Reduced basis methods for the Fokker–Planck equation in polymer fluid dynamics

Dr. David J. Knezevic (dknez@mit.edu), Prof. Tony Patera

- We are interested in simulating dilute polymeric fluids: often modeled as a suspension of non-interacting microscopic dumbbells in a Newtonian solvent
- Dumbbells: Two masses joined by a spring with Finitely Extensible Non-linear Elastic (FENE) force law $\mathcal{F}(q) = q/(1 |q|^2/b)$, where $q \in D = B(0, \sqrt{b}) \subset \mathbb{R}^d$, d = 2 or 3
- Fluid governed by coupled Stokes–Fokker–Planck system:

$$\operatorname{Re}\frac{\partial \underline{u}}{\partial t} + \nabla_x p - (1 - \beta)\Delta_x \underline{u} = \frac{\beta}{\operatorname{Wi}}\frac{b + d + 2}{b}\nabla_x \cdot \underline{\tau},\tag{1}$$

$$\nabla_x \cdot \underline{u} = 0, \tag{2}$$

$$\underline{\tau}(\underline{x},t) = \int_D \underline{F}(\underline{q}) \otimes \underline{q} \,\psi(\underline{x},\underline{q},t) \,\mathrm{d}\underline{q}.$$
(3)

for $(x, t) \in \Omega \times (0, T]$ where the FP equation is:

$$\frac{\partial \psi}{\partial t} + \underline{y} \cdot \nabla_x \psi + \nabla_q \cdot \left((\nabla_x \underline{y}) \ \underline{q} \ \psi - \frac{1}{2\mathrm{Wi}} \underline{F}(\underline{q}) \psi \right) = \frac{1}{2\mathrm{Wi}} \Delta_q \psi \tag{4}$$

for $(\underline{x}, q, t) \in \Omega \times D \times (0, T]$

- High-dimensional FP equation is most computationally challenging part: posed in 6 spatial dimensions + time
- Working in Lagrangian coordinates, high-dimensional FP equation reduces to many-query problem: solve parabolic problem (with unbounded convection coefficient \underline{F}) at each grid point in Ω
- For a given flow (i.e. for fixed Re, Wi, b, β, T), the family of FP equations are parameterized by $\underline{x} \in \Omega \mapsto \underline{\kappa}(t^k)$, hence we train the RB space using a training set $\Xi_{\text{train}} = {\underline{x}^i \in \Omega, i = 1, \dots, n_{\text{train}}}$ using a POD-greedy scheme
- We have developed offline-online decomposition for computing ψ and τ , with rigorous error bounds with respect to the 'truth' finite element solution for isolated \widetilde{FP} equation, e.g. the $C^0(0,T; L^2(D))$ bound for ψ is:

$$\Delta_N^{\hat{\psi},l}(\underline{\kappa}) = \sqrt{\frac{m(e_N^0, e_N^0) + 2\mathrm{Wi}\Delta t \sum_{k=1}^l \varepsilon_N^2(t^k; \underline{\kappa}) \prod_{j=1}^{k-1} (1 + \frac{1}{2\mathrm{Wi}}\sigma(\underline{\kappa}^j)\Delta t)}{\prod_{j=1}^l (1 + \frac{1}{2\mathrm{Wi}}\sigma(\underline{\kappa}^j)\Delta t)}}$$

- Each POD-Greedy step involves selecting the parameter $\underline{x}^i \mapsto \underline{x}^i(t^k)$ in Ξ_{train} which maximizes the error bound, then perform a POD in time on the corresponding 'truth solution'
- This has enabled numerical methods with real-time response for the isolated FP equation
- Future work: numerical method with rigorous rigorous error bounds for the nonlinearly coupled Stokes–FP system using RB method for the FP equation