Opportunities for Energy Efficiency in Buildings

Leon Glicksman Building Technology Program School of Architecture and Planning School of Engineering

May 26, 2011

Atmospheric CO₂ Concentration

U.S. Energy Flow 2004 Traditional Solution Focus

U.S. Energy Flow 2004 Neglected Focus

Energy Efficient Buildings

- Building Efficiency is an Important Solution to Energy Problem
- Cost Effective when Done Properly
- Requires Integrated Approach
- Important Contributions
 - New Technology
 - New Assessment Tools: Virtual Building
- Challenges in the future

U.S. Buildings

- •39 % of total energy (in UK 50 %)
- •72 % of electricity
- •90% of time spent indoors
- Major health problems: indoor climate

2004 U.S. Buildings End Use

Total Energy Consumption: 21.07 Quadrillion Btu

2004 Commercial Buildings End Use

* -- Excludes buildings energy consumption in the industrial sector.

2004 Commercial Buildings End Use

* -- Excludes buildings energy consumption in the industrial sector.

Physical Limits of Performance

Commercial Buildings For example: green roof, cool roof??

Zero net energy high rise? Cover entire surface with PV, what % of building energy?

Wind

Economic Limits

Electric Power Costs

Technology	Cents/kWe-hr		
Nuclear	4-7		
Gas/Combined Cycle	4-6		
Coal	4		

Sources: Deutch and Moniz, MIT study 2003; Langcake, Renewable Energy World, 2003; Kats, California study, 2003

Electric Power Costs

Technology	Cents/kWe-hr		
Nuclear	4-7		
Gas/Combined Cycle	4-6		
Coal	4		
Renewable			
Wind	3-8		
Biomass (25MW)	4-9		
Small Hydro	5-10		
Solar Thermal Electric	12-18		
Solar PV	30-80		

Sources: Deutch and Moniz, MIT study 2003; Langcake, Renewable Energy World, 2003; Kats, California study, 2003

Electric Power Costs

Technology	Cents/kWe-hr		
Nuclear	4-7		
Gas/Combined Cycle	4-6		
Coal	4		
Renewable			
Wind	3-8		
Biomass (25MW)	4-9		
Small Hydro	5-10		
Solar Thermal Electric	12-18		
Solar PV	30-80		
Efficiency of Consumption			
Advanced Buildings	0-6		

Sources: Glicksman Physics Today 2008 Deutch and Moniz, MIT study 2003; Langcake, Renewable Energy World, 2003; Kats, California study, 2003

Figure 2 U.S. mid-range abatement curve - 2030

Carbon dioxide abatement: estimated removal cost per ton of CO² in 2005 dollars and removal potential in gigatons/yr for various strategies. Transportation and building efficiency measures

Energy Efficient Buildings

- Building Efficiency is an Important Solution to Energy Problem
- Cost Effective when Done Properly
- Why don't more US homes adopt efficient measures?

Barriers

- Conservative Industry
- Fragmented Field
- Lowest First Cost
- Lack of Incentives
- Poor Education
- Lack of information
 - Performance Projections
 - Results from New Buildings
- Linear Designs

Figure ES- 5: Measured versus Proposed Savings Percentages

There's no single silver bullet to solve the energy problem

There's silver buckshot

Building Technology Program at MIT

- Joint program Architecture and Engineering
- 5 full time faculty
- 25 graduate students
- Research on the next generation of technology
 - Materials
 - Energy efficient operations
 - Community level impact
- Research on integrated design
 - Optimized design
 - Trade off: energy efficiency- renewables

Virtual Design Tools - some examples: MIT Design Advisor

Introduction		Les cripuor	Typology: single double triple single glazed glazed glazed (no blinds) (no blinds)	e double triple inside d glazed glazed vent.	outside vent.	
Comfort			Clazing Type: Iow-e Vindow Area: 75 % - the percentage of the room wall that the window takes up			Advanced (blinds, ventilation)
i Comfort	2a	Wall Description	Insulation Type: foam Insulation Thickness: 2.0 (standard) om		Design Advis	<mark>or for</mark>
Daylighting	3	Building	Location: by oity by olimate Boston Building Dimensions North-South Length: East-West Length:	12 m - (four-sided case only) 12 m - (four-sided case only)	Architects	
I Daynghining I Report	4	Occupancy [1]	Choose an occupancy type Occupancy Load: 0.10 Lighting Requirements: 400 - office work (EU std.) Equipment Load: 5.00	ux		Advanced (air changes)
	5	Representative Room [N Room Depth: 7 m - perpendicu W E Room Width: 5 m - parallel to u S Room Height: 3 m - vertically p.	lar to windowed surface windowed surface arallel to windowed sur Scenari	nt Design os	
6 Natural Ventilation Image: Pure Mechanical Energy System Image: Im						
	7	Thermal Mass 1	High Thermal Mass: exposed ceiling and floor; concretes Low Thermal Mass: carpeting/ wood, stone systems	ilab system		
	8	Overhang [Overhang Depth: 0 m - (0 indicates no overhang)			
				save ▼ edit ▲ delete	save - edit ▲ delete	save → edit ▲ delete
			Sceñario One low-e 3 meters	Scenario I wo low-e 3 meters	Scenario Three low-e 3 meters	Scenario Four Iow-e 3 meters
			Boston 🔿 N	Boston 🔷 Ň	Boston 📿 N	Boston 📿 N
			Choose an occupancy type 0.10 pp/m ² - 400 lux - 5.00 M/m ²	Choose an occupancy type 0.10 pp/m ² · 400 lux · 5.00 W/m ²	Choose an occupancy type 0,10 pp/m ² - 400 lux - 5.00 W/m ²	Choose an occupancy type 0.10 pp/m ² - 400 lux - 5.00 W/m ²
			room: 5 m × 7 m	room: 5 m × 7 m	100m: 5 m × 7 m	room: 5 m × 7 m

Commercial Roof Types

modified bitumen roof

ballasted roof

cool roof

http://www.lexiscoatings.com/wp-content/uploads/mod-splash.jpg http://home.att.net/~wavetrader/spf6.JPG https://ssl2.msstate.edu/vpfa/admin/fm/conprojects/conprojimages/00000441.jpg http://www.epa.gov/region8/images/greenroof_terrace.jpg

Boston, 3-story, 50% glazing in each room

ABU-DHABI MASDAR DEVELOPMENT Goal: Zero Carbon

Foster and Partners

Energy Use vs Additional Capital Cost Above Baseline Commercial Building PV \$4/W over 5 years.

-

Total Cost vs Capital Cost

Updated output

\$4/W over 5 years.

Natural Ventilation

MIT- Cambridge University Monitoring and Simulation

MIT CoolVent Design Program

Test Building 2 Philip Merrill Environmental Center

Natural Ventilated Building, Luton England

Luton Building Interior

Cross Ventilation Design: Night cooling

Walls Release Heat, Maximum Ventilation

Walls Absorb Heat, Minimum Ventilation

C

Luton Interior Temperatures: August 2003

Luton August 2003

Natural Ventilation: Wind scoop

Natural Ventilation: Wind scoop

Zion National Part Visitor Center

Floor area ~ 500 m2 Chimney area ~ 9 m2 to vent 5 floors

CoolVent

Open fume hoods: Energy Loss

Energy Efficient Ventilation Design for New Cancer Research Facility

Comfortable

No Central Heating System!

Aerogel insulation using nanotechnology

Aspen Aerogel

Commercially available aerogel for insulation purposes

Cabot Nanogel[®] particles and Thermal Wrap[™]

Aspen Aerogel[™] Spaceloft[®]

- Granules or aerogel particles embedded in a fiber blanket
- Thermal properties: 14-20 mW/mK
- Our objective: practical aerogel insulation systems with improved performance

Use of Solar Energy

- Acceptable Interior Lighting Level : 1/10 to 1/100 of exterior level
- Associated thermal load of solar less than that for artificial lighting
- How to control it?
- How to bring it deeper into interior?

Enhancing daylight deeper in rooms

- Anidolics (based on non-imaging optics: research made at LESO-PB/EPFL)
 - Photos show 2 identical rooms at the same time, one equipped with an anidology system, the other without

Full Scale Test in Tokyo of Window Unit

Building Condition Monitoring

Broken Buildings Waste Energy

- HVAC ≈ 50% of **Total** building energy use
- Faulty HVAC ≈ 5-30% of **Total** building energy use
- Simultaneous heating and cooling, extraneous HVAC operation, imbalanced flows ≈ 80% of "faults"
- Detecting, evaluating and diagnosing broken buildings is central to scalable energy efficiency

Fixing Buildings Is Very Hard

- Culture of fixing buildings is re-active, not pro-active
- Performance data is rarely collected, reviewed, or used for decisions; data is expensive ~ \$1k per point
- Building documentation is usually poor; collecting system and equipment details is time consuming
- Risk-aversion and up-front labor costs control activities (~70% of data point cost is labor)

Thesis Focus on Automated Fault Detection and Evaluation

- Create a low-cost, easy-to-use tool to help fix lots of buildings, everywhere, quickly and consistently
- Help buildings saves money, reduces CO₂ emissions, improve comfort conditions and create jobs
- Combine theory and practice into a web-based, automated FDD&E software system

Testing M16 and M56 AHUs

China ~ 10 M new residence units/year!

We conducted surveys with three groups of Chinese consumers:

- 1. Visitors to the *Tian Hong* sales office in Beijing,
- 2. Other potential home-buyers in Beijing, and
- 3. Chinese nationals at MIT.

Tian Hong is a new "affordable" housing development in Beijing priced at 2600 RMB (\$313) per sq. m.

Survey: Three Most Important Features of Home

Published Fall 2006

SUSTAINABLE URBAN HOUSING IN CHINA

Principles and Case Studies for Low-Energy Design

Leon Glicksman and Juintow Lin

Editors

