#### Loss Minimization & Grid Stability in the Azores

Masoud H. Nazari PhD Candidate of

Engineering & Public Policy and Electrical & Computer Engineering Departments of Carnegie Mellon University Visiting Student in MITEI

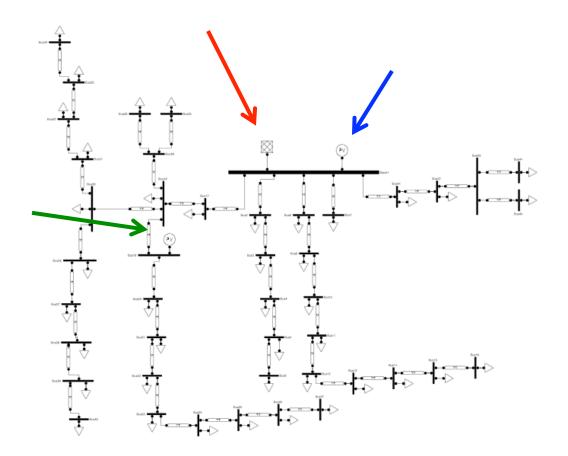


#### Talk outline

- Introduction about Flores Island and its electric network
- Minimizing delivery losses in the island
- Dynamic stability of the island
- Potential solutions to stability problem
- Conclusions and future work



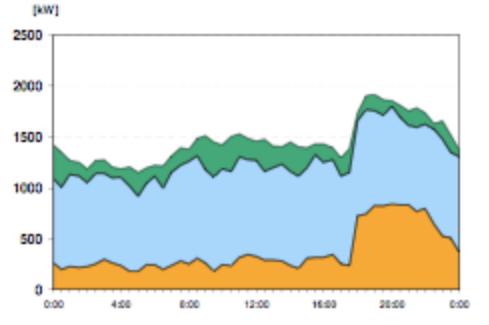
#### **Flores Island**


- One of the islands of the Western group of the Azores
- It has an area of 143 km<sup>2</sup>
- A population of approximately 4000 inhabitants





#### **Electric Network of Flores**

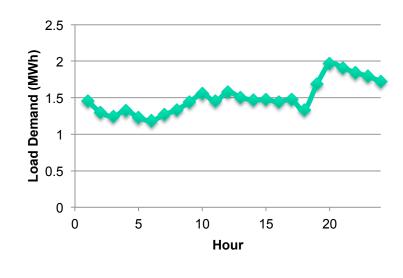

- Radial 15 kV distribution network
- Total demand is 2MW



#### One-line diagram is produced by PSAT



# Availability of Renewable and Load Pattern




Data about typical winter day.

Green wind



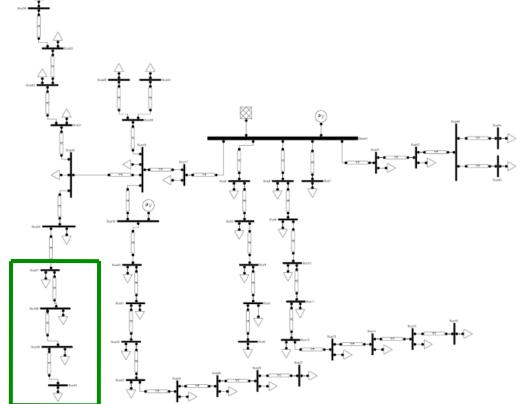
- Blue hydro
- Red diesel



| Winter | Max (MW) | Min | (MW) |
|--------|----------|-----|------|
| Hydro  | 0        | .9  | 0.8  |
| Wind   | 0        | .6  | 0.05 |



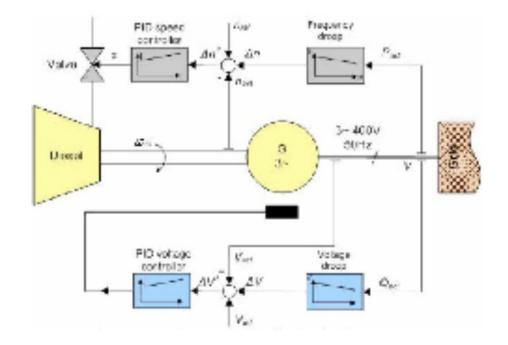
 ${\color{black}\bullet}$ 


#### **Distribution Losses**

- Distribution Losses in the island is around **2%**
- It accounts for ~1MWh daily energy losses and ~365MWh/yr
- It costs the island around **60,000\$/yr**
- It causes **117 tons/yr** of CO<sub>2</sub> emission
- This happens when wind turbine has 0.88 power factor and has not control over voltage



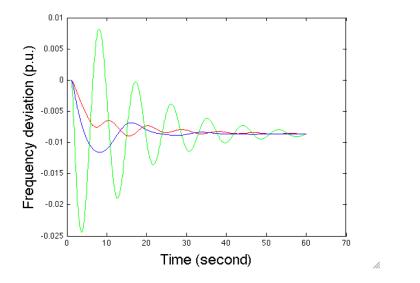
# **Minimizing Delivery Losses**


- Delivery Losses could reduce by 50%
- By controlling voltage of the wind turbine
- Optimally locating new wind turbines in the system
- This accounts for 183MWh/ yr saving of energy
- This causes reduction of CO<sub>2</sub> by 58.5 tons/yr

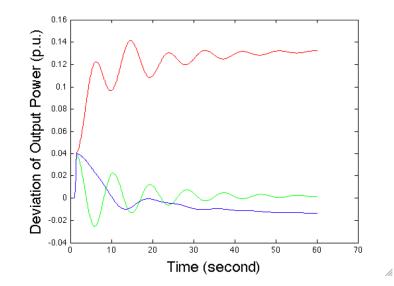




# **Dynamic Modeling**


- Diesel generator has fast
  governor control
- Hydro turbine has slow
   governor control
- Wind plant has no active control over voltage and frequency

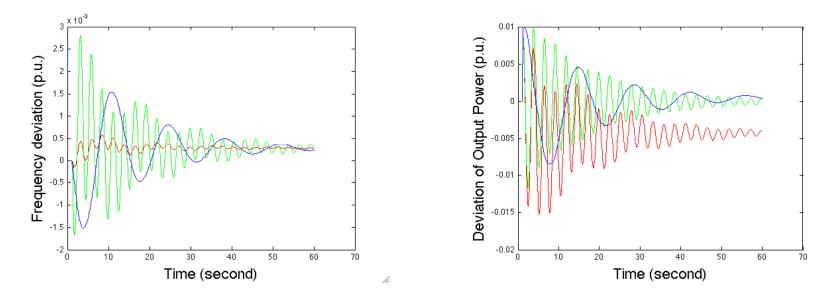





## **Dynamic Simulation**

• Decoupled real-reactive power model




- Green wind
- Blue hydro
- Red diesel





# **Dynamic Simulation**

Coupled real-reactive power model



- Green wind
- Blue hydro
- Red diesel



11.

### Issues of Using Diesel Generator for Primary Control

- Diesel generator is the only source to compensate fluctuations of wind
- Diesel cannot warrant stability when penetration of wind is high
- This could cause wear-and-tear of governor control
- Increasing emission of diesel generator
  - CMU work shows using gas turbine for compensating fluctuations of wind increases ~20% CO<sub>2</sub> and 50-70% No<sub>x</sub> emission, compared to full power steady state operation.

**Carnegie Mellon** 

11 Source: J. Apt et al, Environmental Science and Technology

## Potential Solutions to Dynamic Stability Problem

- 1. Designing faster control (e.g. bang-bang or high gain) for the hydro turbine
- 2. Implementing flywheels with fast dynamic response
- 3. Designing advanced power electronics control for diesel (PSS) and/ or for wind plants



#### Conclusions

- By controlling voltage set of available wind turbines and optimally locating new wind turbines, more than 50% of losses could be reduced
- This accounts for saving 30,000 \$/yr and reducing CO<sub>2</sub> by
   58.5 tons/yr



## **Conclusions and Future Work**

- Governor control of diesel generation should not be used for compensating fluctuations of wind
- Wind fluctuations could be compensated by implementing flywheels or designing advanced power electronics for wind or diesel
- Future work is to design optimal control for flywheel and/or advanced power electronic control



# **Questions**?

