
Interoperable Digital Musicology Research via music21 Web Applications

Michael Scott Cuthbert, Beth Hadley, Lars Johnson, Christopher Reyes
Department of Music and Theater Arts
Massachusetts Institute of Technology

Cambridge, Mass., USA

{cuthbert, bhadley, larsj, chrisrr}@mit.edu

Abstract

Digital humanities practices applied to musical scores have the potential to open up vast new datasets and avenues for research in
musicology and are beginning to transform the field of musical research. Yet beyond the common difficulties of all digital humanities
projects, significant problems arise in digital musicology that are unique to the structure of musical scores and the lack of available
tools for manipulating scores. Performing analysis tasks often requires specialized tools that have high barriers to entry, such as
compiling, choosing a particular operating system, and converting data between divergent formats. The “webapps” module of the
open-source music21 toolkit provides the architecture to connect various digital musicology projects. It makes standard but
time-consuming musicological tools available to less technologically sophisticated users while providing tremendously varied
developmental options to technically-inclined researchers. The authors propose a JSON format for encoding both score data and
manipulations to/analysis of scores that can easily be used by backend systems besides music21, whether specialized for musical
analysis or for other digital humanities and machine learning tasks. The article ends by stressing, with examples, the continued need for
standalone musical analysis systems even in a world of easily available web systems.

Keywords: Digital Musicology, scores, music web systems

1. Background: Digital Musicology today

Musicological research, particularly of western classical
music, has long relied on the intense study of small
numbers of individual works looking for particularly
distinctive, inspiring, or unusual moments in single
scores. Comparative research among scores or repertories
has been out of favor since the middle of the century
(Cook, 2004) because of inaccuracies (particularly a bias
towards western, often Germanic, forms) and an inability
to cope systematically with large corpora. Computational
approaches to repertories have been embraced in the past
twenty years by several projects, but they have not been
the norm in musicology due to the difficulty in obtaining
computer-encoded versions of scores and in particular the
absence of easy-to-use software packages for examining,
analyzing, and manipulating these scores.

Music21 (Cuthbert & Ariza, 2010) is an open-source
object-oriented toolkit built in Python for digital and
computational musicology. The toolkit builds on the
strengths of earlier applications, such as the Humdrum
toolkit (Huron, 1997), but adds to it an object-oriented
framework that allows users to find desired data more
quickly and easily. First released in 2008 for all standard
operating systems (including Windows, OS X, and Unix
variants), the music21 toolkit is now in its fourteenth
release and the first non-beta version was released on June
14, 2012. The rapid adoption of music21 for use by
computational musicology projects has made it close to a
new de facto standard for computer-aided work, but
difficulties in increasing its use among less technically
minded musicologists has necessitated recent work in
building web applications to take advantage of its power
while making it simpler to use and eliminating the need
for installation.

2. The Present and Future Need for Web
Applications in Digital Musicology

Over the past fifteen years, web applications have
dominated the field of computational musicology tools by
providing musicologists with immediate access to music
datasets and simple analytical tools. However, without
providing an infrastructure for customization, research is
commonly limited to the materials provided through the
site, leaving little room for creative development and
investigation.

We take the project Kernscores (Sapp, 2008) as
exemplifying both the great potential and binding
limitations of current musicological web application
systems. Like most digital musicology sites, it uses
URL-encoded commands accessed via websites to
transform data into a variety of musical formats and give
the results of simple analytical processes such as key
analysis or piano roll diagrams of the pieces. These
analyses have great potential, yet the currently available
methods come with significant drawbacks. The most
obvious is that the tools can only be applied to the scores
made available by the developers—a problem shared with
nearly all similar sites. These scores need to be encoded in
formats that are either not in general use (e.g.,
Humdrum/Kern) or cannot represent standard notational
symbols that are important to researchers and performers
(e.g., MIDI which stores the notes D and E as the same
pitch and cannot encode tempo markings such as allegro
moderato). More significantly for developers, the
URL-encodings are not documented and the code for the
backend systems are generally not released, making it
impossible for outside developers to expand the system.

Although music21 has been designed to be easy enough
for a professional musicologist without previous
programming experience to learn to use in a few weeks,
even this requirement presents too high of a bar for many
users. Web applications offering even simple commands
that process user-uploaded data and return results
designed for users to view or hear without further
computational processing can be incredibly valuable to
researchers of all technical backgrounds.

Additionally, a service-oriented architecture (SOA)
allows more advanced web developers to easily integrate
complex computational methods into their own web
applications. Web applications are currently being
produced for many platforms, and the easy integration of
computational back-end tools would make such
applications even more powerful.

Finally, computer scientists working on improving
generalized algorithms for classification of data are
another untapped audience needing web applications for
musical scores. A researcher wishing to see if her
algorithm for clustering data can also work on musical
scores will seldom have time or expertise to learn a
specialized system for feature extraction of musical data;
she and her team will be searching for already created sets
of feature data (such as the Million Song Dataset gives for
audio data (Bertin-Mahieux, et. al, 2011)) or a way of
easily obtaining these features from data gathered from
other sources. A service-oriented architecture is critical
for the needs of researchers only tangentially connected to
digital musicology. Such a web architecture would allow
this researcher to leave specialized feature extraction
tasks to musicological experts and focus on her own
expertise in algorithmic design.

3. Music21 Web Applications

Since its conception, music21 has provided a modular
infrastructure for manipulating and analyzing scores. This
makes it ideal for providing the link between accessible
web environments and sophisticated music research.
Beginning with the 1.0 release, music21 includes a
module designed for developing a service-oriented
architecture utilizing the full suite of analysis tools
provided by music21. The webapps SOA eliminates
many hurdles to utilizing the music21 toolkit by placing
it in a web-based setting, yet still provides users and
developers unparalleled freedom.

Music21 web applications import and export data in a
variety of formats, catering to a wide range of user
communities. Computer-aided musicology has always
depended on utilizing various data formats to encapsulate
the vast variety of information extracted from music
queries. For example, music21 web applications export
textual and numeric data in formats ranging from simple
text or JSON, to .csv and spreadsheet formats, to
graphical plots. It supports numerous music notation

formats, including MusicXML and Lilypond as well as
MIDI and even Braille translation. Additionally, these
web applications can take advantage of being embedded
in modern web browsers by enabling live, editable
notational output through the Noteflight (Berkovitz,
2008) Flash-based plugin and manipulable high- quality
Canvas and SVG graphics through the open-source
VexFlow (Cheppudira, 2010) JavaScript library. Users
can run web applications using the 10,000 scores in the
music21 corpus or assemble their own corpora.
Providing such versatility to users ensures a broad
compatibility with other music-based websites and
independent stand-alone music applications.

Music21’s implementation of the VexFlow JavaScript
library is particularly important for future adoption of web
applications for musical scores. Prior to the creation of
VexFlow, no freely available way of rendering musical
data on the Internet as a viewable score was feasible.
Previous attempts such as the Mediawiki extension to
Lilypond (www.mediawiki.org/wiki/Extension:LilyPond)
posed serious security hazards and required translating
existing MIDI, MusicXML, and other score files into a
new format. With music21’s adoption of VexFlow and
the SOA, any Internet user can render a data file in one of
numerous formats as a score for viewing within a web
page or other JavaScript/HTML5-compatible application.
Future work on this module will add JavaScript callbacks
from the VexFlow code to the music21 SOA enabling
interactive musical markup, annotation, and editing.

4. Example Uses of Music21
Web Applications

The music21 service-oriented architecture can be used
for a variety of purposes. Applications can be developed
in which a simple click of a button can trigger advanced
analysis routines. For example, commands easily
automated via music21 webapps include output of range
and key data, detection of contrapuntal anomalies such as
parallel and direct fifths, transformation of a collection of
pieces to the same key or meter, and various feature
extraction methods. One commonly used method of
music21 is the “chordify” command which takes in an
entire score, measure range, or collection of parts, and
reduces it to a series of chords representing the music
sounding at each moment in the score. This reduced score
is much easier to understand at a quick glance than a full
score. The tremendous modularity innate in music21
methods and objects allows identification and analysis of
music scores not possible via static interfaces similar to
previous musicology sites where both user input and
analysis tools are limited.

For the advanced user, the music21 service-oriented
architecture may be used as a platform upon which more
complex web applications may be built. An example
demonstrating the versatility of the webapp architecture

coupled with the interoperability offered by the toolkit is a
tool we created for analyzing a student’s music theory
assignment for contrapuntal writing errors (See Figure 1).
Using the music21 webapp architecture, the student’s
assignment passes easily from third-party notation
software to analysis methods within the toolkit that
identify areas of concern in the work. The tool then
returns a pre-graded score, either to the student or the
professor, along with text describing each error. Of
particular interest to educators is the automatic
identification of violations of common-practice rules of
counterpoint, such as motion by parallel fifth or dissonant
harmonic intervals. In developing this app, we extended
and customized the existing music21 methods of
analysis, creating specialized music21 objects to
encapsulate individual elements within the score, such as
linear segments, vertical slices of simultaneously
sounding objects, and two by two matrices of notes.
Elements identified as errors were colored, and text
output further explained the algorithm’s observation (such
as between which notes the parallel fifths exist, or the
name of the dissonant interval). This data is packaged into
a JSON data structure and provided directly to the client
(either a web browser or the open-source MuseScore
notation software (Brontë, et. al., 2008) completing the
service to the user. This service-oriented architecture for
music is under consideration to become the backbone for
music courses in the developing MITx/EdX open
educational platform.

Figure 1: Screenshot displaying the use of this webapp
embedded as a plugin for the open-source notation
software MuseScore used as part of an automatic
“pre-grading” system for music theory teaching. A full
video showing this demonstration is available at
http://www.youtube.com/watch?v=5VBfag3YwIs .

5. Service-Oriented Architecture in
 music21: the webapps library

To enable development of interoperable webapps utilizing
the full suite of computational tools, the music21 toolkit
includes an extensive service-oriented architecture. It
consists of Python classes and functions used to parse a
server request, execute the desired commands, and return
content to the user in an appropriate format. The flexible
nature of the architecture allows it to use a single URL to

handle any requests to the server wishing to use music21.
These requests can come from a variety of sources,
including HTML form POSTs, AJAX requests, or even
web requests from a plugin in an open source notation
application. The commands used by the requests can
either be commands built in to music21 or custom
commands created by the user.

The core of the module involves two objects: an Agenda,
and a CommandProcessor. An Agenda object is a
dictionary-like structure that specifies data input,
requested commands, and a desired output format. A
CommandProcessor object takes an Agenda, parses the
data input into a format compatible with music21, safely
executes the commands, and generates the output.

These objects are used in a server application compliant
with the Python WSGI interface, a portion of which is
shown below. This application can be enabled on an
Apache/modWSGI server by adding a few lines to the
httpd.conf, as Figure 2 demonstrates.

from music21 import *

agda = webapps.makeAgendaFromRequest(requestInput,environ)

processor = webapps.CommandProcessor(agda)

processor.executeCommands()

(responseData, responseContentType) = processor.getOutput()

Figure 2: Code for setting up a music21 web application.

The code shown is representative of the steps involved in
processing a request. First, the POST data and GET data
from the request are combined into an Agenda object. The
post data can be url-encoded form data, multipart form
data, or a JSON string. In this way a single mount point
can be used to serve a variety of request types.

Figure 3 shows an example of the typical JSON formatted
input to the webapp interface. This text encodes
commands to use music21 parse a Bach chorale from the
corpus, transpose that chorale by a perfect fifth, then
return the chordified score in VexFlow format. Should the
user wish to view their score in a different
music21-supported output format, such as MusicXML,
Braille, Lilypond, or MIDI, only a one-word change to
this JSON format is necessary.

{ "dataDict": { "workName": { "data": "'bwv7.7'" } },
 "commandList": [

 { "function": "corpus.parse",

 "argList": ["workName"],

 "resultVar": "chorale" },

 { "caller": "chorale",

 "method": "transpose",

 "argList": ["'p5'"],

 "resultVar": "choraleTransposed" },

 { "caller": "choraleTransposed",

 "method": "chordify",

 "resultVar": "choraleChordified" }

],

 "outputTemplate": "templates.vexflow",

 "outputArgList": ["choraleChordified"]

}

Figure 3: An example JSON request to return a Bach
chorale (BWV 7 movement 7) as a chordal reduction,
transposed up a perfect fifth as a VexFlow Canvas.

If an appName is specified in one of the request fields,
additional data and commands are added to the agenda.
This flexibility allows for the creation of applications in
which the majority of the commands are specified by the
server and only a subset of the data is specified by the user
for each request. For instance, by specifying a
“featureExtractorApp,” as the appName, each request
would only need to include the name of the feature they
would like to extract and the zipfile containing the scores,
without explicitly needing to specify the individual
commands necessary for feature extraction and machine
learning of musical data (Cuthbert, Ariza & Friedland,
2011).

The command processor then takes the agenda and parses
its input data into primitives or music21 objects.
Although most of the values arising from POST and GET
fields start as type string, the processor will determine if
the string was intending to be a number, boolean, list, etc.
and save its value accordingly. Additionally, music21 is
compatible with a wide variety of symbolic music formats
(MusicXML, Humdrum/Kern, abc, MIDI, etc.) and can
convert fields of those types into corresponding music21
objects.

Next, the command processor executes the commands
specified by the agenda. To avoid the security risk of
executing arbitrary code while still maintaining the
flexibility of the architecture, the server checks that each
requested command is allowed to be executed on the
server and only interacts with a set of variable bindings
internal to the processor.

Finally, the processor generates the output of the results.
The elements of the Agenda specify the output format
which can be of a wide variety of types, including an html
page with a score displayed in an SVG or Flash embed, a
downloadable MusicXML or comma-separated value file
containing analysis results, or simply the raw JSON of
selected variables that can be decoded using JavaScript in
a client HTML page.

A video demonstrating this system is viewable at
http://ciconia.mit.edu/feature-extraction.wmv and the
software itself is at
 http://ciconia.mit.edu/music21/featureapp/uploadForm
Examples of sample webapps are available at
http://ciconia.mit.edu/music21/webapps/client/.

6. Cloud Computing and Web Services

Repertorial analysis requiring the best analytical methods
might run hundreds of times per score on a corpus of tens
of thousands of scores. The music21 service-oriented
architecture provides the infrastructure necessary to
command complex and computationally intensive
analysis. However, such tasks might take hours to run and
provide little to no real-time feedback during processing.
Thus, it has become apparent that integrating more
powerful processing power would make music21
webapp services even more accessible. Our recent work
has included research into providing cloud computing
functionality to music21 analysis routines via Amazon
Web Services and the Python map-reduce module, mrjob
(Yelp, 2009)

Any webapp routine that can be abstracted into multiple
independent tasks benefits greatly from the additional
computing power provided through cloud computing.
Processing time can be greatly decreased by
implementing a standard MapReduce algorithm (Dean &
Ghemawat, 2004) to distribute processing of hundreds or
thousands of files over a network of independent
computers. The Python library mrjob accesses Amazon
Web Services and can be utilized to prepare MapReduce
algorithms employing music21 analytical methods. Due
to the modularity of the music21 service-oriented
architecture, webapps can be developed to provide
quicker access to music21 processes via the Amazon
Cloud. These webapps would route input data from the
user, such as a corpus of music files, establish an SSH
connection with EC2 instances provided by Amazon,
deploy the job specified, and wait while the data is
processed. The resulting output would be passed back to
the web interface and displayed to the user in a fraction of
the time it would take the user to run the same analysis
algorithm on a local computer. After implementing this
process in a test run examining bass motion over
thousands of popular music leadsheets we recorded
promising improvements in the time taken in processing
many scores.

By adding the component of cloud computing to our
already existing service-oriented music21 architecture,
the limit of computational power and time is
tremendously alleviated. Integrating cloud computing
into a pre-existing web service allows musicologists great
freedom in both developing and running research studies.

7. Limitations of Web-systems and the
Co-existence of Stand-alone systems
in Digital Musicology

While web-based applications will open up many new
avenues for research and data exchange, downloadable
applications to be run on individual users’ systems will
need to continue to be developed. To start, unless a system
is implemented entirely in JavaScript, users’ queries need

to be parsed and understood by a traditionally based
backend system. As long as such an engine exists, there is
little to be gained by limiting programmers’ access to this
backend, and continued development of server-based
systems demand tests that can be executed outside the
web system. More complex queries that nest the filtering
of musical objects and annotations are much more easily
created with short scripts that have direct access to the
musical objects. For instance, the research question “does
Mozart cadence on first-inversion triads more often on
strong beats vs. weak beats in his sonatas written earlier in
his life?” is easily answered in music21 by writing a
short module using nested “if,” “break,” and
“getElementsByClass()” statements. A similar web query
would be so complex that the designing the command
would be a more difficult process than installing the
system and writing a script by hand. A researcher must
carefully evaluate the advantages to developing a
web-based application versus stand-alone scripts,
depending on their individual goals, technical
background, and time constraints. In addition, while
HTML5 simplifies many programming tasks and moves
them from the server to the client, it does not contain
support for microphone or MIDI input without external
plugins (usually Adobe Flash). Thus for many realtime
audio and musical applications, standalone versions of the
software are needed.

Security and privacy concerns are two other factors to
consider when evaluating whether to develop a
web-based platform or stand-alone application. Complex
queries may require access to the file system or generate
huge temporary files, both of which can introduce
security holes. Users may not want to trust their private
research data to be uploaded to a web server not under
their control. This desire may seem paranoid when the
only data are musical scores, but music21 can also
correlate score data with physiological response data from
listeners and reported musical preferences, all of which
could be used to deanonymize survey data. Thus, both
security and privacy concerns promote continued
development of stand-alone applications.

8. Conclusion and Future Work

Fundamentally, the goal of the music21 service-oriented
architecture is to provide researchers from a wide range of
technical backgrounds and disciplines access to powerful
musical analysis tools conveniently, efficiently, and
quickly. Future development includes expanding the
webapp infrastructure to implement a larger suite of
customizable music21 features along with improved
computational power via the Amazon Cloud. Modules
within the toolkit that require extensive external
dependencies, such as “Gregorio” the LaTeX chant
notation software, can be adapted to use the SOA to
render the notation on a properly equipped external
server. Work in the near future will also include
extensions to our VexFlow web architecture to enable

interactive annotation and editing of SVG-rendered
musical scores. The possibilities of service-oriented
architectures in computational musicology toolkits such
as music21 are only beginning to be tapped. In the near
future music web applications will be among the most
important contributors to the exciting cross-disciplinary
advancements emerging in digital humanities.

9. Acknowledgements

The development of music21 and its web applications
has been funded by a NEH Digging into Data Challenge
Grant as part of the ELVIS project and by the Seaver
Institute. Additional support has been provided by the
School of Humanities, Arts, and Social Sciences at MIT
and support for this presentation has been provided by the
Germany Seed Fund of the MIT International Science and
Technology Initiatives.

10. References

Berkovitz, J. (2008, continuing). Noteflight:

http://www.noteflight.com/
Bertin-Mahieux, T., Ellis, D.P.W., Whitman, B., Lamere,

P. (2011). “The Million Song Dataset,” Proceedings of
the International Symposium on Music Information
Retrieval 12.

Brontë, T., Froment, N., Schweer, W. (2008, continuing).
MuseScore: http://www.musescore.org/

Cheppudira, M.M. (2010, continuing). VexFlow:
http://www.vexflow.com/

Cook, N. (2004). “Computational and Comparative
Musicology,” in Empirical Musicology: Aims,
Methods, Prospects. Oxford: Oxford University Press,
pp. 103–26: 103.

Cuthbert, M.S., Ariza, C. (2010), “music21: A Toolkit
for Computer-Aided Musicology and Symbolic Music
Data,” Proceedings of the International Symposium on
Music Information Retrieval 11, pp. 637–42.

Cuthbert, M.S., Ariza, C., Friedland, L. (2011), “Feature
Extraction and Machine Learning on Symbolic Music
using the music21 Toolkit,” Proceedings of the
International Symposium on Music Information
Retrieval 12, pp. 387–92.

Dean, J., Ghemawat, S. (2004). “MapReduce:
Simplified data processing on large clusters,”
Proceedings of the 6th Symposium on Operating
System Design and Implementation, pp. 137–50.

Huron, D. (1997). “Humdrum and Kern: Selective
Feature Encoding.” In Beyond MIDI: the Handbook of
Musical Codes. E. Selfridge-Field, ed. Cambridge,
Mass.: MIT Press, pp. 375-401.

Sapp, C.S. (2008, continuing). Kernscores.
http://kern.ccarh.org/

Yelp (Software company) (2009, continuing). mrjob.
http://packages.python.org/mrjob/index.html

