
Importance Sampling in Stochastic Programming: A
Markov Chain Monte Carlo Approach

Panos Parpas
Department of Computer Science

Imperial College London, South Kensington, SW7 2AZ
p.parpas@imperial.ac.uk

Berk Ustun
Computation for Design and Optimization

Massachusetts Institute of Technology, Cambridge, MA 02139
ustunb@mit.edu

Mort Webster
Engineering Systems Division

Massachusetts Institute of Technology, Cambridge, MA 02139
mort@mit.edu

Stochastic programming models are large-scale optimization problems that are used to facilitate decision-
making under uncertainty. Optimization algorithms for such problems need to evaluate the expected future
costs of current decisions, often referred to as the recourse function. In practice, this calculation is com-
putationally difficult as it requires the evaluation of a multidimensional integral whose integrand is an
optimization problem. In turn, the recourse function has to be estimated using scenario trees or Monte Carlo
methods. Unfortunately, scenario trees do not scale well for problems with many dimensions of uncertainty
and many stages, and Monte Carlo methods require very large numbers of samples. We introduce a novel
importance sampling framework for multistage stochastic programming that can produce accurate estimates
of the recourse function using a fixed number of samples. Previous approaches for importance sampling in
stochastic programming were limited to problems where the uncertainty was modeled using discrete random
variables, and the recourse function was additively separable in the uncertain dimensions. Our framework
avoids these restrictions by using Markov Chain Monte Carlo and Kernel Density Estimation algorithms
to create a non-parametric importance sampling distribution that can form lower variance estimates of the
recourse function. We demonstrate the increased accuracy and efficiency of our approach in the context
of multistage stochastic programming using variants of the Newsvendor problem. Our numerical results
show that our framework produces more accurate estimates of the optimal value and solution of stochastic
programming models, especially for problems with moderate to high variance, multimodal or rare-event
distributions.
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1. Introduction

Stochastic programming models are large-scale optimization problems that are used to facilitate
decision-making under uncertainty. Optimization algorithms for such problems require the evalua-
tion of the expected future costs of current decisions, often referred to as the recourse function. In
practice, this calculation is computationally difficult as it requires the evaluation of a multidimen-
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sional integral whose integrand is an optimization problem. Many algorithms approximate the value
of recourse function using quadrature rules (see Pennanen and Koivu (2005)) or Monte Carlo (MC)
methods (see Birge and Louveaux (2011) and Shapiro et al. (2009)). MC methods are particularly
appealing in such cases because they are easy to implement and remain computationally tractable
when the recourse function depends on a large number of random variables. Nevertheless, the sam-
pling error in MC estimates can significantly alter the results of a stochastic programming model.
Although we can reduce the sampling error in MC estimates of the recourse function by using
more samples in the MC procedure, this approach is not computationally tractable in stochastic
programming where an optimization problem has to be solved for each sample. As a result, MC
methods need to be paired with a variance reduction technique that can produce estimates with
lower sampling error for a fixed number of samples.

In this paper, we focus on a variance reduction technique known as importance sampling that
aims to reduce the sampling error of MC estimates by generating samples from regions that con-
tribute most to the value of the recourse function. Importance sampling requires an importance
sampling distribution which is usually chosen to exploit prior knowledge about the randomness in
the underlying model. Even though many distributions can be used in importance sampling, there
exists an importance sampling distribution that is optimal in the sense that it can produce MC
estimates with zero variance (see e.g. Asmussen and Glynn (2007)). The so-called zero-variance
distribution cannot be used in practice, but it is often used to guide the design of effective impor-
tance sampling distributions. Importance sampling was first applied to stochastic programming in
a series of papers by Dantzig and Glynn (1990) and Infanger (1992). The importance sampling
distribution in these papers showed promising results as it was derived from the zero-variance
distribution. Unfortunately, the distribution was developed under the assumptions that the uncer-
tainty is modeled using discrete random variables, and that the cost surface is additively separable
in the random dimensions. These assumptions can be restrictive in practice.

The primary contribution of this paper is an importance sampling framework that does not
require such assumptions. Our framework, which we refer to as the Markov Chain Monte Carlo
Importance Sampling (MCMC-IS) framework, exploits the fact that the zero-variance distribution
is known up to a normalizing constant. It first uses a Markov Chain Monte Carlo (MCMC) algo-
rithm to generate samples from the zero-variance distribution, and then uses a Kernel Density
Estimation (KDE) algorithm to reconstruct an approximate zero-variance distribution from these
samples. With this approximate zero-variance distribution at hand, we are able to generate a new,
larger set of samples and construct a lower variance importance sampling estimate of the recourse
function. MCMC-IS is flexible, in that it can accommodate a wide array of MCMC and KDE
algorithms; non-parametric, in that it does not require users to specify a family of distributions;
robust, in that it can generate good results for probability distributions that are difficult to work
with using existing methods; and well-suited for stochastic programming, in that it produces lower
variance estimates that improve the performance of statistical tests used to assess convergence
in stopping procedures. Although both MCMC and KDE algorithms have received considerable
attention in the literature, they have not, to our knowledge, been combined in this way before.

Importance sampling is just one of many variance reduction techniques that can be used in
stochastic programming algorithms. Quasi-Monte Carlo (QMC) methods were studied in Koivu
(2005) and in Drew and Homem-de Mello (2006). The non i.i.d. case of MC sampling has been
studied in Homem-de Mello (2006). Control variates were proposed in Shapiro and Homem-de
Mello (1998) and in Higle (1998). A sequential sampling algorithm was proposed in Bayraksan
and Morton (2011). A computational assessment of conditional sampling, antithetic sampling,
control variates and importance sampling appeared in Higle (1998). QMC and Latin Hypercube
Sampling (LHS) were compared in Homem-de Mello et al. (2011). The effect of sampling to the
solution quality of stochastic programming problems was discussed in Linderoth et al. (2006).
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Using numerical experiments, we show that our framework performs well when compared to Crude
Monte Carlo (CMC) methods, Quasi-Monte Carlo (QMC) methods and the importance sampling
technique developed in Dantzig and Glynn (1990) and Infanger (1992) (DGI). In addition, we show
that our framework significantly outperforms the existing sampling methods when the uncertainty
is modeled using a higher variance, rare-event or multi-modal distribution.

MC methods need to be paired with optimization algorithms in order to solve stochastic program-
ming problems. In turn, we illustrate the computational performance of the MCMC-IS framework
by embedding it in the Stochastic Dual Dynamic Programming (SDDP) algorithm developed by
Pereira and Pinto (1991). However, we stress that MCMC-IS can be paired with many other opti-
mization algorithms, such as sample average approximation method (see Shapiro et al. (2009)),
stochastic decomposition (see Higle and Sen (1991)), progressive hedging (Rockafellar and Wets
(1991)), augmented Lagrangian methods (see Parpas and Rustem (2007)), other variants of Ben-
ders’ decomposition (see Birge and Louveaux (2011)) or even used in Approximate Dynamic Pro-
gramming algorithms Powell (2007). More generally, we expect MCMC-IS to yield similar benefits
in other areas than expected value optimization such as sampling approaches for developing stop-
ping rules (Morton (1998)), chance-constrained programming (see e.g. Watson et al. (2010)), and
risk-averse stochastic programming (see Shapiro (2009)).

Our paper is structured as follows: in Section 2, we provide a brief overview of multistage stochas-
tic programming models, and illustrate the mechanism through which decomposition algorithms
can produce inaccurate estimates of the optimal value and solution of a multistage stochastic pro-
gram when they are paired with a MC method. In Section 3, we introduce the MCMC-IS framework.
Section 4 illustrates the properties of the MCMC-IS framework using numerical experiments based
on a Newsvendor model. Section 5 demonstrates the benefits of the MCMC-IS framework when
it is paired with the SDDP algorithm to solve stochastic programming problems using additional
numerical experiments. We summarize our contributions and discuss future research in Section 6.

2. Motivation

We consider a multistage linear stochastic programming model defined as,

z∗ = min
x1

cT
1 x1 +Q1(x1)

s.t. A1x1 = b1,

x1 ≥ 0,

(2.1)

where c1 ∈Rn1 , A1 ∈Rn1×m1 and b1 ∈Rm1 . In general, the functionQ is called the recourse function,
and is used to represent the expected future costs of current decisions,

Qt(xt) =E[Qt(xt, ξt+1)], t= 1, . . . , T − 1. (2.2)

Given a fixed decision in the previous stage and a realization of the random parameters, the
future costs of the model can be estimated by solving the linear program,

Qt−1(x̂t−1, ξt) = min
xt

cT
t (ξt)xt +Qt(xt)

s.t. At(ξt)xt = bt(ξt)−Wt(ξt)x̂t−1,

xt ≥ 0,

(2.3)

where QT (x̂T−1, ξ) ≡ 0 without loss of generality. We will assume that ct ∈Rnt , At ∈Rnt×mt , Wt ∈
Rnt−1×mt , bt ∈ Rmt×1. The components of these parameters are deterministic for t = 1, but may
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be random for t = 2, . . . , T . We refer to the set of all random components of the parameters at
stage t using a Dt-dimensional random vector ξt, and denote its joint probability density function,
cumulative distribution function and support as ft, Ft and Ξt respectively. We refer the interested
reader to Birge and Louveaux (2011) for an overview of multistage stochastic programming.

Many algorithms have been developed to solve multistage stochastic programming problems.
A key step in these algorithms is the discretization of the random parameters. An alternative to
discretization is to generate samples of the random parameters, and use an MC method to estimate
the recourse function. Such an approach is advantageous in that it can accommodate discrete or
continuous random variables, remain computationally tractable for models with a large number of
random variables, and produce estimates of the recourse function whose error does not depend on
the number of random variables used in the model. Nevertheless, the error of these estimates can
significantly alter the results of a stochastic programming model. In the next section, we explain
how MC methods can be used in decomposition algorithms, and demonstrate how the sampling
error of MC estimates can produce inaccurate estimates of the optimal value and solution of a
multistage stochastic program.

2.1. The Perils of Sampling in Decomposition Algorithms

Decomposition algorithms are designed to solve multistage stochastic programming problems by
constructing a piecewise linear approximation of the epigraph of the recourse function (see Birge
and Louveaux (2011)). The approximation is composed of supporting hyperplanes to the recourse
function at fixed values of x, which we denote as x̂ throughout this paper. The supporting hyper-
planes are also known as cuts. Given a fixed value x̂, a cut takes the form of a linear inequality
constraint,

Qt(xt)≥Qt(x̂t) + ∂Qt(x̂t)(xt− x̂), (2.4)

where ∂Qt represents the subgradient of the recourse function. We note that the parameters Qt and
∂Qt are the expected values of the optimal objective value and dual variables of the linear program
in (2.3). The preceding inequality assumes that these parameters can be calculated exactly. In
practice, this can only be achieved when the random variables in the model have a limited set of
outcomes, or, as is the case in this paper, the expectations are replaced with their MC estimates,

Q̂MC
t (x̂t) =

1

N

N∑

i=1

Qt(x̂t, ξi),

∂̂Q
MC

t (x̂t) =
1

N

N∑

i=1

∂Qt(x̂t, ξi).

(2.5)

Although MC methods can significantly reduce the computational burden in generating cuts
relative to a scenario tree based approach, the cuts generated with MC methods are subject to
sampling error. Even if the sampling error associated with each cut is negligible, the errors can
compound across the iterations of a decomposition algorithm. As a result, decomposition algorithms
that use a small number of samples may produce an invalid approximation of the recourse function
that leads to inaccurate results for the original problem. We illustrate this phenomenon in Figure 1,
where we plot sampled cuts that are produced when a CMC method paired with a decomposition
algorithm in order to solve a simple two-stage Newsvendor model, whose parameters are specified
in Section 4.1.

Both cuts in this example were constructed using N = 50 samples. For clarity, we plot a subset of
the sample values Q(x̂, ξi), i= 1, . . . ,N along the vertical line of x̂, as well as their sample average.
In Figure 1(a), we are able to generate a valid sampled cut, which is valid because it underestimates
the true recourse function Q(x) at all values of x. However, it is possible to generate a sampled cut
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Figure 1 In 1(a) the sampled cut is valid; assuming that only valid cuts are generated in subsequent iterations,
a decomposition algorithm will produce accurate estimates of x∗ and z∗. In 1(b) the sampled cut is
invalid; even if all the other cuts produced by the algorithm are valid, the true optimal solution at x∗

will remain infeasible, and a decomposition algorithm will produce high-error estimates of x∗ and z∗.
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that in some regions overestimates, and in other regions underestimates the true recourse function
Q(x). We illustrate this situation in Figure 1(b), where the sampled cut excludes the true optimal
solution at x∗ ≈ 69 with z∗ ≈−20. Assuming that the algorithm only generates valid cuts until the
algorithm converges, the resulting estimates of x∗ and z∗ will be x̃≈ 38 and z̃ ≈−15, corresponding
to errors of 80% and 25% respectively. We note that the optimal solution x∗ corresponds to the
value of x that minimizes the sum of the first-stage costs and the recourse function, and not the
value of x that minimizes the recourse function (although these values appear to be very close to
each other in Figure 1).

It is true that we can entirely avoid generating invalid sampled cuts if we model the uncertainty
in the problem using a scenario tree. While this approach allows us to calculate the exact values
of the parameters in (2.4), it suffers from a different complication. Scenario trees are discrete in
nature, and therefore require models that use discrete random variables or a suitable discretization
procedure to represent continuous random variables using a finite outcomes and probabilities. In
the latter case the scenarios are fixed and the parameters in (2.4) are easy to calculate. However,
there are no guarantees that the solution obtained with the discretized scenario tree will be optimal
for the original continuous problem unless a large number of scenarios is used. Even though scenario
trees can yield accurate answers for stochastic programming problems with few random variables
and time periods, they also present computational challenges for large-scale problems with multiple
random variables and time periods. In such cases, scenario trees impose an unnecessary choice
between high-resolution discrete approximations that yield accurate solutions but are difficult to
store and solve, and low-resolution discrete approximations that may yield inaccurate solutions
but are easier to store and solve.

3. The Markov Chain Monte Carlo Approach to Importance Sampling

It is well-known that we can reduce the sampling error in the cut parameters if we increase the
number of samples that we use to construct their MC estimates. Even so, the O(N−0.5) convergence
rate of MC methods effectively implies that we have to solve four times as many linear programs
in order to halve the sampling error of the cut parameters. Given the time that is required to solve
a typical linear program within a large-scale multistage stochastic programming model, such an
approach is simply not tractable. Fortunately, the sampling error of the cut parameters depends
on σ

N
where σ denotes the variance of the estimate. As a result, an alternative way to reduce

the sampling error in the cut parameters without increasing the number of samples is to reduce
the underlying variance of the quantity that we are trying to estimate. Importance sampling is
a variance reduction technique that can produce an estimate of Q that has lower variance, and
consequently lower sampling error, than Q̂MC in (2.5). The variance reduction is achieved by using
a different probability distribution that can generate samples at regions that contribute the most to
Q. Although importance sampling estimates can have substantially lower variance than their MC
counterparts, choosing a suitable importance sampling distribution is a challenging process that is
difficult to generalize and has motivated many papers in the statistics and simulation literature.
We refer the interested reader to Asmussen and Glynn (2007) for a review of importance sampling.

3.1. Importance Sampling and the Curse of Circularity

Importance sampling is a variance reduction technique that constructs lower variance estimates
using an importance sampling distribution g, as opposed to the original sampling distribution f .
When samples are generated from the importance sampling distribution g, the recourse function
can be calculated as

Q(x̂) =Ef [Q(x̂, ξ)] =Eg[Q(x̂, ξ)Λ(ξ)]. (3.1)
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where

Λ(ξ) =
f(ξ)

g(ξ)
. (3.2)

The function Λ : Ξ→R is called the likelihood function, and is used to correct the bias introduced
by the fact that we generated the samples from g instead of f . In theory, the only requirement
for the importance sampling distribution g is that the likelihood function Λ has to be well-defined
over the support of f . In other words, g(ξ)> 0 at all values of ξ where f(ξ)> 0.

Once we select a suitable important sampling distribution g, we can use it to generate a set of
N i.i.d. samples ξ1 . . . ξN and construct an importance sampling estimate of the recourse function
as

Q̂IS(x̂) =
1

N

N∑

i=1

Q(x̂, ξi)Λ(ξi). (3.3)

The benefit of generating samples from g depends on the amount of variance reduction that
can be achieved. Importance sampling is most effective in the context of stochastic programming
when g can generate samples from the regions that contribute the most to the value of the recourse
function at a fixed point x̂. In fact, it is easy to show that the variance of an importance sampling
estimate is minimized when we sample from,

g∗(ξ) =
|Q(x̂, ξ)|

Ef |Q(x̂, ξ)|f(ξ). (3.4)

The importance sampling distribution g∗ is optimal in the sense that no other distribution can pro-
duce an importance sampling estimate with lower variance (see e.g. Asmussen and Glynn (2007)).
In fact, if Q(x, ξ) is always positive then g∗ produces estimates with zero variance, and is therefore
usually referred to as the zero-variance distribution. The problem with using (3.4) in practice is
that it requires knowledge of Ef |Q(x, ξ)|, which is the quantity that we sought to compute in the
first place. We are thus faced with a “curse of circularity” in that we can use (3.4) to construct
zero-variance estimates if and only if we already have a zero-variance estimate of Ef |Q(x̂, ξ)|.

The importance sampling framework that we introduce in this paper revolves around two key
remarks. The first remark is that we can generate samples from (3.4) using an MCMC algorithm
since we know the distribution up to a normalizing constant Ef |Q(x, ξ)|. We note that we cannot use
these samples to form a zero-variance importance sampling estimate because we need to evaluate
the likelihood in of each sample as shown in (3.2). In this case, the likelihood of a given sample is
given by

Λ∗(ξ) =
Ef |Q(x, ξ)|
|Q(x, ξ)| , (3.5)

and it is also impossible to compute in practice as it depends on Ef |Q(x, ξ)|. This leads us to the
second remark: while we cannot use the samples to directly form an importance sampling estimate,
we can use them to reconstruct an approximation of the zero-variance distribution using a KDE
algorithm. With this approximate distribution in hand, we can generate a second, larger set of
samples, evaluate the likelihood of each sample, and form a lower variance importance sampling
estimate.

The careful reader may notice that in developing the zero-variance distribution, we have ignored
the fact that the accuracy of decomposition algorithms not only revolves around accurate esti-
mates of the recourse function Q(x̂), but also depends on accurate estimates of the subgradient to
the recourse function ∂Q(x̂) as shown in 2.4. Fortunately, the convexity of the recourse function
ensures that high values of Q(x̂) also correspond to high values of ∂Q(x̂) by duality. In turn, any
importance sampling distribution that produces a lower variance estimate of Q(x̂) will also gener-
ate a lower variance estimate of ∂Q(x̂). This represents a significant computational advantage for
our framework as it avoids the need to construct two separate importance sampling distributions.
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3.2. Description of the MCMC-IS Framework

Our proposed framework consists of three steps: (1) generate samples from the zero-variance dis-
tribution using an MCMC algorithm, (2) reconstruct an approximate zero-variance distribution
using a KDE algorithm, and (3) resample from the approximate zero-variance distribution to form
a lower variance importance sampling estimate.

MCMC algorithms are an established set of MC methods that can generate samples from a
density known up to a normalizing constant. In contrast to other MC methods, MCMC algorithms
produce a sequence of serially correlated samples. This sequence forms a Markov Chain whose
stationary distribution is the target density, given by (3.4) in our case. Although many different
MCMC algorithms can be used within our framework, we restrict our focus to the Metropolis-
Hastings algorithm because it is easy to implement, does not require the specification of many
parameters, and does not depend on a restrictive set of assumptions. We refer the interested
reader to Gelman et al. (2010) for more on the Metropolis-Hastings algorithm, and other MCMC
algorithms that can be used within our framework.

The Metropolis-Hastings algorithm uses a simple accept-reject procedure in order to generate a
Markov Chain that has (3.4) as its stationary distribution. In the k-th step, the algorithm generates
a proposed state ζk using a proposal distribution whose density q(· | ξk) typically depends on the
current state ξk. Together, the proposed state, the current state and the target density are used
to evaluate an acceptance probability, a(ξk, ζk). The proposed state is accepted with probability
a(ξk, ζk), in which case the Markov Chain transitions to the proposed state ξk+1 := ζk. Otherwise,
the proposed state is rejected with probability 1−a(ξk, ζk), in which case the Markov Chain remains
at its current state ξk+1 := ξk.

In this paper, we use a special instance of the Metropolis-Hastings algorithm where new states
are proposed using a random walk process. This implies that the proposed state ζk at each step of
the Metropolis-Hastings algorithm is generated as

ζk = ξk + vk, (3.6)

where vk is a Gaussian random variable with mean 0 and covariance matrix Σ. In practice, the
Metropolis-Hastings algorithm requires that Σ is specified beforehand. However, we can avoid
specifying this parameter is we use the Adaptive Metropolis algorithm described in Haario et al.
(2001). When states are proposed through a random walk process, the proposal distribution is
symmetric and the acceptance probability can be expressed as,

a(ξk, ζk) = min

{ |Q(x̂, ζk)|f(ζk)

|Q(x̂, ξk)|f(ξk)
,1

}
. (3.7)

It is well-known that a random walk Metropolis-Hastings algorithm is inefficient compared to other
MCMC algorithms because it produces samples that are highly correlated. Nonetheless, the quality
of numerical results we achieve with this simple and admittedly inefficient MCMC algorithm only
reinforces the potential of our proposed framework.

Once a representative set of M samples have been generated from the zero-variance distribution
specified in (3.4) using an MCMC algorithm, we can reconstruct an approximate zero-variance
distribution from these samples using a KDE algorithm. KDE algorithms are established techniques
that are used to reconstruct continuous probability distributions from a finite set of samples. We
refer the interested reader to Devroye and Györfi (1985), Silverman (1986) and Scott (1992) for
a detailed overview of these techniques. In this case, the kernel density estimator is a probability
density function expressed as

ĝM(ξ) =
1

M

M∑

i=1

KH(ξ, ξi), (3.8)



Parpas, Ustun, and Webster: Importance Sampling with MCMC
9

where the function KH is referred to as a kernel function, and H ∈RD×D is its associated bandwidth
matrix. In order to ensure that ĝ is a proper probability density function, we impose the following
conditions on the kernel function,

KH(·, ·)≥ 0,∫

Ξ

KH(ξ, ·)dξ = 1.
(3.9)

In addition, we assume that the kernel matrix is positive semidefinite, meaning that the matrix
where (i, j)th entry given by KH(ξi, ξj), 1 ≤ i, j ≤M is positive semidefinite. These assumptions
are required by most KDE algorithms, and are satisfied by the majority of kernels used in practice.
A popular kernel, and the one that we use in this paper, is the Gaussian product kernel,

KH(ξ, ξi) =
D∏

k=1

1√
2πhk

exp

(
(ξk− ξi,k)2

2h2
k

)
, (3.10)

The associated bandwidth matrix H for the Gaussian product kernel is a D×D diagonal matrix
that contains the bandwidth parameters of each dimension h1, . . . , hD along its diagonal. In our
implementation, we use a one-dimensional likelihood-based search to estimate the value of the
bandwidth parameter hk separately for each dimension k.

Using the approximate zero-variance distribution ĝM , we can finally construct an importance
sampling estimate of the recourse function by generating N additional samples from ĝM . Although
these samples will not originate from the true zero-variance distribution g∗, they can still be used
to produce a lower variance importance sampling estimate provided that the KDE algorithm has
constructed a ĝM is similar to g∗. Generating samples from ĝM is also beneficial in that the samples
are independent and the kernel functions are easy to sample from. In practice, we construct ĝM
using modest values of M and then construct Q̂IS(x̂) using large values of N . The computational
burden of the MCMC step is a result of the accept-reject algorithm which typically requires more
LP evaluations (proposed samples) than are used (accepted samples). The additional advantage
of estimating and sampling the approximate importance sampling distribution is the relative effi-
ciency of generating a larger number of samples. In addition, unlike the MCMC algorithm which
is sequential, this latter step can be implemented on parallel architectures. We provide a formal
description of this framework in Algorithm 1.

3.3. Ingredients of the Convergence Analysis

The MCMC-IS framework has two sources of error. The first source of error is due to the MCMC
algorithm used to generate samples from the zero-variance distribution, and the second is due to
the KDE algorithm used in the construction of the approximate zero-variance distribution. If the
sampling algorithm is embedded within an optimization algorithm then there is also a third source
of error, but in this section we focus on the sampling aspect. The main convergence condition for
MCMC is that the Markov chain generated by the algorithm is irreducible and aperiodic. The
irreducibility property essentially means that the chain can eventually reach any subset of the space
from any state. The aperiodic condition means that the chain cannot return to a subset of the
space in a predictable manner. Formal definitions of these properties can be found in Roberts and
Rosenthal (2004). The first step in the convergence analysis is to show that these two conditions
are satisfied. In the case of the SDDP algorithm, the MCMC algorithm will be used whenever a
new sampled cut needs to be generated and therefore these two conditions will hold even if the
problem does not have complete recourse. In Section 4.2 and Section 5 we present numerical results
that suggest that a modest number of MCMC samples can achieve significant variance reduction.
A possible explanation for this result is discussed in Section 4.2.
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Algorithm 1 Markov Chain Monte Carlo Importance Sampling (MCMC–IS)

Require: x̂: previous stage decision
Require: M : number of samples generated using the MCMC algorithm
Require: N : number of samples generated using the approximate zero-variance distribution
Require: ξ0: starting state of the MCMC algorithm

Step 1: Generate Samples from the Zero-Variance Distribution using MCMC

1: Set k= 0
2: Given the current state ξk, generate ζk ∼ q(· | ξk).
3: Generate a uniform random variable u∼U ∈ (0,1).
4: Transition to the next state according to,

ξk+1 =

{
ζk if u≤ a(ξk, ζk)

ξk otherwise
,

where,

a(ξk, ζk) = min

{ |Q(x̂, ζk)|f(ζk)q(ξk|ζk)
|Q(x̂, ξk)|f(ξk)q(ζk|ξk)

,1

}

5: Let k← k+ 1. If k=M then proceed to Step 6. Otherwise return to Step 2.

Step 2: Reconstruct the Zero-Variance Distribution using KDE

6: For each state of the Markov chain generated from MCMC, reconstruct the approximate zero-
variance distribution as,

ĝM(ξ) =
1

M

M∑

i=1

KH(ξ, ξi).

Step 3: Resample from the Approximate Zero-Variance Distribution to Form an

Importance Sampling Estimate

7: Generate N new samples from ĝM and form the importance sampling estimate,

Q̂IS(x̂) =
1

N

N∑

i=1

Q(x̂, ξi)
f(ξi)

ĝM(ξi)

In order to control the error due to the KDE algorithm, we need to ensure that the number
of samples are generated by the MCMC algorithm M is large enough, and that the bandwidth
parameter hk is small enough. In particular, if (MhD)−1→∞, h→ 0 as M →∞, and the density
function is approximated as,

ĝM(ξ) =
1

M

M∑

i=1

KH(ξ, ξi) = (MhD)−1

M∑

i=1

K

(
ξ− ξi
h

)
,

then it has been shown that ĝM will probabilistically converge to g∗ under the total variation
norm (see Devroye and Györfi (1985)). Applying this result to the MCMC-IS framework is not
straightforward. The complexity stems from the fact that the previous convergence proofs for
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the KDE algorithm assume that samples are generated from g∗, whereas in our framework these
samples are generated from a Markov chain whose stationary distribution is g∗.

4. Sampling Properties of the MCMC-IS Framework

In this section, we illustrate the properties of the MCMC-IS framework using a simple stochastic
programming model, and compare them to estimates that are produced using a Crude Monte
Carlo method (CMC), a Quasi Monte Carlo (QMC) method and the importance sampling method
proposed in Dantzig and Glynn (1990) and Infanger (1992), which we refer to as the Dantzig-
Glynn-Infanger (DGI) method. Our results in this section were produced in MATLAB 2012a. In
particular, we used a Mersenne-Twister algorithm to generate random numbers used for CMC
methods, and a Sobol sequence that was randomized using the Matousek-Affine-Owen scrambling
algorithm for QMC methods. For the MCMC-IS method, we used our own implementation of the
Metropolis-Hastings MCMC algorithm and the Adaptive Metropolis MCMC algorithm described
in Haario et al. (2001), and we build approximate distributions using the MATLAB KDE Toolbox,
which is available online at http://www.ics.uci.edu/~ihler/code/kde.html.

4.1. The Newsvendor Model

Our test problem is a two-stage Newsvendor model with uncertain demand and sales prices, where
the first-stage decision-making problem is a linear program defined as,

z∗ = min
x

x+Q(x1)

s.t. x≥ 0,
(4.1)

and the recourse function is linear program defined as,

Q(x̂, ξ) = min
y1,y2

− p(ξ)y1− ry2

y1 ≤ d(ξ),

y1 + y2 ≤ x̂,
y1, y2 ≥ 0,

(4.2)

where x̂ denotes the quantity of newspapers purchased in the first stage, ξ = (ξ1, ξ2) represents the
uncertainty in demand d(ξ) and sales price p(ξ) of newspapers in the second-stage and scalar r
represents the price of recycling unsold newspapers. In our numerical experiments, we typically
model the uncertainty in demand as d(ξ) = 100exp(ξ1) and the uncertainty in sales price as p(ξ) =
1.5exp(ξ2), where ξ1 and ξ2 are normal random variables with mean µ and and standard deviation
σ. This implies that the uncertainty in d(ξ) and q(ξ) are modeled using a lognormal distribution.
We set µ= 0.0 and change the underlying variance of the model by altering the value of σ from
σ= 1 to σ= 2.

The advantages of using this simple model are that the distributions can be easily visualized, and
we can determine the value of true recourse function at various points using numerical integration
procedures. In contrast to other test problems in the stochastic programming literature, this setup
allows us to calculate the true values of optimal solution x∗ and optimal value z∗ of the underlying
model. In turn, we can examine statistics such as the mean-squared error of the estimate of optimal
solution x̃ (defined as MSE(x̃) = ‖x∗− x̃‖2), the mean-squared error of the estimate of the optimal
value z̃ (defined as MSE(z̃) = ‖z∗− z̃‖2), the mean-squared error of the estimate of recourse function
at a fixed point Q̂(x̂) (defined as MSE(Q̂(x̂)) = ‖Q(x)− Q̂(x̂)‖2) and the mean-squared error of
the approximate zero-variance distribution (defined as MSE(ĝ) =

∫
(g(ξ)− ĝ(ξ))2dξ). Indeed, such

statistics are crucial when using importance sampling procedures as they typically yield estimates
with low sample variance, but may be prone to high bias and high mean-squared error. The results
presented below are the averages of thirty simulations. Note that all the results that are presented
in Sections 4 and 5 have been normalized for clarity.

http://www.ics.uci.edu/~ihler/code/kde.html
http://www.ics.uci.edu/~ihler/code/kde.html
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4.2. The Required Number of MCMC Samples and the Effects of the Bandwidth Parameter

Our numerical experiments with the Newsvendor model suggest that a modest number of MCMC
samples (M) can produce an approximate zero-variance distribution (ĝM) that yields substantial
variance reduction in our estimates of the recourse function. As shown in 2(a), increasing M does
reduce the error in our ĝM . However, the computational cost of such an increase is not justified
in terms of the marginal improvement in the accuracy of our recourse function estimates. This is
a positive result as the MCMC algorithm represents the most computationally expensive part of
our framework. A possible explanation for this empirical observation is that if our ĝM qualitatively
agrees with g∗, then the sample statistics of the approximate distribution will qualitatively agree
with the sample statistics of the zero-variance density. In order to illustrate this point, we plot the
contours of the true zero-variance distribution g∗ in Figure 2(b) and the contours of ĝM for different
values of M in Figure 2(c)-2(e). These figures suggest that the approximate distributions produced
in the MCMC-IS framework do qualitatively agree with the true zero-variance distribution even at
low values of M . In Figure 2(f), we show the contours of our approximate zero-variance distribution
after we reduce the bandwidth parameters of the kernel function by 20%. This decreases the MSE of
ĝM by approximately 12% but increases its variance by approximately 15%, thereby demonstrating
the bias-variance tradeoff of KDE algorithms.

4.3. Adaptive Sampling of the Important Regions

The major difference between our framework and a standard MC method is that we generate
samples using an importance sampling distribution ĝM as opposed to the original distribution f .
As a result, the samples that are generated using ĝM are typically located in regions that contribute
the most to the value of the recourse function (i.e. in regions where |Q(x, ξ)|f(ξ) is high) while the
samples that are generated using f are typically located in regions where the original distribution
attains high values. We demonstrate this difference in Figure 3 where we plot a set of samples
generated using f and the CMC method (left), and another set of samples generated using ĝM and
the MCMC-IS framework. The first set of contours in Figure 3 pertains to the original distribution
f while the second set of contours pertains to the true zero-variance distribution g∗. Note that f
and g∗ are not only centered around different points but also have different shapes.

4.4. Dependence of the Sampling Distribution on the Previous Stage Decision

A desired characteristic of any importance sampling distribution used in stochastic programming
algorithms is its dependence on the previous stage decision. We illustrate this dependence in
Figure 4, where we plot the absolute difference between an approximate zero-variance distribu-
tion constructed around the point x̂r = 50 and two other approximate zero-variance distributions
constructed around the point x̂1 = 10 (left) and x̂2 = 100 (right). As shown, the approximate zero-
variance distribution produced by our framework can vary substantially as we change the previous
stage decision.

4.5. Comparison to Other Sampling Algorithms

In our next experiment, we compare the estimates produced by MCMC-IS to the estimates pro-
duced by CMC, QMC and DGI methods. In Figure 5(b), we plot the sample standard deviation
of the different methods. It is clear from this figure that the two importance sampling methods
perform well in this respect. The MCMC-IS method does, however, perform better for smaller
sample sizes. More importantly, when we plot the error in Figure 5(a), we find that the proposed
MCMC-IS method and the QMC sampling method perform best. Our results suggest that the
relative advantage of our framework over other variance reduction methods is greater when the
uncertainty in the model is increased. This is to be expected since the error of MC based methods
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M
S
E
(ĝ
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Figure 2 (a) The majority of the gains in variance reduction and accuracy can be achieved for a small values of
M . Note that the axis for MSE(ĝM ) is the right, and the scale for MSE(Q̂)is on the left. (b) Contours
of g∗. (c)-(e) Contours of ĝM for different values of M ; the bandwidth parameter for these distributions
is estimated using a one-dimensional likelihood-based search. (f) ĝ10000 with a bandwidth that is 20%
smaller for each dimension. The resulting mean square error is lower but the variance is higher for the
density in (f)
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Figure 4 The absolute difference between an approximate zero-variance distribution constructed at x̂r = 50 and
two other approximate zero-variance distributions constructed at x̂1 = 10 (left) and x̂2 = 100 (right).

depends on the variance of the random parameters. To illustrate this point, we repeat the same
calculations as above but increase the standard deviation of (ξ1, ξ2) from σ= 1 to σ= 2 as described
in Section 4.1. Increasing the variance of the underlying model typically means that more samples
are required for the algorithms to produce estimates that have comparable variance and error. In
this regime, the MCMC-IS method outperforms all other methods (Figure 5(c) and 5(d)). We note
that the error in the DGI estimates of the recourse function converges very slowly in this example
because the DGI method uses an approximate zero-variance distribution that is specifically built
for a recourse function that is additively separable in the random variables. In the our model,
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Figure 5 Top: Comparison of the accuracy and variance of estimates produced by different methods for a
moderate-variance problem with σ= 1. Bottom: Comparison of the accuracy and variance of estimates
produced by different methods for a higher variance problem with σ= 2. Note that we omit the results
for the IDG method when σ = 2 for clarity. The normalized values of SQ̂ and MSE(Q̂) for DGI are
around 20% and 40% respectively

however, the recourse function is not additively separable. This leads to estimates of the recourse
function that have high variance, and high MSE.

4.6. Multimodal Distributions and Rare-Event Simulation

Sampling in the presence of rare events and/or from multimodal distributions is a computationally
difficult task. Multimodal distributions arise frequently in operations research models (see, e.g.,
Ravindran (2008)). Rare event simulation is also an important application area (see, e.g., Bucklew
(2004)). When stochastic programming models contain these kinds of complex probability distri-
butions, then many of the sampling techniques that have been used in stochastic programming are
difficult to apply, let alone apply efficiently. Although numerous importance sampling techniques
have been developed to generate samples from such probability distributions, using these tech-
niques in the context of stochastic programming is not straightforward. First, as was illustrated in
the previous section, an ideal importance sampling distribution depends on the incumbent solu-
tion and has to be created each time we wish to generate a new sampled cut. This implies that
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Figure 6 Top: Contours of a multimodal model. Samples generated using CMC are shown on the left and the
samples from MCMC-IS are shown on the right. Bottom: Error and variance of estimates produced by
different methods.

efficiency is an important consideration. Second, stochastic programming models not only require
us to generate samples from these complex distributions, but to use them to compute an accurate
estimate of the recourse function. In turn, an appropriate importance sampling technique has to
also be able to accurately evaluate the likelihood of each sample that it generates as in (3.2) or risk
generating biased results. These issues often preclude the application of stochastic programming
when the distribution of the uncertain variables has a complex structure.

To demonstrate these issues and show that our proposed algorithm can efficiently sample such
cases, we use an example where the important regions of the recourse function are described by a
surface with two distinct modes, whose contours are shown in 6(a). In this example, the original
integrand in the recourse function Q(x̂, ξ1, ξ2)f(ξ1, ξ2) was replaced with Q(x̂,w(ξ1),w(ξ2))f(ξ1, ξ2),

where w(ξ) = exp( ξ
2

2
− (ξ+3)2

8
) +exp( ξ

2

2
− (ξ+1)2

8
) and f is the standard multivariate normal density.

This example illustrates rare-event sampling, in the sense that the majority of the samples from
the important regions are outside of the 2σ interval under the original distribution f .



Parpas, Ustun, and Webster: Importance Sampling with MCMC
17

As in Section 4.4, we then generate a set of samples using the CMC method and the MCMC-IS
framework. In this example, the samples that are generated using the CMC method are centered
around the origin, where the original distribution f attains its highest values (Figure 6(a), left). In
contrast, the samples that are generated using the MCMC-IS framework are centered around the
two modes and in proportion to the depth of each mode. These areas constitute the regions that
contribute the most to the value of the recourse function and correspond to the areas where the
approximate zero-variance distribution ĝM takes on its largest values. As a result the MCMC-IS
framework obtains an estimate of the recourse function that is both more accurate (Figure 6(b))
and has less variance (Figure 6(c)) than the other methods. In this example, we have omitted the
results for the DGI method because the importance sampling weights turn out to be zero for all
the samples, meaning that the estimates it produces do not converge. This is a well-known problem
with the DGI method that has previously been discussed in Section 1.4 of Higle (1998).

5. Performance of the MCMC-IS Framework in Decomposition Algorithms

In this section, we illustrate the performance of the MCMC-IS framework when it is embedded in a
decomposition algorithm and used to solve variants of the Newsvendor model from Section 4.1. We
begin by showing that the MCMC-IS framework can lead to accurate lower variance estimates for
stochastic programming models for different types of uncertainty. Next, we demonstrate how these
lower variance MCMC-IS estimates can improve the performance of stopping tests that are used
to assess the convergence in decomposition algorithms. Lastly, we demonstrate the computational
benefits of using the MCMC-IS framework in multistage models and demonstrate that a sampling
based approach can avoid the exponential growth in problem size that occurs when scenario trees
or discretization methods are used to model the uncertainty across multiple time periods.

We solve all stochastic programming models in this section using a MATLAB implementation of
the SDDP algorithm, where we use a MEX file and the IBM ILOG CPLEX 12.4 Callable Library to
solve linear programs. The random numbers used in this section were produced in MATLAB 2012a.
In particular, we used a Mersenne-Twister algorithm to generate random numbers used for CMC
methods, and a Sobol sequence that was randomized using the Matousek-Affine-Owen scrambling
algorithm for QMC methods. For the MCMC-IS method, we used our own implementation of the
Metropolis-Hastings MCMC algorithm and the Adaptive Metropolis MCMC algorithm described
in Haario et al. (2001), and we build approximate distributions using the MATLAB KDE Toolbox,
which is available online at http://www.ics.uci.edu/~ihler/code/kde.html.

5.1. Accuracy and Variance of MCMC-IS Estimates from a Decomposition Algorithm

In our first experiment, we compare the estimates of the optimal value z̃, and the sample standard
deviation Sz̃ from MCMC-IS, CMC and QMC methods. We consider an extension of the Newsven-
dor model from Section 4.1, where the Newsvendor buys and sells s different types of newspapers.
We purposely do not include any constraints to couple the different types of newspapers so that we
can extrapolate the true values of x∗ and z∗ for the extended problem using the true values from
Section 4.1. In this case, we can assess the accuracy of our estimates for a D = 2× s dimensional
problem by noting that the optimal solution x∗ has to be the same for each of the s different
types of newspapers, and the optimal value z∗ has to scale additively with the number of different
newspapers s.

In contrast to the experiments in Section 4, the accuracy of z̃ depends on the number of sampled
cuts that are added to the first-stage problem through a decomposition algorithm, as well as the
sampling method that is used to generate these estimates. Note that in our implementation of
SDDP we count the number of iterations by the number of cuts added to the first stage problem.
In practice, the number of iterations needed for the algorithm to converge is determined by a
stopping test that is designed to assess whether the decomposition algorithm has converged. In this

http://www.ics.uci.edu/~ihler/code/kde.html
http://www.ics.uci.edu/~ihler/code/kde.html
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experiment, however, we compare estimates that are produced after a fixed number of iterations
(we use more conventional stopping rules for the remainder of this section). Fixing the number
of iterations ensures that each sampling method produces estimates using the same number of
samples, and isolates the performance of the sampling method from the performance of the stopping
test, which we examine in Section 5.2. During our numerical experiments we fixed the number of
iterations to 8× s. We found that this simple rule was sufficient to show the numerical properties
of the different sampling algorithms.

Figure 7 shows the convergence of the estimates that we obtain when we solve a two-stage
Newsvendor problem with D = 2× 3 = 6 random variables after 8× 3 = 24 cuts have been added
to the first-stage problem. In Figures 7(a) - 7(d), we model the uncertainty in the demand and
sales price of each newspaper using the lognormal distributions from Section 4.1, and we build
the approximate zero-variance distribution for each sampled cut using M = 3000 samples that are
generated from a standard Metropolis Hastings MCMC algorithm. In Figures 7(e) - 7(f), we model
the uncertainty in the demand and sales price of each newspaper using the multimodal rare-event
distribution from Section 4.6, and we build the approximate zero-variance distribution for each
sampled cut using M = 3000 samples that are generated from the Adaptive Metropolis algorithm
described in Haario et al. (2001).

Our results suggest that the relative advantage of using MCMC-IS estimates depends on the
inherent variance of the underlying stochastic programming model. In models where the uncertainty
is modeled using a lower variance distribution, MCMC-IS produces estimates that are just as
accurate as the estimates produced by a QMC method, but that are still more accurate than
the estimates produced by a CMC method. In models where the uncertainty is modeled using
a higher variance or rare-event distribution, MCMC-IS produces estimates that are much more
accurate than those produced by QMC and CMC methods. Our numerical results also suggest
that MCMC-IS produces estimates with sample standard deviations that are far lower than the
estimates produced by CMC and QMC methods.

5.2. Performance of MCMC-IS Estimates for Stopping Tests in Decomposition Algorithms

In our second experiment, we illustrate how the low sample standard deviations that we obtain
through the MCMC-IS can improve the performance of stopping tests that are used to assess
convergence in decomposition algorithms. Once again, we use the Newsvendor model from Section
4.1 in order to gauge the accuracy of our estimates. We restrict our focus to estimates of the
optimal decision, optimal value, and the sample standard deviation of the recourse function, which
we denote as x̃, z̃ and Sz̃ respectively. We illustrate the effect of the underlying variance using
models where the demand and sales price of newspapers is distributed according to a lower variance
lognormal distribution with σ = 1, a higher variance lognormal distribution with σ = 2, and a
multimodal rare-event distribution. The exact parameters of these distributions are specified in
Sections 4.1 and 4.6 respectively.

Given that both the lower bound LB and the upper bound UB are random variables in this
setting, our stopping test is designed to assess whether the expected values of the upper bound
E[UB] and lower bound E[LB] of the model are equal to one another. This requires a one-sided
two-sample t-test for the equality of means,

H0 :E(UB) =E(LB) vs HA :E(UB)>E(LB). (5.1)

We assume that the samples are unpaired, that the sample sizes are unequal and that the standard
deviation of these variables are unknown but identical. We estimate the expected values of these
parameters using the sample averages LB and UB. Similarly, we estimate the standard deviation of
these parameters using the sample standard deviations SLB and SUB. The sample average and the
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Figure 7 Error and variance of estimates for a Newsvendor model where the uncertainty in demand and sales
price is modeled using a lower variance lognormal distribution with σ= 1 (7(a) - 7(b)), a higher variance
lognormal distribution with σ= 2 (7(c) - 7(d)), and multimodal rare-event distribution (7(e) - 7(f))
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sample standard deviation for the lower bound is constructed using MLB = 3000 and NLB = 16000
samples, while the sample average and sample standard deviation for the upper bound is con-
structed using NUB = 16000 samples. We note that we do not need to rebuild an approximate
zero-variance distribution to construct an upper bound estimate, as the lower bound and upper
bound estimates are constructed around the same first-stage solution x̂. Unlike traditional hypoth-
esis tests, we are not seeking to reject the null hypothesis but to accept it. As such, our test
stops when we are unable to reject the null hypothesis with a significance level of α= 0.99. The
well-known duality between hypothesis tests and confidence intervals implies that this procedure is
similar to the stopping tests that involve confidence intervals that are suggested in the literature.
We refer the interested reader to Pereira and Pinto (1991) and Birge and Louveaux (2011) for a
more detailed explanation of how to construct the upper and lower bound estimates within SDDP
and decomposition algorithms in general.

Our results in Tables 1-3 suggest that MCMC-IS has a positive impact on stopping tests because
it reduces the sample standard deviation of upper and lower bound estimates and thereby improves
the power of the underlying stopping test. In the context of stopping tests, a test with low power
means that the null hypothesis H0 is frequently rejected when it is false. In practice, a stopping
test with low power terminates a decomposition algorithm before has converged and ultimately
results in high errors in the values of x̃ and z̃. As in previous sections, these effects become more
significant when the variance of the underlying model is increased. Given that these results are
based on a simple two-stage model with only two random variables, we expect such effects to be
more prominent for models that contain more random variables and/or require more cuts to achieve
convergence as in 5.1. However, we note these results cannot be immediately extended to multistage
stochastic programming models: although the MCMC-IS framework can consistently be used to
compute lower variance estimates of the lower bound for all stochastic programming models, it
can only be used to compute lower variance estimates of the upper bound for two-stage models.
This is because the MCMC-IS framework build an approximate zero-variance distribution around
a single set of incumbent solutions, while the upper bound estimate in SDDP is constructed around
multiple sets of incumbent solutions. In light of the large impact that the MCMC-IS framework
can have on stopping procedures, we plan to explore more ways to use the framework to generate
upper bound estimates in our future work.

Method SLB SUB Cuts Added MSE(x̃) MSE(z̃)
MCMC-IS 40 48 7.1 4.4% 0.7%

CMC 326 329 5.9 9.2% 2.0%
QMC 312 316 5.6 16.5% 3.0%

Table 1 Output from a Newsvendor model using a lower variance lognormal distribution (σ= 1)

Method SLB SUB Cuts Added MSE(x̃) MSE(z̃)
MCMC-IS 788 839 7.5 5.4% 0.6%

CMC 44655 43686 4.7 39.0% 33.4%
QMC 33376 40552 5.0 36.3% 23.8%

Table 2 Output from a Newsvendor model using a higher variance lognormal distribution (σ= 2)
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Method SLB SUB Cuts Added MSE(x̃) MSE(z̃)
MCMC-IS 276 233 6.4 5.9% 0.5%

CMC 40589 20902 3.7 37.9% 10.7%
QMC 19901 16358 3.8 58.8% 12.7%

Table 3 Output from a Newsvendor Model using a multimodal rare-event distribution

5.3. Computational Performance MCMC-IS for Multistage Stochastic Programming Models

In our final experiment, we demonstrate the computational benefits of using a sampling approach
within a decomposition algorithm. In particular, we pair the MCMC-IS framework within the
SDDP algorithm and use this setup to solve a multistage extension of the Newsvendor model in
Section 4.1.

In our multistage extension of the Newsvendor model, the Newsvendor buys and sells a single
type of newspapers over T consecutive days. We assume that the sales price and demand of the
newspaper are distributed according to a lower variance lognormal distribution with σ = 1. We
also assume that any newspapers that are to be sold on day t+ 1 have to be bought on day t, and
that any unsold newspapers at the end of day t+ 1 have to be recycled at a price of r. Together,
these assumptions allow us to extrapolate the true values of the optimal solution x∗ and optimal
value z∗ for the multistage model from their corresponding values in the two-stage model in Section
4.1. We reason that the optimal value z∗ scales additively with the number of time periods, and
the optimal solution x∗ remains the same. As such, we can verify that the SDDP algorithm has
converged to its true value without having to rely on estimates of the upper and lower bound.

Figure 8(a) shows that the computational complexity of our setup increases quadratically with
the time horizon of the underlying problem. Moreover, as is clear from Figure 8(b) the solution
estimated with the MCMC-IS framework is within 1% of the true value. This represents a significant
computational advantage in comparison to a scenario-tree based approach, where the number of
linear programs that have to be solved to achieve convergence increases exponentially. The exact
number of linear programs that have to be evaluated in this case is is determined by the number
of samples that we use to construct the sampled cuts at each iteration of the SDDP algorithm, as
well as the number of iterations of the SDDP algorithm that we have to run until a stopping test
indicates convergence. In this case, we construct sampled cuts using the MCMC-IS algorithm with
MLB = 3000 and NLB = 16000 samples, and we use the stopping test we describe in Section 5.2
to assess convergence. We note that the stopping test from 5.2 requires an upper bound estimate,
which we construct at each iteration of the using NUB = 16000 samples.

6. Conclusions

Multistage stochastic programming problems are considered computationally challenging mainly
because the evaluation of the recourse function involves the solution of a multidimensional integral.
Numerical methods such as Sample Average Approximation (SAA) and Stochastic Dual Dynamic
Programming (SDDP) rely on sampling algorithms to approximately estimate the recourse func-
tion. The sampling algorithm used in conjunction with the optimization algorithm has a major
bearing on the efficiency of the overall algorithm and on the accuracy of the solution. As a result the
development of efficient sampling methods is an active area of research in stochastic programming.

The main contribution of this paper is the development of an importance sampling framework
that is based on Markov Chain Monte Carlo (MCMC) to generate biased samples, and a kernel
density estimation method to compute the likelihood function. Importance sampling has been
proposed before in the literature of stochastic programming. The proposed method makes fewer
restrictive assumptions than the importance sampling algorithm proposed in Dantzig and Glynn
(1990) and Infanger (1992), and in particular can perform well even when the objective function
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Figure 8 (a) Complexity of SDDP with the proposed sampling algorithm grows quadratically with the number of
dimensions. (b) Estimated solution is within 1% even for problems with a large number of time periods.

is not additively separable. Our numerical experiments show that the method outperforms Crude
Monte Carlo and Quasi Monte Carlo algorithms when the problem has moderate or high variance,
and when the probability density function is difficult to sample from.

The importance sampling framework proposed in this paper can be extended in many ways. We
have shown how importance sampling can be used in the context of a decomposition algorithm and
expected value optimization. However, it is possible to use our approach with different algorithms
(e.g. SAA) and with different types of stochastic programming models (e.g. risk averse stochastic
programming). In addition, we have shown that the proposed method performs well when com-
pared to existing methods. However we only used simplistic MCMC and kernel density estimation
algorithms. We expect that the proposed algorithm will be even more efficient if more advanced
MCMC or KDE algorithms are used.
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