When the morning was waking over the war
 \[
 * (\star \star \star \star \star \star \star \star \star \star \star) \quad 0
 \]

When the morning was waking over the war
 \[
 * (\star \star \star \star \star \star \star \star \star \star \star) \quad 0
 \]

When the morning was waking over the war
 \[
 * (\star \star \star \star \star \star \star \star \star \star \star) \quad 0
 \]

The next step is to project heads; on gridline 0 the rule says that the righthand member of a group is the head, so all the right-hand members project an asterisk to the next gridline (gridline 1).

(11) When the morning was waking over the war
 \[
 * (\star \star \star \star \star \star \star \star \star \star \star) \quad 0
 \]

In (12) we show the other two iterative rules, the first inserting parentheses at gridline 1 and projecting to gridline 2, and the second inserting parentheses at gridline 2 and projecting to gridline 3, to produce the final grid shown in (13).

(12) Gridline 1: starting just at the R edge, insert a R parenthesis, form ternary groups, heads R. Final group is binary.

Gridline 2: starting just at the R edge, insert a R parenthesis, form binary groups, heads R.

(13) When the morning was waking over the war
 \[
 * (\star \star \star \star \star \star \star \star \star \star \star) \quad 0
 \]

In (12) we show the other two iterative rules, the first inserting parentheses at gridline 1 and projecting to gridline 2, and the second inserting parentheses at gridline 2 and projecting to gridline 3, to produce the final grid shown in (13).

(12) Gridline 1: starting just at the R edge, insert a R parenthesis, form ternary groups, heads R. Final group is binary.

Gridline 2: starting just at the R edge, insert a R parenthesis, form binary groups, heads R.

(13) When the morning was waking over the war
 \[
 * (\star \star \star \star \star \star \star \star \star \star \star) \quad 0
 \]

All rights reserved
(Readers familiar with other metrical theories should note that in this theory, the grid does not directly express prominence; hence the stress pattern of the line in (13) is not realized by the grid generated from the line. In fact, we will suggest in Section 2.3 that there is no generalization about the rhythm in this line, and thus no relation between rhythm and grid.)

It is a requirement on all poetic meters that the final gridline – here, gridline 3 – must always contain just one asterisk (which we call 'the head of the line'). This requirement enables the grid to be used to count metrical elements. The set of rules in (7) and (12) will generate a well-formed grid – that is, a grid with one asterisk on the final gridline – only from a sequence of 10 or 11 asterisks. A well-formed grid can also be generated from a sequence of ten asterisks, if, as shown below, the leftmost syllable is not skipped:

(14) The locks yawned loose and a blast blew them wide,

\[
\begin{array}{*{13}{c}}
\text{0} & \text{1} & \text{2} & \text{3} \\
\text{*} & \text{0} & \text{1} & \text{2} & \text{3} \\
\text{*} & \text{0} & \text{1} & \text{2} & \text{3} \\
\end{array}
\]

Asterisks project from syllables, and if all syllables project as asterisks, the grid-building rules have the effect of (indirectly) counting 10 or 11 syllables. There are two 12-syllable lines in the poem, and we suggest that in each of these lines one syllable does not project as an asterisk. For example, in the following line, the word 'of' does not project (a common pattern in English). We indicate the failure of projection by writing a delta symbol below the syllable (which is not formally part of the grid). This leaves eleven asterisks, and so the rules will generate a well-formed grid from this line.

(15) And the craters of his eyes grew springshots and fire

\[
\begin{array}{*{13}{c}}
\text{0} & \text{1} & \text{2} & \text{3} \\
\text{*} & \text{0} & \text{1} & \text{2} & \text{3} \\
\end{array}
\]

We do not have a general theory of non-projection. For many literary traditions, it is possible to describe which syllables fail to project (and this is covered by rules of 'resolution' in some theories); in other traditions, or for other poets, non-projection is more random. There can be several non-projecting syllables in the same line. A syllable which does not project is invisible to any further metrical rules or conditions because it is not represented as part of the grid (the delta is a visual convenience not part of the structure).
2.2 Conditions on the grid

In most types of meter, there are additional restrictions on the line in addition to the counting of syllables. Some of these restrictions are unconnected with the counting of syllables (e.g., a requirement that the final syllables in adjacent lines rhyme), while other restrictions need to be stated in terms of the counting of syllables. For example, most restrictions involving the rhythm of the line must be stated in terms of the counting of syllables. English iambic meters require that if certain stressed syllables (typically the syllable carrying primary stress in a polysyllable) are used in the line, then they must be in even-numbered positions (i.e., syllables 2, 4, 6, 8, 10). The major part of most work in linguistic metrics is to establish what the conditions are, in specific meters.

In this section we consider generalizations of this kind; that is, generalizations which can be stated in terms of conditions which refer to how the syllables are counted. A major piece of evidence that syllables are counted by generating a grid from the line is that the generalizations about rhythm and other counting-related generalizations can all be stated in terms of the structure of the grid.

To see the significance of this, consider an alternative way of counting syllables by writing numbers under them (i.e., 1, 2, 3, 4...). If syllables were counted in this way then there should be generalizations which could be stated in terms of syllables 3, 4, and 8. In fact, such apparently random generalizations are not found in metrical verse. Instead, where it is necessary to identify syllables ‘by number’, we find generalizations which form patterns (often periodic), such as that in iambic verse, where it is the even-numbered syllables which tend to be stressed, or in dactylic verse, where every third syllable (beginning with the first) tends to be stressed, and so on. The fact that the generalizations tend to relate to ‘periodic’ counting of this kind fits with our view that the syllables are counted by generating a grid structure from the line which is periodic because the grouping is produced by applying iterative rules.

Consider for example a typical line of accentual-syllabic verse, in this case in iambic meter, from Thomas’s poem “Request to Leda (Homage to William Empson)” (1940). We show the line with the standard iambic pentameter grid attached to it.⁹

(16) Desire is phosphorus: the chemic bruit.

\[
\begin{array}{ll}{*} & {*} & {*} & {*} & {*} & {*} & {*} \\
{\ast} & {\ast} & {\ast} & {\ast} & {\ast} & {\ast} & {\ast} \\
{\ast} & {\ast} & {\ast} & {\ast} & {\ast} & {\ast} & {\ast} \\
{\ast} & {\ast} & {\ast} & {\ast} & {\ast} & {\ast} & {\ast} \\
{\ast} & {\ast} & {\ast} & {\ast} & {\ast} & {\ast} & {\ast} \\
\end{array}
\]

0 1 2 3
The basic condition in English strict iambic meters is (18), which depends on the
definition of maximum in (17).

(17) The syllable bearing the word stress in a polysyllabic word is a maximum, if
it is preceded and followed in the same line by a syllable with less stress.

(18) Maxima must project to gridline 1.

Condition (18) has the result that since the word ‘desire’ is used in this poem then
it must have its second syllable project to gridline 1, ‘phosphorus’ its first syllable,
and ‘chemic’ its first syllable. By forcing these syllables into even-numbered posi-
tions (the positions which project to gridline 1), the condition thus controls the
characteristic rhythm of iambic verse.

2.3 Evidence for the grid

There are two sources of evidence that metrical verse is controlled by rules which
generate a bracketed grid from the line. One kind of evidence comes from the
fact that all counting-related conditions can be formulated by reference to a grid
which can be generated by the rules of our theory. The second kind of evidence
comes from the fact that where there is counting there is usually also limited
variation in number: our grid-based method of counting allows for limited varia-
tion of exactly the kind which is found.

In the case of the rules and grid for "Among those killed in the dawn raid was
a man aged a hundred", there is no relevant evidence of the first kind from the
rhythm of the line (or any other counting-related condition). The only relevant
evidence is of the second kind, and is that the line varies between 10 and 11 metri-
cal syllables (syllables which project as asterisks). This tells us that at gridline 0 the
asterisks must be grouped into pairs, such that no more than one syllable can be
left ungrouped as an option at one end of the line (i.e., it is the one-syllable vari-
ation between 10 and 11 which tells us that syllables are grouped in pairs). Why do
we choose to leave the leftmost syllable ungrouped in the eleven-syllable line, and
not the rightmost (as would be more common in an iambic meter)? We do this
because the rightmost syllable in the line is always stressed and rhymes, and in
principle might be subject to a condition; if subject to a condition it would have to
be identifiable relative to its grid position, and this is difficult to state for a syllable
which projects but is ungrouped. For this reason, we choose not to leave this syl-
lable ungrouped and instead, we make the first syllable ungrouped. This means
that at gridline 0, left parentheses must be inserted from left to right to form bi-
inary groups, with the option of skipping the first (leftmost) syllable. There is very
little evidence for any other rule (though we have chosen a set of rules which in
fact identify the rightmost syllable as the head of the line). Note that though there is no evidence as to the specific rules which generate higher grid structure, there must be rules, or the syllables could not be counted. We nevertheless assume that metrical elements are never grouped by the iterative rules into groups larger than three; thus for example the five gridline 0 'iambic' groups in iambic pentameter are not grouped as five but as two plus three. We have not found evidence that groups larger than three are required, and thus make this a condition on the rules. (It might be noted that in many other generative metrical theories, there are no groups larger than two.) Thus any one of a large set of possible rules must be formulated by the author or reader of the poem, as the meter of the poem.

2.4 A variant type of iambic meter

We now discuss a poem by Thomas which appears to be in a unique variant of an accentual-syllabic iambic meter. This is "I dreamed my genesis" (1934), a poem identified by Daniel Jones as 'apparently ... the first instance of Thomas's use of the syllabic count system' (Thomas 1971:247). We disagree. There is in fact a strict relation between stress and counting, but (unlike standard iambic meters) it is not fully periodic, presenting a problem which our theory can solve.

The stanzas are in four lines of $12 + 7 + 10 + 8$ syllables. Stressed syllables tend to be even-numbered (as in a standard accentual-syllabic iambic meter), but there is a systematic aperiodicity towards the end of the first three lines in each stanza, in each of which the rightmost stressed syllable is odd-numbered. We illustrate with the first stanza, showing suggested stresses, in a pattern which is followed by the rest of the poem.

(19)

/ / / / /
1 2 3 4 5 6 7 8 9 10 11 12

I dreamed my genesis in sweat of sleep, breaking

/ / / / /
1 2 3 4 5 6 7

Through the rotating shell, strong

/ / / / /
1 2 3 4 5 6 7 8 9 10

As motor muscle on the drill, driving

/ / / / /
1 2 3 4 5 6 7 8

Through vision and the girdered nerve.

"I dreamed my genesis" 1934 (Thomas 1971:102)
For the first three lines of this poem, any conditions on the placement of stress must be able to locate the rightmost odd-numbered syllable, as well as the immediately preceding even-numbered syllables. This suggests that the grid-building rules result in both of these being heads of gridline 0 groups. We achieve this by the grid-building rule in (20) and the deletion rule in (21). The deletion rule is widely used in Fabb and Halle (2008), targeting the unique gridline 0 asterisk projecting to the head of the verse.

(20) Gridline 0: starting just at the L edge, insert a L parenthesis, form binary groups, heads R. The final group is incomplete (unary) in line 2.

(21) Lines 1 and 3: Delete the gridline 0 asterisk which projects to the head of the verse.

In (22) we show the result of applying gridline rule (20), and gridline-building rules for gridlines 1 and 2. When rule (21) is applied, the final asterisk is deleted and the head of that group shifts over to the preceding syllable, as shown. Only line 2 is subject to a requirement that it has an incomplete final group because it has an odd number of syllables. It is necessary to generate complete binary groups in lines 1 and 3 because they have an even number of syllables; the deletion of the asterisk projecting from the rightmost syllable does not affect the syllable itself, but makes the preceding syllable the head and hence stressed.

(22) I dreamed my genesis in sweat of sleep, breaking

\[
\begin{align*}
&(*)^{(*)(*)(*)(*)(*)(*)} \quad \Delta \quad 0 \\
&(*) \quad * \quad *) \quad * \quad *) \quad 1 \\
&*) \quad *) \quad 2 \\
&* \quad 3
\end{align*}
\]

Through the rotating shell, strong

\[
\begin{align*}
&(*)^{(*)(*)(*)(*)} \quad 0 \\
&*) \quad * \quad *) \quad 1 \\
&*) \quad *) \quad 2 \\
&* \quad 3
\end{align*}
\]

As motor muscle on the drill, driving

\[
\begin{align*}
&(*)^{(*)(*)(*)(*)(*)} \quad \Delta \quad 0 \\
&*) \quad * \quad *) \quad *) \quad 1 \\
&*) \quad *) \quad 2 \\
&* \quad 3
\end{align*}
\]

© 2012, John Benjamins Publishing Company
All rights reserved
Through vision and the girded nerve.

\[
(*) (*) (*) (*) (*) 0
\]
\[
(*) (*) (*) 1
\]
\[
(*) 2
\]
\[
(*) 3
\]

The general condition (18) and definition (17) of maximum can be applied in this poem, both to control the ordinary iambic rhythm of the early part of the line and to make 'break-' and 'driv-' to be maxima, given that they are in derived head positions as a result of the deletion rule to allow a monosyllable to be a maximum.

However, a reason for being somewhat dissatisfied with this definition of maximum is that because it does not apply to monosyllables, it is unable to capture the fact that the penultimate stressed syllable is a monosyllable in the first three lines of the stanza. For this reason, we might redefine the maximum, for this poem, as follows.

(23) The syllable bearing the word stress is a maximum, if it is preceded by a syllable of equal or lesser stress.

(As we show in Fabb and Halle (2008), the definition of maximum need not be the same for all meters in a language's poetry.) This definition of maximum identifies as maxima the following syllables in the first stanza. The rightmost (odd-numbered) stressed syllable is a maximum in lines 1–3 because it is equal in stress to the preceding syllable. The first syllable in line 2 'though' is stressed but it is not a maximum because it is not preceded by any syllable. This is generally why apparent candidates for maxima are never identified as such when at the left edge, giving rise to what is sometimes called 'trochaic inversion'.

(24) / / / / / /
1 2 3 4 5 6 7 8 9 10 11 12
M M M M M
I dreamed my genesis in sweat of sleep, breaking

/ / / / /
1 2 3 4 5 6 7
M M M

Through the rotating shell, strong

/ / / / /
1 2 3 4 5 6 7 8 9 10
M M M M

As motor muscle on the drill, driving
Through vision and the girded nerve.

We conclude our discussion of this poem by noting that its meter echoes the endings of the lines at the beginning of *The Waste Land*, of which we quote the first two lines in (25). Perhaps Eliot is an influence on Thomas in this poem.

(25) / / / /
1 2 3 4 5 6 7 8 9
April is the cruellest month, breeding

/ / / /
1 2 3 4 5 6 7 8 9
Lilacs out of the dead land, mixing

The Waste Land 1922 (Eliot 1954:51)

3. Loose meter

English lines are recognizably in loose meters when there is a controlled number of stressed syllables in the line, but these syllables are not located in specific numbered positions relative to the other syllables in the line. Most loose meters in English are iambic, and in an iambic loose meter the stressed syllables are either adjacent, or separated by one unstressed syllable, or separated by two unstressed syllables.

We have already noted that Thomas's poem "Among those killed in the dawn raid was a man aged a hundred" has strict syllable counting, but in that poem there is no systematic relation between rhythm and counting. Consider for example these four (separately extracted) lines, with probable stressed syllables indicated.

(26) / / / /
1 2 3 4 5 6 7 8 9 10 11
When the morning was waking over the war

/ / / /
1 2 3 4 5 6 7 8 9 10 11
Assembling waits for the spade's ring on the cage.
The heavenly ambulance drawn by a wound.
And the funeral grains of the slaughtered floor.

"Among those killed in the dawn raid was a man aged a hundred"
1941 (Thomas 1971: 172)

These lines have a fairly consistent number of stressed syllables (four or five), and this suggests that the lines are in a loose meter. Furthermore, the stressed syllables are not systematically related to numbered position, which again fits with them being in a loose meter.

Now we have a rather unusual finding which our theory can explain. We have seen that there are two metrical regularities in these lines which are independent of one another. Syllables are counted, and, independently, stressed syllables are counted (without reference to the overall counting of syllables). This means that the lines are polymetric (in two meters at the same time). They are simultaneously in a syllable counting meter and also in a loose meter. Each meter controls an independent regularity in the line.

The first step is to identify maxima. In a strict meter, maxima are relevant only for the statement of conditions; in a loose meter, maxima are relevant for the building of the grid (and often for conditions as well). In English loose meters, maxima are defined in various different ways, but a fairly standard definition of maxima will apply (the definition stated by Fabb and Halle 2008: 68):

(27) The syllable bearing the word stress is a maximum, except when it is immediately preceded or followed in the same line by a syllable carrying greater stress.

This identifies maxima as follows for example:

(28) M M M M M M

Assembling waits for the spade's ring on the cage.

The first step in assigning a new grid to this line is rule (29), which applies before the iterative rules apply, as in (30). This rule (29) inserts parentheses of exactly the same kind as those inserted by iterative rules (though for clarity we show them as square parentheses), but the rule is not iterative.
(29) Insert a R parenthesis on gridline 0 after an asterisk projecting from a
maximum.

(30) M M M M M M
Assembling waits for the spade's ring on the cage.
\[* *] * * * * * * * * *] 0

Now we apply iterative rules. The first rule in this meter is as follows. Note that
(31) is a different gridline 0 rule from rule (7) which is used for the same poem's
syllable-counting meter.

(31) Gridline 0: starting just at the R edge, insert a L parenthesis, form binary
groups of asterisks, heads R.

The rule performs its first two iterations as shown in (32) and (33).

(32) Assembling waits for the spade's ring on the cage.
\[* *] * * * * * * *] 0

(33) Assembling waits for the spade's ring on the cage.
\[* *] * * * * * * * *] * * *] 0

When it comes to the third iteration, a pre-existing parenthesis interferes with the
insertion of parentheses by the iterative rule; the next unbroken sequence of two
asterisks is several steps further into the line, and so the next left parenthesis is
inserted as shown in (34).

(34) Assembling waits for the spade's ring on the cage.
\[* *] * *] * *] * * * * * *] * *] 0

The remainder of the iterations are as shown in (35) and (36).

(35) Assembling waits for the spade's ring on the cage.
\[* *] * *] * *] * * * * * *] * * *] 0

(36) Assembling waits for the spade's ring on the cage.
\[* *] * *] * *] * * * * * *] * * *] 0

Here there are five groups. One group contains one asterisk, and there are also
two ungrouped asterisks. These line-internal variations in periodicity are side-
effects of the non-iterative parenthesis insertion rule. Now the rest of the grid is
generated.

(37) Gridline 1: starting just at the R edge, insert a R parenthesis, form ternary
groups, heads R. Final group is incomplete (binary or unary).
Assembling waits for the spade's ring on the cage.

The rules in (37) ensure that there are four or five gridline 0 groups, as fits this poem which varies between loose iambic tetrameter and loose iambic pentameter.

3.1 Polymeter

Thomas wrote many poems in loose iambic meter, a meter which is widely used in twentieth century poetry, for example, by Eliot, Yeats and other authors who influenced Thomas. Where he is possibly unique as an English-language writer is that some of his loose iambic poems are at the same time also syllable-counting poems, that is, they are polyrhythmic. We illustrate with two of the lines from this poem. We write above the line the strict iambic meter grid which controls the number of syllables. We write below the line the loose iambic meter which controls the number of stressed syllables.

The heavenly ambulance drawn by a wound.
We call this a polymeter because in order to capture all the generalizations about the regulated aspects of the phonology of the lines, it is necessary to construct two distinct grids which have distinct conditions holding of them: in the top grid there are no conditions, while in the bottom grid, the usual loose iambic meter condition (18) on maxima holds.

Thomas wrote several other poems which are polymetric, both syllable counting and loose iambic. For example “O make me a mask” (1937) has 13 syllable lines (one 12-syllable), and most lines have five stressed syllables (but with no regular relation between stress and syllable count). “Love in the asylum” (1941) combines 12 and 5 syllable lines; the 12 syllable lines tend to have five stressed syllables (randomly distributed within the line). “The tombstone told when she died” (1938) has lines varying between 7 and 9 syllables (where the 9 syllable lines both involve non-projected syllables, e.g., where ‘I heard’ projects as a single syllable); so there is a variation between 7 and 8 metrical syllables which is within the possible range of a syllable counting meter with four binary groups, one of which may fall short. There are also three or four stressed syllables in each line, suggesting that they are simultaneously subject to a loose iambic meter (varying trimeter, tetrameter). One of his most famous poems, “In my craft or sullen art” (1945) has 6 and 7 syllable lines, with two or three stressed syllables per line. There are various other examples; in fact, we have not identified any syllable counting poem which only counts syllables. All Thomas’s syllable counting poems appear also to be polymetric: they are in both syllable counting and loose iambic meters.

Thomas’s polymetric practice may demonstrate a link with mediaeval Welsh meters. The named measures of mediaeval or bardic Welsh poetry each define a particular combination of lines, where each line is of a fixed number of syllables (Williams 1953:232). For example, the englyn unodi union is a four-line stanza, with lines of 10+6+7+7 syllables and a specific rhyme pattern; the awdl gywydd is a couplet of 7 syllable lines (and a rhyme pattern). In this poetry there is no expectation that specific syllables will be stressed; this poetry is not in accentual-syllabic meter. An additional condition, part of the cynganedd or harmony system, holds (not fully consistently) of the lines in some of the poetry: “the line is divided into two parts, each ending in an emphasized word (and it should be noted that words not normally stressed, such as prepositions, can be emphasized for this metrical purpose at the end of the first half of the line. Consonants correspond absolutely, in order, in each of the two parts of the line, before the accented vowel of the emphasized word” (Rowlands 1976:xxviii). In seven-syllable lines, one consequence of this condition is often that each half of the line will have two stressed syllables (or sometimes two in one half and one in the other): “all seven-syllable lines of cynganedd have, except sometimes in cynganedd sain, a system of secondary stresses, either one or two in the line... secondary stresses play an important part
in the variability of rhythm in strict poetry” (Rowlands 1979:205). This might arise as a side-effect of the imposition of the cyngheadd rule, but it might also be seen as manifesting a loose iambic tetrameter (sometimes varying as trimeter) in the line. Since the line is also controlled by a seven-syllable counting meter, we might see these Welsh meters as also polymeric, and similar to Thomas’s practice, though in Thomas’s case not arising from systematic cyngheadd. Though Thomas was Welsh by nationality, his relation to Welsh-language poetics is controversial (see Saliña 2005 for a recent discussion of Dylan Thomas’s relation to Welsh poetry). For example, though there are some ways in which his sound patterning resembles Welsh poetry, it is also reminiscent of the sound patterning of Gerard Manley Hopkins, who wrote some poems in Welsh, and knew of Welsh poetic practices, and perhaps imitated them in his English poetry. Thus it is possible that Thomas’s ‘Welsh’ practice is mediated through Hopkins. However, the fact that Thomas’s syllable counting poetry somewhat resembles that of Welsh poetry – particularly in its polymetrical characteristics – cannot be explained by the influence of Hopkins, and might be understood as demonstrating a more direct Welsh inheritance in Thomas’s poetry.

3.2 Thomas and ‘sprung rhythm’

We conclude our analysis of Thomas’s poems by considering the possibility that some of his loose metrical poetry might be analysed as the meter which Gerard Manley Hopkins invented, and called ‘sprung rhythm.’ We discuss sprung rhythm in Fabb and Halle (2008), where we argue that the parenthesis-insertion rules and conditions of sprung rhythm are exactly the same as for English loose meters. Thus sprung rhythm is just loose iambic meter. Hopkins’s innovation was to add to the set of rules constituting a loose meter the option of allowing some syllables not to project. This is an option which for other poets is generally used only in strict English meters; for example John Donne makes extensive use of nonprojection in his strict iambic pentameters (Fabb and Halle 2008:60–61). Loose meters allow ungrouped syllables between groups, thus extending a pentameter line well beyond the normal 10 syllables. But if it is possible also to ignore some syllables completely (i.e., by not projecting them as asterisks), then the lines can become longer still, while still projecting a well-formed grid. This is how Hopkins managed to have iambic pentameter lines which were very long.

Hopkins’s metrical innovation has been much admired but almost never imitated. Thomas, however, has one poem which comes close, “In country sleep” (1947). This is a poem with verbal echoes of Hopkins’s sprung rhythm poem “The Windhover” (a poem analysed in Fabb and Halle 2008:87). The word ‘riding’ for
example appears in the first line of Thomas and the second line of Hopkins, the phrase 'my dear' is repeated in Thomas's first stanza and used in the penultimate line of Hopkins, and the description of the wolf's movement in Thomas perhaps recalls Hopkins's bird's movement in "The Windhover". Later in the poem, Thomas ends a line with 'hare-' and begins the next short line with 'Heeled'; 'hare-heeled' is thus a split word which recalls both Hopkins's use of the word 'heel' ('a skate's heel') and Hopkins's split word 'king-dom' in his first line. These verbal echoes strongly suggest that Thomas's poem should be seen as directly influenced by Hopkins's poem. The influence appears to involve also the meter. Thomas's poem is in loose iambic pentameter, and while it does not exploit to the full the further 'sprung rhythm' possibilities of non-projection in a loose meter, some lines must be analysed as having non-projection, such as the line quoted in (40).

(40) Night and the reindeer on the clouds above the haycocks

If we project all syllables, and insert right parentheses next to maxima we get the structure in (41).

(41) Night and the reindeer on the clouds above the haycocks

If we now insert left parentheses from right to left at binary intervals (rule 29) we get six groups at gridline 0 which is one too many for a pentameter line.

(42) Night and the reindeer on the clouds above the haycocks

The solution is to allow one syllable not to project, as shown in (43). Now only five groups are generated.

(43) Night and the reindeer on the clouds above the haycocks

This suggests that at least some of the lines in this poem are in sprung rhythm, and a rare example of an imitation of Hopkins's meter.

4. Conclusion

In this chapter, we have outlined the theory of meter which we developed in collaboration with Carlos Piera in Fabb and Halle (2008). We have shown that this theory is capable of explaining the various meters used by Dylan Thomas, including variant types of strict iambic meter, syllable counting meter, loose
iambic meter and sprung rhythm. We have shown that Thomas’s syllable counting poems are in fact polymetric, because as well as being syllable counting they are simultaneously in a loose meter, and have speculated that the same may be true of mediaeval Welsh poetry, thus showing a connection not generally noted between Thomas and the Welsh tradition. We believe that our approach to meter is able to explain a wider range of types of meter than other existing theories, because we begin from the problem of the line, and how it is measured, and derive from this other characteristics of the line, such as its rhythm.

Notes

1. This chapter is based on a paper given at the Linguistic Society of America, January 2010, as part of a session on metrical theory. At this session, Paul Kiparsky presented a paper 'meter and performance' where he also argued that some of Dylan Thomas poems are polymetric. Thanks to Gary Thoms and an anonymous reviewer.

2. Many of these poems are in the notebook (the Buffalo Notebook) which Thomas titled ‘Mainly Free Verse Poems’.

3. In the rule-based approach which we adopt, the difference between the two types of meter is that in a loose meter there is a non-iterative parenthesis insertion rule, and in a strict meter there is not; these notions will be explained later in the chapter.

4. Note that this is generated with slightly different rules from the grid above, following our standard account of iambic pentameter as explained in Fabb and Halle (2008). We are often asked how the set of rules – and hence the grid – is decided for any particular meter. The answer is that we formulate a set of rules which enables the least and most simply stated conditions on the grid, as well as explaining any variations in counting (e.g., extra or missing syllables at one end of the line, or variations in number of groups from line to line).

5. However, there is no fundamental principle which prevents a stressed syllable being ungrouped in the meter. It depends entirely on whether there are conditions which must refer to this stressed syllable: if so, then the syllable must be in a designated (head) position in the grid, and so not ungrouped.

6. Loose iambic meter is Robert Frost’s term; this meter is also called ‘Christabel meter’ (after the poem by Coleridge). ‘Iambic-anapaestic meter’ (because it appears to alternate binary and ternary sequences), ‘ballad meter’ (because many English ballads are in this meter), and ‘dol’nik meter’ (because it resembles a Russian meter of this kind).

References

All rights reserved

