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Abstract Analyses of global climate policy as a sequential decision under un-
certainty have been severely restricted by dimensionality and computational
burdens. Therefore, they have limited the number of decision stages, discrete
actions, or number and type of uncertainties considered. In particular, two
common simplifications are the use of two-stage models to approximate a
multi-stage problem and exogenous formulations for inherently endogenous or
decision-dependent uncertainties (in which the shock at time t+ 1 depends on
the decision made at time t). In this paper, we present a stochastic dynamic
programming formulation of the Dynamic Integrated Model of Climate and
the Economy (DICE), and the application of approximate dynamic program-
ming techniques to numerically solve for the optimal policy under uncertain
and decision-dependent technological change in a multi-stage setting. We com-
pare numerical results using two alternative value function approximation ap-
proaches, one parametric and one non-parametric. We show that increasing the
variance of a symmetric mean-preserving uncertainty in abatement costs leads
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to higher optimal first-stage emission controls, but the effect is negligible when
the uncertainty is exogenous. In contrast, the impact of decision-dependent
cost uncertainty, a crude approximation of technology R&D, on optimal con-
trol is much larger, leading to higher control rates (lower emissions). Further,
we demonstrate that the magnitude of this effect grows with the number of
decision stages represented, suggesting that for decision-dependent phenom-
ena, the conventional two-stage approximation will lead to an underestimate
of the effect of uncertainty.

Keywords Climate policy analysis · approximate dynamic programming · de-
cision dependent uncertainty · stochastic dynamic programming · endogenous
uncertainty

1 Introduction

Responding to the threat of global climate change is one of the most difficult
risk management problems that society faces. An optimal path of greenhouse
gas emissions reductions in principle should be the path that balances the costs
of emissions reductions, or abatement, with the climate-related damages from
emissions. However, both the costs of emissions reductions and the damages
from climate change are uncertain, and neither will be known with certainty for
a long time. Nevertheless, information about the uncertainties will be revealed
gradually, and policies will be continually responding to new information and
other changing conditions.

Models that represent the complete causal chain from economic activity
to ultimate physical impacts of climate change are referred to as “integrated
assessment models (IAMs).” They simulate both the economic and the biogeo-
physical systems and their interactions in a single model. The majority of anal-
yses with integrated assessment models are deterministic, and are focused on
understanding and improving representations of the integrated system. There
has been some work applying probabilistic uncertainty analysis to IAMs, usu-
ally in the form of Monte Carlo simulation, e.g., [16,26,27,32,33]. Studies that
have explicitly modeled sequential decision under uncertainty have represented
the problem in a highly simplified and stylized manner, often as a two-stage
problem with a small number of discrete actions and uncertainties (e.g., [2,10,
13,29–31,37].

An appropriate framing of this problem is as a dynamic stochastic opti-
mization model. This general class of problems can be formulated and solved
with either stochastic programming with recourse or dynamic programming
methods. There are several special challenges to the climate problem that make
it difficult to solve with existing numerical methods. First, the long time-lags in
the earth system make it necessary to simulate at a minimum a few centuries
ahead. Policy decisions can be revised at any time, making this a decision
problem with many stages. The dimensionality of the problem is increased
further by the number of uncertainties inherent in projecting global economic
and technological change over several centuries and in projecting the response
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of the earth’s climate system to greenhouse gas emissions. The action space
(emissions reductions) and state space (all variables required to describe the
evolution of the system over time) are continuous variables that may need to
be discretized. The dimensionality of this problem, even in a highly simplified
form, is extremely large.

One important complication associated with current integrated assessment
models is that arguments for near-term emissions reductions are motivated
less by the value of the emissions they avoid in this long-term problem and
more by the possibility that policies today will encourage technological change
which will lower future abatement costs. To explore this argument in a rigorous
framework requires modeling endogenous or decision-dependent uncertainties,
since the decision to abate today will change the probability distribution of
next period’s abatement costs. Modeling decision-dependencies of this type
poses a unique challenge to conventional stochastic programming methods,
which typically use exogenous scenario trees. Existing stochastic programming
methods that attempt to model decision-dependent uncertainties cannot be ap-
plied to this model because they apply only under very specific circumstances.
For example, Goel and Grossman [9] present a framework in which decisions
affect the time in which the uncertainties will be resolved. Baker and Solak
[2] introduce a stochastic programming version of an IAM with endogenous
decision-dependent probabilities, but one that uses a customized deterministic
mapping function to assign outcomes to decisions. Decisions in climate pol-
icy analysis influence the probability of different outcomes, and the need to
have a flexible way to capture endogenous uncertainties means that Stochastic
Dynamic Programming (SDP) is an appropriate framework for climate policy
analysis. Unfortunately, classical SDP algorithms (e.g., value iteration, policy
iteration [4]), suffer from the curse of dimensionality; i.e., the complexity of
the problem grows exponentially with the number of states.

There have been a few studies that have formally framed the climate deci-
sion problem under uncertainty as a multi-stage stochastic dynamic program,
using a variety of approaches to overcome the dimensionality challenge. Gerst
et al. [8] use discrete sampling via experimental design and a very large num-
ber of iterations to learn about the solution space, which can be computa-
tionally expensive. Kelly and Kolstad [12] and Leach [14] approximate the
value function associated with the Bellman equation using neural networks to
estimate a functional form with 16 terms, but use discrete gridded samples
in state-space to iteratively improve the approximation. Crost and Traeger
[6] and Lemoine and Traeger [15] statistically estimate relationships between
state variables offline in order to reduce the dimensions of the state vector,
and then use conventional backward induction on the reduced state-space. All
of these approaches rely on discretizing a (possibly reduced) state-space into
intervals, and therefore require difficult tradeoffs between resolution/accuracy
and computation time.

Here we present an alternative efficient solution method for multi-stage,
multi-dimensional stochastic dynamic programs, based on Approximate Dy-
namic Programming (ADP)[4,25]. In this approach, we approximate the value
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function with a continuous function, which avoids the resolution and compu-
tational issues of discretized approaches. A key challenge associated with the
successful application of the ADP methodology is the specification of the set
of basis functions used to construct an approximate value function. The solu-
tion obtained via ADP methods is known to be sensitive to the choice of basis
functions that are used to build the value function. If the true value function is
not spanned by this basis then the ADP algorithm will converge to the wrong
solution. This false convergence is difficult to detect in practice.

We address this issue using two alternative approaches for value func-
tion approximations, one parametric, using global regression, and one non-
parametric, using a mesh-free moving least squares approach. The parametric
method is in principle faster but may exhibit the false convergence issue dis-
cussed above. The non-parametric method may be slower but can be used to
detect errors in the choice of basis functions. We develop and test our algorithm
using a stochastic dynamic programming version of the Dynamic Integrated
model of Climate and the Economy (DICE) [20]. We demonstrate that for
this application, ADP has several advantages over alternative solution meth-
ods including the ability to model decision-dependent uncertainties, manage
a high-dimensional state space over a multi-stage stochastic decision problem,
and converge in a fraction of the computational time. Using numerical results,
we show that an increase in uncertainty in future abatement costs leads to a
slight increase in the optimal level of near-term emissions reductions when the
uncertainty is exogenous. However, once a probabilistic decision-dependent ef-
fect is included, the optimal near-term emissions reductions are greater than
the expected value case. In this latter context, we demonstrate that the effect
of decision-dependent uncertainty increase with the number of decision stages
represented, suggesting a potential bias in two-stage approximations.

We describe the DICE model, the formulation of the stochastic version,
and the algorithms for solution using ADP in Section 2. Section 3 validates
the new algorithms. In Section 4, we present the results of simulations of the
base model using both parametric and non-parametric value function approx-
imations, as well as the results of the decision-dependent variation. Section 5
gives a concluding discussion and suggests directions for future research.

2 Methods

Integrated assessment models [17,34] are a general class of models that couple
economic growth equations with differential equations that describe the tran-
sient evolution of the biogeophysical earth system. IAMs fall into two broad
subgroups: policy evaluation models, which simulate exogenous emissions poli-
cies, and policy optimization models, which are optimal control models. The
model described in this study falls into the latter category. We illustrate our
computational solution algorithm on one such model, but the techniques are
broadly adaptable to other models in the same class as well as other intertem-
poral optimization models.
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2.1 The DICE Model

The effect of learning on optimal policy choice is calculated using a stochastic
version of the DICE-99 model [20]1. The DICE-99 model is a Ramsey growth
model augmented with equations for CO2 emissions as a function of economic
production, the carbon-cycle, radiation, heat balance, abatement cost and cli-
mate damage cost functions. The model solves for the optimal path over time
of the savings/consumption decision, and also the emissions abatement de-
cision that balances the cost of emissions abatement against damages from
increased temperatures. Specifically, DICE is a deterministic, constrained non-
linear program which chooses investment I(t) and abatement µ(t) in order to
maximize the sum of discounted utility:

max
I(t),µ(t)

T∑
t=0

U(c(t), L(t))(1 + ρ(t))−1, (1)

where U(·, ·) is the utility function, c(t) is the per capita consumption, L(t) is
the population, and ρ(t) is the social rate of time preference. The maximiza-
tion is subject to a set of constraints, including the production function for
the economy, the relationship between economic output and emissions, rela-
tionships for concentrations, radiative forcing, temperature change, and the
reduction in output from both abatement costs and damage costs. The full set
of equations for the model is given in the Appendix below and more details
are in [20]. The time horizon of the model is 350 years in 10 year steps.

2.2 Formulation of the Decision under Uncertainty Problem

Parameters in the DICE model are uncertain, as clearly we do not have perfect
information about future economic growth and technological change or a com-
plete understanding of the earth’s climate system. But the uncertainty in some
parameters are more important than others in terms of their effect on optimal
abatement decisions. Nordhaus and Popp [21] performed uncertainty analysis
of the DICE model and concluded that the most critical parameters are those
that determine the costs of emissions reductions and those that determine the
ultimate damages from temperature changes (as opposed to uncertainties in
baseline projections). Decisions under uncertainty in climate damages have
been more fully examined by others [6,10,13,29,37]. However, Kelly and Kol-
stad [12] and Webster et al. [31] have shown that it may take a very long
time before the uncertainty in damages is reduced. In contrast, some of the
uncertainty in the costs of emissions reductions may be reduced sooner. The
complication with cost uncertainty is that the time in which new information
is obtained will depend on the level of abatement attempted. In this analysis,
we focus on the uncertainty in the cost of abatement. The problem becomes

1 Newer versions of DICE exist [19], however we use DICE-99 for its relative simplicity
and because the subsequent updates do not change the qualitative points being made here.
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Fig. 1 Schematic of Sequential Abatement Decision under Uncertainty

one of choosing a level of abatement in each decision stage under uncertainty
in abatement costs, after which information is received about costs that may
shift the expected future costs, which are still uncertain. In the next stage,
abatement levels are chosen again after observing the realized costs in the
previous period. The decision problem under uncertainty is illustrated in Fig-
ure 1, using a skeleton of a decision tree, assuming a finite set of N decision
stages. Mathematically, the stochastic problem is that in equation (2), where
µt is the abatement level in stage t, θt is the cost shock in stage t, and Rt is
the discounted utility in stage t.

max
µ1

{
R1 + max

µ2

Eθ1 [R2 + . . .]

}
. (2)

We implement and solve the stochastic version of the model using the frame-
work of stochastic dynamic programming. Dynamic programming uses the
Bellman equation [3] to decompose the problem in (2) into the relatively sim-
pler set of conditions that must hold for all decision stages t:

Vt = max
µt

[Rt + E {Vt+1(µt, θt)}] . (3)

The expression in (3) captures the essential nature of the stochastic optimiza-
tion problem; just as the deterministic DICE finds the intertemporal balance
between the costs of reducing emissions now and the future benefits of avoided
climate damage, the stochastic problem is to find the optimal balance between
near-term costs and expected future costs. As an illustration, Figures 2 and
3 show the near-term costs and expected future costs, respectively, that are
balanced in the first of the two numerical experiments presented below.

In the deterministic version of DICE, abatement cost as a percentage of
output (GDP) is a function of the abatement decision variable,

AC = 1− b1µb2 .

Where c1 and c2 are calibrated as in [20]. b1 starts at a value of 0.03 and grows
over time. The growth rate of the cost coefficient declines over time as

gb(t) = −0.08e−0.08t.

The cost coefficient grows as,

b1(t) =
b1(t− 1)

(1− gb(t))
.
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Fig. 2 Current stage utility as a function of
control rate in first decision stage when abate-
ment cost is uncertain.
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Fig. 3 Expected future utility as a function of
control rate in first decision stage when abate-
ment cost is uncertain.

We represent uncertainty in future abatement costs as an i.i.d. multiplicative
shock in each period to the reference growth rate of costs gc(t). Because the
shock is applied to the growth rate of costs, the uncertainty in the level of
costs have memory; i.e., the sample paths of abatement costs over time are
not mean-reverting. In the results presented below, the reference distribution
for the cost growth rate shock is assumed to be Normal with a mean of 1.0
and a standard deviation of 0.4. The uncertainty in abatement cost is based
on a detailed uncertainty analysis of a higher resolution economic model of
emissions [32]. Below, we also present results from a sensitivity analysis of the
optimal control to the standard deviation of the cost shock.

For ease of exposition, we have made a few simplifying assumptions in
the stochastic decision model. First, we fix the savings rate in capital stock
in the economy I(t)/Y (t) to the optimal trajectory from the deterministic
model. This is because the optimal rate of investment is largely unresponsive
to changes in abatement decisions or in abatement cost assumptions. The
DICE model is defined in 10-year steps over a 350-year time horizon (35 model
periods). Rather than define each decade as a decision stage, each decision
stage in the stochastic model consists of 5 DICE model periods (50 year steps),
for a total of seven decision stages (N = 7). Multi-decade decision stages,
as opposed to decadal, make the communication of results easier and more
importantly better characterize the stochastic process being modeled. The
lifetime of many of the large capital investments that are affected by the
abatement decision, such as a coal-fired power plant, typically have lifetimes of
30 − 50 years. Similarly, information about technological breakthroughs that
drive the changes in the abatement costs may not occur every 10 years, nor
do large policy shifts. The seven-stage model presented here approximates the
time scale of the problem, while having significantly higher resolution than the
two-stage model approaches that are most common in the literature.



8 Mort Webster et al.

Our primary objective here is to explore the impacts of decision-dependence.
In the example here of abatement costs, much of the uncertainty in costs of
reducing future emissions is due to uncertainty in the success of technological
change. One conception of technological change is called learning-by-doing [1,
36,35], which views the rate of progress (e.g., in cost reductions) as a function
of cumulative installed capacity or use. This view of technological change is
clearly decision-dependent. For example, significant efforts to reduce green-
house gas emissions would lead to greater capacities of low-carbon emitting
technologies, such as wind or carbon-capture and storage, which in turn might
drive down the costs of those technologies relative to a world without the emis-
sion reduction efforts. An alternative representation of technological change is
learning-by-searching, such as explicit economic models of R&D [23, 11]. In
this latter process, the feedbacks between emissions policy and cost reductions
are indirect and more controversial, but plausible enough to be a common mo-
tivation for those seeking such policies. Such a causal chain would link emission
reduction policies, and their corresponding relative price effects, to an incen-
tive to direct greater R&D expenditures towards lower-emitting technologies,
and the greater expenditures are assumed to have more success on average
at lowering costs. This feedback is more controversial, particularly the final
causal step in the preceding description. Our purpose in this study is not to
develop a detailed representation of technological change, but rather to focus
on the process of decision-dependence which exists in some fraction of the
full set of complex feedbacks that emissions reduction efforts would stimulate.
Motivated by the type of decision-dependence suggested by some models of
technological change, we developed an alternative version of the stochastic
model using a stylized version of the general feedback mechanism. Specifically,
we assume that abatement µ in one decision stage lowers the mean of the cost
distribution in the next stage as

c̃1(t) = c̃1(t− 1)(1− αµ(t− 1)) t > 1

c̃1(t) = c̄1(t) t = 1

where c̃1 is the mean of the cost distribution in the decision-dependent ver-
sion, c̄1 is the mean of the cost distribution in the reference model, and α > 0 is
a scaling constant that alters the magnitude of the decision-dependent effect.
We assume memory in this stochastic process; i.e., additional controls imple-
mented in the next period can further lower the current mean of abatement
costs. This representation will necessarily lead to probability distributions of
abatement costs under the optimal policy that have a lower mean than the
reference version of the model, which will in turn lead to higher emission con-
trol rates simply as a function of the lower costs. In order to control for this
effect, the comparisons below between the decision-dependent and the exoge-
nous models use a modified set of cost distributions in the exogenous version.
Specifically, the decision-dependent version is simulated for several thousand
iterations beyond convergence, and the abatement cost samples that result
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under the optimal decision-dependent policy are used to construct new dis-
tributions. These distributions of cost uncertainty, which vary over decision
stages, are then sampled i.i.d in the version denoted as ’exogenous’.

2.3 Approximate Dynamic Programming Implementation

The finite-horizon stochastic dynamic programming problem formulated above
is traditionally solved as a Markov Decision Problem [4], using a backward
induction algorithm. The algorithm iterates over the state, action, and uncer-
tainty spaces for each decision stage to calculate the exact value function and
corresponding policy function in each decision stage. Because the action and
state spaces are all continuous, this would require discretization for each vari-
able. For the DICE model, there are seven state variables that must be known;
the capital stock (K(t)), three carbon concentration variables for a three-box
model of the carbon cycle (MAT (t),MU(t),ML(t)), two temperature vari-
ables for a two-box energy-balance model (TE(t), TL(t)), and the evolving
abatement cost coefficient (c1(t)). All of these variables require knowledge of
the previous value to calculate the next value (see [20]).

In addition to the state variables, conventional dynamic programming
would also iterate over discretized values of the action µ(t) and the cost growth
shock θ(t), resulting in at least a 9-dimensional problem in each of 7 decision
stages. This is an extremely large problem even if the discrete intervals are at
an unsatisfyingly coarse resolution.

Instead of traditional backward induction, we have developed an approxi-
mate dynamic programming (ADP) algorithm for solving this problem, shown
in Algorithm 1 (reference to only one of the two value function approxima-
tions is made). ADP is a family of methods (e.g.,[5,25]) that approximates
the value function in each stage by adaptively sampling the state space to
focus on higher expected value states until the value function converges. One
critical advantage of forward sampling is that this enables a straightforward
representation of decision-dependency. Two critical design choices in any effi-
cient ADP algorithm are 1) the sampling strategy, and 2) the value function
approximation.

Our solution algorithm consists of two phases. In phase I, the bootstrap
phase, we use Latin Hypercube Sampling [18] to explore both the action space
over all stages and the cost shock space. These sample paths are simulated
forward, and the resulting Bellman values for the sample states and actions are
saved for each decision stage. The full set of these samples of the value function
are used to produce the first estimate of the value function approximation for
each decision stage, using either of the two methods described below.

In phase II, we randomly sample the cost shock in each period to obtain
a sample path, and choose the optimal action in each stage using the current
value function approximations for the value of the next state, and the simulated
DICE equations to obtain the current reward. The overall sampling approach
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Algorithm 1: DICE Approximate Dynamic Programming Algorithm

Input: Decision stages N , bootstrap iterations bs, possible controls µ, uncertainty
variable θ ∼ N(1, σ), system state s0 ∈ S at time t0, system state transition
equations F (µ,θ), convergence criterion, ε̄

Phase I Initialization-Bootstrap: While i ≤ bs,
1. Forward Pass
Loop over t from 1 to N , Latin Hypercube Sampling from θ and µ and set current
reward as:

Rt(si) = U(ct, Lt)(1 + ρt)
−1.

2. Backward Pass
Loop over t from N to 1, setting the Bellman Value as:

vt(si) = (Rt(si) + vt+1(yi|si))

where yi is the sampled next system state resulting from µt and θt, and vN is a
pre-defined terminal value.

3. Construct First Estimate of Value Function: When i = bs, use OLS to set:

v̂t(s) = Φ(s)r0,

where Φ is a row vector of basis functions and r0 is a column vector of coefficients
that solves:

min
r0

∑
si

(v̂t(si)− Φ(si)r0)2.

for all sample states si.

Phase II Main Loop-Optimization: While i > bs,
1. Forward Pass
Loop over t from 1 to N , sampling θ randomly and sampling controls µ that achieve:

max
µ

[Rt(si) + E {vt+1(yi|si)}]

where
E {vt+1(yi|si)} = v̂t+1(µt, θt).

Set current reward, Rt(si), as in Phase I.

2. Backward Pass
Loop over t from N to 1, setting the new Bellman Value as:

vt(si) = (Rt(si) + v̂t+1(yi|si))

where yi is the sampled next system state.

Update ri using a Bellman Error routine:

ri+1 = ri − γiεi∇ri

where γi is a predefined smoothing parameter and

εi = vt(si)− v̂t(si).

Exit when:
ε̄ = |v̄1,i − v̄1,i−1|

where ε̄ represents the change in the moving average of the total Bellman value in
the initial stage.

Output: Optimal first-stage control, µ∗1, value function approximations, v∗t (s)
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is an efficient (stratified) pure explore strategy in Phase I and a pure exploit
strategy in Phase II.

In this study, we compare two alternative approaches to value function
approximation, one parametric and one non-parametric. Both approaches ap-
proximate the expected value of being in any state as a reduced-form function
of key features. Because of the forward sampling, not all state variables re-
quired for backward induction are needed as the key features or basis functions
[5]. For this application, the fundamental structure is one of balancing near-
term costs of abatement (reducing the size of the economy) against long-term
costs from climate change. In terms of the state variables described above,
the key features needed to approximate the value function are the capital
stock K(t) and the global surface temperature change TE(t). The parametric
approach employed is an iterative least squares regression method [4], ap-
proximating the value function as a nonlinear function of capital stock and
temperature change. That is, the approximation of the value function is

v̂t(s) = Φ(s)r (4)

where Φ is a row vector of basis functions and r is a column vector of coefficients
that solves,

min
r

∑
si

(v̂t(si)− Φ(si)r)
2.

for all sample states si. Given an initial estimate of the coefficient vector r from
the bootstrap phase, we iteratively improve the estimate using a Bellman error
approach [4].

We compare an iterative regression approach with a non-parametric alter-
native. In this second approach, we apply moving least squares (MLS) [7] to
interpolate the value function at a given state within a neighborhood. Meshfree
methods such as MLS have been applied to other problems requiring interpola-
tion in high dimensional space such as scattered data modeling, the solution of
partial differential equations, medical imaging, and finance [7]. In the context
of stochastic optimization, MLS was applied in [22] in an iterative algorithm
that solves for the stochastic maximum principle. Here we apply the method
in the context of the dynamic programming principle.

The approximate value of a state s is:

v̂t(s) = Φ̄(s)r̄(s) (5)

The difference between equations (4) and (5) is that the coefficient vector r̄
depends on the state s. Note that r̄(s) is obtained by solving

min
r̄

∑
si

(v̂t(si)− Φ̄(si)r̄(si))
2.

for all sample states si within some neighborhood of the state s. This requires
solving many regressions, one for each point to be interpolated, as compared
with the parametric approach. However, these regressions are generally for a
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small number of samples in the immediate neighborhood, whereas the para-
metric approach is global and uses all samples which can grow to a large
number. Thus, the tradeoff is between solving many small regressions (MLS)
versus fewer larger regressions (parametric). Furthermore, by using linear basis
functions and relatively small neighborhoods, this approach can approximate
a large class of value functions, which may not be true for global approxima-
tions with any fixed set of basis functions. To store samples from all previous
iterations and efficiently search for samples within a given neighborhood, we
use a kd-tree data structure [7].

3 Model Validation

We first validate both seven-stage ADP implementations with no uncertainty
in abatement cost against the results of the original DICE model, solved as
a deterministic NLP. For ease of comparison, we modify the deterministic
version of DICE to choose a single emissions control rate for each 50-year
decision stage, rather than a distinct control rate for each decade. For the
ADP version, we eliminate the uncertainty in abatement cost growth rates in
order to approximate the deterministic solution. Figure 4 shows the resulting
optimal decisions, as the fractional reduction below the reference emissions.
The resulting optimal control from both ADP versions consistently converge
to within a few percent of the NLP optimal controls. To test for convergence,
we use the change in the moving average of the total Bellman value in the
initial stage:

ε̄ = |µiV − µi−1
V |. (6)

Because convergence is stochastic, we use a running average of 1000 sample
values. The evolution of the convergence criterion over iterations is shown in
Figure 5 for representative solutions of the global regression and the moving
least squares algorithms. In general, the MLS algorithm converges in fewer it-
erations, typically 2000 iterations beyond the bootstrap for MLS as compared
with over 10000 iterations for global regression to achieve a convergence crite-
rion below 1e-7. The tradeoff in computation speed is less clear, because each
iteration of the MLS algorithm is more expensive, including augmenting the
kd-tree, numerous searches of the kd-tree for nearest neighbors, and numerous
regressions. The total computation time to achieve convergence to less than
1e-7 is roughly equivalent between the two approaches, and the numerical re-
sults are comparable. For the remainder of this paper, we present only the
results from the global regression version.

Next, we validate both ADP implementations for the stochastic case against
the results of a stochastic dynamic program (SDP) version of DICE solved us-
ing a traditional backward induction algorithm. Given the need to iterate over
discrete actions µ(t), cost growth shocks θ(t), and the DICE model’s seven-
dimensional state variable, we choose a two-stage model as the maximum-
dimension model that can be solved using traditional numerical techniques
within a reasonable timeframe and at an appropriate level of resolution. Both
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Fig. 4 Optimal control rate (%) in all decision stages when abatement cost is deterministic.
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ADP methods converge to an optimal first-stage decision that is very close to
that from backward induction, and the second stage optimal decisions are all
in the same range, as shown in Table 1.

4 Results of Numerical Experiments

4.1 Results without Decision-Dependence

We now introduce uncertainty in the growth of the abatement cost coefficient
as described above. We assume a reference value for the standard deviation in
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Table 1 Optimal Controls for Stochastic Two-Stage Problem

Implementation Stage 1 Stage 2 p5 p50 p95

Backward Induction 0.0705 0.0581 0.105 0.187
ADP Regression 0.0766 0.0412 0.115 0.219
ADP MLS 0.0757 0.0511 0.103 0.197
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Fig. 6 Uncertainty in abatement cost coefficient based on 20000 iterations and normally
distributed i.i.d. multiplicative shock to growth rate with mean 1 and standard deviation
0.4.

cost shocks of 40% based on [32]. Figure 6 shows the resulting ranges in the
abatement cost coefficient over time that results from 20000 samples in each
stage of the normally distributed multiplicative shock applied to the growth
rate. Using the ADP algorithm with global regression, we solve a seven-stage
stochastic dynamic program with uncertain growth in abatement cost in each
stage. As an example of the surface approximation of the Bellman value func-
tions the stage 4 value function surface is shown in Figure 7. The surface for
the other stages has the same general shape. The resulting optimal controls
over the decision stages is shown in Figure 8. While the initial stage has a
single optimal control rate, the optimal controls in all remaining stages are
probabilistic and state-dependent. We therefore present the resulting optimal
controls after convergence to the optimal policy using box plots. As a basis
of comparison, we also plot the optimal controls from the deterministic NLP
version of DICE. Note that the optimal first stage decision is a slightly higher
control rate than the deterministic model. The same effect is seen in Figure 9,
where an increase in the standard deviation of the cost shock while preserv-
ing the mean leads to slightly higher optimal first-stage controls (i.e., lower
emissions). However, this effect of exogenous uncertainty on optimal control
is quite small in magnitude.
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Fig. 7 Representative surface of Bellman Value function by state variables, Capital Stock
(K) and Temperature (TE).
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Fig. 8 Optimal control rate in 7-stage model with uncertain abatement costs. Box plots
indicate the optimal control rates in stages 2-7, which are state-dependent. Black markers
indicate the optimal control rates from a deterministic NLP version of DICE.

4.2 Results with Decision-Dependent Uncertainty

We now turn to the endogenous decision-dependent version of the model. As
described in Section 2.2, the mean of the distribution of abatement costs in
each stage is now a function of previous abatement decisions. This stylized
model is intended to capture the generic effects of assuming that emissions
limits induce technological change, which in turn lowers the costs of future
abatement. Although not resolved in this model, this phenomenon could rep-
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Fig. 9 Optimal emissions control rate in first decision stage as a function of the standard
deviation of the cost growth rate shock.
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Fig. 10 Optimal Stage 1 control rate for different strengths of the decision-dependency.

resent either learning-by-doing in technological change [1,36,35] or induced
R&D spending leading to technological change [23,11].

The stylized model used here is not the appropriate tool for determining
the empirical strength of the decision-dependent effect, so we present a sen-
sitivity analysis over a range of values for the strength of this effect (Figure



An ADP framework for modeling global climate policy 17

2 3 4 5 6 7
0

0.02

0.04

0.06

0.08

0.1

Number of Stages

O
p
ti
m
a
l
S
ta
g
e
1
C
o
n
tr
o
l
R
a
te

 

 

Exogenous

Decision-Dependent

Fig. 11 Optimal Stage 1 control rate for different numbers of stages. Shown for case with
exogenous cost uncertainty and decision-dependent cost uncertainty

10). Note that a value of zero for the parameter alpha is equivalent to the
original reference model presented above, and a value of 1 indicates that the
distribution of cost shocks almost entirely depends on the previous decision.
To compare the effect of adding the decision-dependency of the cost uncer-
tainty, we need an appropriate comparison, because the decision-dependent
effect leads to different distributions of cost-uncertainty with lower means.
For each value of the alpha parameter presented, we compare against a case
with exogenous cost uncertainty, in which the abatement cost is drawn (i.i.d.)
from the same distribution of costs that resulted under the decision-dependent
version but independent of the control rate chosen in the previous stage. For
even a relatively weak decision-dependent effect (e.g., alpha = 0.1) a higher
control rate is optimal in stage 1. In terms of the Bellman equation, there is
additional marginal value in the next stage (t+ 1) to each unit of abatement
in period t. In contrast, the exogenous case with identical abatement cost dis-
tributions leads to the same optimal control rate in the first stage, since there
is no added value in future stages to controlling more now. This source of
additional value from decision-dependency, in terms of inducing technologi-
cal change, is often a primary motivation for near-term emissions reductions.
However, it is typically not represented within integrated assessment mod-
els except for specialized versions focused on developing representations for
technical change.
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A key question in the literature on sequential decision under uncertainty
is whether the often-used simplification of two-stage models to approximate
multi-stage finite-horizon problems is an appropriate and robust simplifica-
tion. As discussed in the introduction, restricting analysis to two-stage models
has been a common strategy for addressing the computational burden of tradi-
tional stochastic programming and stochastic dynamic programming methods.
The ADP approach presented here allows many more stages to be represented
and still converges to a solution within seconds to minutes. In Figure 11 We
compare the optimal first stage control rates that result for finite-horizon prob-
lems with different numbers of total stages. We compare this for both the model
with exogenous uncertainty in abatement costs and the model with moderate
strength (α = 0.5) decision-dependent cost uncertainty. When the uncertainty
in abatement cost is exogenous to the control rates chosen, the effect of more
decision stages is to reduce the optimal control rate in the initial period. In
contrast, when cost uncertainty is influenced by the control rate chosen, the
effect of more future decision stages is to increase the optimal initial control
rate. Because the representation here assumes that the reductions in the mean
of the cost distribution are permanent and can be compounded, more future
stages increase the marginal value of controlling emissions in the current stage.
This result suggests that for exogenous uncertainties, the traditional two-stage
approximation may be relatively robust. In contrast, if the focus of analysis
is on R&D or other path-dependent decisions, a two-stage model may not
capture the full value of near-term investments in a multi-stage context.

5 Discussion

Decision problems about how to respond to climate change will occur gradually
over very long time-scales, under a great deal of uncertainty, and with learn-
ing along the way about these uncertainties. Further, sociotechnical systems,
such as the global economic-energy-emissions nexus, often exhibit feedbacks
between decisions and uncertainties over time, in contrast to assumptions of
exogeneity conventionally used to keep computations tractable. Use of op-
timization and simulation models of such complex systems typically neglect
uncertainty or simplify the model to two decision stages, where uncertainty is
resolved in the second period. To explore more realistic decision problems, we
require algorithms that can tractably solve multi-period stochastic optimiza-
tion with multi-dimensional state variables and feedbacks between decisions
and uncertainties.

We have demonstrated two variants on such an algorithm here, and ap-
plied it to the problem of optimal emissions abatement under abatement cost
uncertainty to respond to climate change. These algorithms converge quickly
without having sacrificed resolution in state space, action space, or number of
decision stages. Using these algorithms, we have demonstrated that 1) path-
dependency can increase the optimal level of first stage controls, and 2) this
effect is increasing in the number of decision stages modeled. This suggests
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that treating decision-dependent phenomenon as exogenous and two-stage ap-
proximations of multi-stage problems where there is decision-dependency could
result in bias towards lower first stage controls. Such a bias would result from
neglecting a component of the true value in future states of near-term invest-
ments and controls. The example here is merely suggestive, and exploration
of other uncertainties as well as theoretical developments are needed to more
fully explore this question.

We have also compared two alternative methods for value function approxi-
mation, one parametric and one non-parametric. The non-parametric approach
using moving least squares converges in fewer iterations, but each iteration is
more computationally expensive. This particular application happens to have
smooth value function surfaces that are well approximated by global second-
order polynomials. However, other questions may involve highly nonlinear or
discontinuous surfaces, such as considering threshold effects or tipping points
in the climate system. We expect that the non-parametric approach will have
significant advantages for such applications, and constitutes a basis of our
future work with these algorithms.
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Appendix

In this Appendix, we present the DICE model equations.

max
I(t),µ(t)

W =
∑
t

U [c(t), L(t)]R(t). (A.1)

R(t) =

t∏
ν=0

[1 + ρ(ν)]−10 (A.2)

ρ(t) = ρ(0)e−g
ρt.

U [c(t), L(t)] = L(t)log[c(t)]. (A.3)

gpop(t) = gpop(0)e−δ
popt (A.4)

L(t) = L(0)e
∫ t
0
gpopt

Y (t) = Ω(t)(1− b1(t)µ(t)b2)A(t)K(t)γL(t)1−γ (A.5)

gA(t) = gA(0)e−δ
At (A.6)

A(t) = A(0)e
∫ t
0
gAt

Ω(t) = 1/[1 +D(t)] (A.7)

D(t) = θ1T (t) + θ2T (t)2 (A.8)

gb(t) = gb(0)e−δ
bt (A.9)

b1(t) = b1(t− 1)/(1 + gb(t))

b1(0) = b∗1

E(t) = (1− µ(t))σ(t)A(t)K(t)γL(t)1−γ (A.10)

gσ(t) = gσ(0)e−δ
σ
1 t−δ

σ
2 t

2

(A.11)

σ(t) = σ(t− 1)/(1 + gσ(t))

σ(0) = σ∗

Y (t) = C(t) + I(t) (A.12)

c(t) = C(t)/L(t) (A.13)
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K(t) = (1− δK)K(t− 1) + 10× I(t− 1) (A.14)

K(0) = K∗

LU(t) = LU(0)(1− δ1t) (A.15)

ET (t) = E(t) + LU(t)

MAT (t) = 10×ET (t− 1) +φ11MAT (t− 1)−φ12MAT (t− 1) +φ21MUP (t− 1)
(A.16)

MAT (0) = M∗
AT

MUP (t) = φ22MUP (t− 1) + φ12MAT (t− 1) + φ32MLO(t− 1) (A.17)

MUP (0) = M∗
UP

MLO(t) = φ33MLO(t− 1) + φ23MUP (t− 1) (A.18)

MLO(0) = M∗
LO

F (t) = ηlog[MAT (t)/MPI
AT ]/log(2) +O(t) (A.19)

O(t) = −0.1965 + 0.13465t t ≤ 11

= 1.15 t > 11

T (t) = T (t− 1) + σ1F (t)− λT (t− 1)− σ2[T (t− 1)− TLO(t− 1)] (A.20)

T (0) = T ∗

TLO(t) = TLO(t−1)+σ1F (t)− λT (t− 1)− σ2[T (t− 1)− TLO(t− 1)] (A.21)

TLO(0) = T ∗
LO
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Table 2 Nonlinear Model Results

Parameter Value Description

rho(0) 0.03 Initial rate of social time preference
gρ 0.25719 Decline rate of social time preference
gpop(0) 0 a
δpop 0 a
L(0) 0 a
b2 0 a
γ 0 a
a 0 a
a 0 a
a 0 a
a 0 a
a 0 a
a 0 a
a 0 a
θ1 -0.0045 Damage Coefficient Linear Term
θ2 0.0035 Damage Coefficient Quadratic Term
gb(0) -0.08 Decline in Abatement Cost Function
deltab 0.5 Change in Decline of Cost Function
b∗1 0.03 Intercept Control Cots Function


