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• We are interested in simulating dilute polymeric fluids: often modeled as a suspension of
non-interacting microscopic dumbbells in a Newtonian solvent

• Dumbbells: Two masses joined by a spring with Finitely Extensible Non-linear Elastic (FENE)
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• Fluid governed by coupled Stokes–Fokker–Planck system:
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for (x∼, t) ∈ Ω× (0, T ] where the FP equation is:
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• High-dimensional FP equation is most computationally challenging part: posed in 6 spatial
dimensions + time

• Working in Lagrangian coordinates, high-dimensional FP equation reduces to many-query
problem: solve parabolic problem (with unbounded convection coefficient F∼ ) at each grid
point in Ω

• For a given flow (i.e. for fixed Re, Wi, b, β, T ), the family of FP equations are parameterized
by x∼ ∈ Ω 7→ κ

≈
(tk), hence we train the RB space using a training set Ξtrain = {x∼i ∈ Ω, i =

1, . . . , ntrain} using a POD-greedy scheme

• We have developed offline-online decomposition for computing ψ and τ
≈
, with rigorous error

bounds with respect to the ‘truth’ finite element solution for isolated FP equation, e.g. the
C0(0, T ; L2(D)) bound for ψ is:
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• Each POD-Greedy step involves selecting the parameter x∼
i 7→ κ

≈
i(tk) in Ξtrain which maximizes

the error bound, then perform a POD in time on the corresponding ‘truth solution’

• This has enabled numerical methods with real-time response for the isolated FP equation

• Future work: numerical method with rigorous rigorous error bounds for the nonlinearly cou-
pled Stokes–FP system using RB method for the FP equation


