

Aravind Ratnam

Steve Connors

Ned Spang

TRADEOFFS IN ARCHITECTING SMART EV CLUSTERS

The Mobi.E Project

Introducing MOBI.E Why architecture? Capturing architecture **Evaluating architecture** Drawing conclusions Next steps

Why is Architecture Important?

3

The primary link between benefit and cost. High leverage on an organization's activities. Relatively small portion of an organization's efforts Yet dictates majority of work! Source of competitive advantage. Good architecting provides: Leverage within one project. Cross project commonality. Good interface control. Creative new solutions. (E. Crawley)

EV CHARGING SYSTEMS

REAL-TIME VISUALIZATION OF CHARGING POINTS, INCLUDING CHARGING STATUS AND VACANCY INFORMATION

REMOTE MONITORING OF CHARGING PROCESS

CRM PLATFORM FOR STAKEHOLDERS' MANAGEMENT

EV CHARGING SYSTEMS

WEB-BASED MULTI-PLATFORM ACCESS PC, PDA, CELL PHONE

INTEGRATED INVOICING WITH COMPLEMENTARY SERVICES

PARKING, PUBLIC TRANSPORTS, DOMESTIC ELECTRICITY, CREATION OF PERSONAL AND BUSINESS ACCOUNTS

ROAMING BETWEEN ELECTRIC MOBILITY ELECTRICITY RETAILERS

PORTUGUESE ELECTRIC MOBILITY PROGRAM BUSINESS MODEL: WHO'S WHO IN ELECTRIC MOBILITY

Citizen / Organization

ELECTRIC MOBILITY ELECTRICITY RETAILER

Sells electricity for EV vehicle charging

CHARGING NETWORK OPERATOR

Operates charging network access points, making the charging service available to its users through different electric mobility retailers

MANAGING AUTHORITY

Ensures integration between all stakeholders as well as the integrated management of information and energy flows within the electric mobility framework

SERVICES OPERATOR

Supplies additional services such as parking, which might be integrated into a single invoice

ELECTRICITY DISTRIBUTION NETWORK

Distributes and supplies the electricity sold by the electric mobility retailer

EV CHARGING SYSTEMS TECHNICAL CONSORTIUM ARCHITECTURE

Study questions

What were the design choices made in MOBI.E? What functionality was given up?

Is MOBI.E considered to be 'well' architected?

According to the current architecture principles.

Is it future ready and foolproof?

Is it flexile, scalable, agile and adaptable?

Have we discovered anything new about architecting during MOBI.E?

What can we add to the body of architecting knowledge?

Capturing System Design

Who am I talking to?

Questions to ask

An interview framework

Generic introduction Interviewer background Architectural strategy **Beneficiary** needs Policy view, culture and incentives Upstream and downstream influences The organizational view The knowledge view and the future

The Results <that I hope to get!>

Structured Morphological Matrix– MOBI.E (Hypothetical)

	Choice A	Choice B	Choice C	Choice D	Choice E	Choice F	Choice G	Choice H
Generating Function	Wind Energy	Geothermal Energy	Nuclear Energy	Solar Energy	A+B	A+B+C+D	B+C	A+B+C
Charging Config Function	110V, 20A	220V, 200A	A+B					
Billing Function	Pre-paid	POS, Post- paid or Pre- paid	Post-paid	POS				
Real Time Update Function	On mobile phone	Online	Manual	A+B+C				
Energy Transfer Function	G2V+V2G	G2V	V2G					
Security Function	Basic Access Authenticat ion	Digest Access Authenticatio n	HTTPS	A+B	A+C	B+C	A+B+C	

...within the overall context

Tools for evaluating system architecture

Whack-a-mole!

Design for Changeability

E. Fricke, BMW

Considerations while evaluating future changes

The Flow of Requirements

Complementary Viewpoints: Needs

The architectural selection process

But don't go too far with flexibility!

Why are we doing all this?

Understand tradeoffs in design practice. Recommend improvements in Mobi.E design. Any showstoppers in current design? Extract best practices from industry. Integrate them into theory & future design. Where are the biggest gaps between theory and practice???

THANK YOU!