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Abstract

If a current pulse with a magnitude several times higher than the steady state optimum current is applied

to a thermoelectric cooler, an instantaneously lower temperature than that reachable at the steady state can

be obtained. Most previous studies of this transient cooling effect focus on the minimum temperature

achievable for free standing thermoelectric (TE) elements. In this work, we systematically study the tran-

sient response of thermoelectric coolers with and without mass loads through examination of both the min-

imum temperature reached and the time constants involved in the cooling and the recovering stages. For

integrated thermoelectric-passive mass load systems, two distinguishable cooling regimes, uniform cooling
and interfacial cooling, are identified, and the criterion for utilization of the transient cooling effect is estab-

lished based on the time constants. Although the results of this work are generally applicable, the discus-

sions are geared towards cooling of microdevices that are of current interests.
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Nomenclature

A cross-sectional area (m2)
A0 constant introduced in Eq. (5)
B constant introduced in Eq. (15)
qcp volumetric heat capacity (J/m3 K)
j applied current density (A/m2)
j0 optimum applied current density (A/m2)
k thermal conductivity (W/m K)
l length (m)
lc critical dimension of cooling target for using interfacial cooling (m)
P normalized pulse magnitude
S Seebeck coefficient (V/K)
t time (s)
ta diffusion time constant (s)
tm time to reach minimum temperature (TRM) (s)
th holding time (s)
T temperature (K)
T1 minimum steady state temperature at cold junction (K)
x coordinate
Z figure of merit (K�1)
Z 0 reduced figure of merit of integrated system as defined in Eq. (15) (K�1)

Greeks
a thermal diffusivity (m2/s)
q electrical resistivity (X m)
n effusivity ratio [=(kqCp)L/(kqCp)]
f constant introduced in Eq. (16)

Subscripts

c cold end of TE cooler
h hot end of TE cooler
l cooling object of integrated system
SS steady state
t transient
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The Peltier effect in a thermoelectric (TE) device is a local effect confined to the junctions of the
thermoelectric elements while the Joule heating occurs volumetrically over the thermoelectric
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elements. At steady state conditions, these two effects, combined with heat conduction from the
hot end to the cold end, determine the cold side temperature. The cooling coefficient of perform-
ance and maximum temperature drop depend on the properties of the thermoelectric materials
through the figure of merit, Z = S2/qk, where S is the Seebeck coefficient, q is the electrical resis-
tivity and k is the thermal conductivity. If a current pulse with a magnitude several times higher
than the steady state optimum current j0 , which is the current to obtain the minimum steady state
cold side temperature, is applied to the element, an instantaneously lower temperature than that
reachable at the steady state can be achieved at the cold end because of the delay of the thermal
diffusion of the volumetric Joule heat. This phenomenon is referred to as the transient thermoe-
lectric effect [1].
After Stilbans and Fedorovich [2] first reported the transient cooling effect in thermoelectric

(TE) elements, the phenomenon has been extensively investigated [3–14]. To obtain larger tran-
sient cooling temperature differences, measured by the additional temperature drop at the cold
junction caused by the transient current, various approaches have been taken, such as applying
a non-square transient current [4], using thermoelectric elements with variable cross-sectional area
[11] and surface junction [12].
Recent developments in the fabrication of thermoelectric microcoolers make it possible to place

the TE microcoolers near the high heat flux producing regions of electronic or optoelectronic de-
vices that need to be cooled [15–18]. This will enable compact thermal systems for device and
package level cooling. The transient cooling effect in thermoelectric coolers might be employed
to improve the performance of these devices further [10,13,14]. The results of the previously men-
tioned studies on transient cooling are not directly applicable to the microcoolers because those
studies are extensively for free standing bulk thermoelectric elements and most of them focused
only on the maximum transient temperature difference, i.e. the minimum temperature achievable.
Several issues that are of particular importance for microdevices need to be addressed. First of all,
several time constants, the time to reach minimum temperature (TRM) and the time to remain at
minimum temperature (holding time), are very important for characterization and utilization of
the transient cooling effect since the effect can only be sustained for a limited time. In parallel
of this work, Snyder et al. [10] established theoretically and experimentally the essential parame-
ters that describe the transient cooling effect using a square pulse, such as the minimum temper-
ature achieved, the maximum temperature overshoot, the TRM, the holding time and the time
between pulses. Semi-empirical relationships are established for the dependence of these param-
eters on the current pulse amplitude, thermoelectric element length, thermoelectric figure of merit
and thermal diffusivity. In Section 2 of this paper, we systematically studied the dependence of the
minimum achievable temperature and the time to reach minimum temperature on the current
pulse amplitude, thermoelectric element length, applied current shape and the TE element geom-
etry using the finite difference method for a free standing TE element. Since the object to be cooled
is a passive mass load for the thermoelectric coolers, it affects the minimum temperature achiev-
able, particularly when the object to be cooled is comparable to the TE coolers in size, as is often
the case for microcoolers. In Section 3, we present the performance analysis of the cooling object
and microthermoelectric cooler integrated system. Two distinguishable cooling regimes (uniform
cooling and interfacial cooling) are identified, and the criterion for utilization of the transient
cooling effect is established based on the time constants.
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2. Free standing thermoelectric element

In this section, we evaluate the performance of a freestanding TE element. This serves as a basis
for analyzing the minimum temperature that can be obtained during the transient mode operation
and also sets the limit for an integrated TE-load system discussed in Section 3. In steady state
operation of the TE device, the effect of the applied current magnitude on the device performance
is well understood. However, during the transient mode, operation parameters such as applied
current pulse shape and pulse amplitude severely affect the performance of the device. Another
constraint that affects operation of the TE device during transient operation is the geometry of
the TE element. Geometry parameters like the length of the element and cross-sectional area
of the cold and hot ends particularly affect the thermal diffusion to and away from the ends of
the TE element.

2.1. Finite length thermoelectric element with square pulse

The theoretical analysis of the transient cooling of a free standing TE element can be approx-
imated into a one-dimensional problem as shown in Fig. 1(a) by assuming the n-type and p-type
thermoelectric elements have exactly the same properties except for the opposite sign of the See-
beck coefficient. The differential equation is
Fig. 1

area (
Do2T

o2x2
þ j2q

k
¼ 1

a
oT
ot

; ð1Þ
TEwhere a is the thermal diffusivity, q is the electrical resistivity, k is the thermal conductivity, j is the
applied current density and T is temperature. The lowest temperature is achieved when there is no
external heat load onto the TE element, i.e. at x = 0,
C�k

oT
ox

þ SjT ¼ 0: ð2Þ
EWe further assume that the hot side is maintained at a constant heat sink temperature, i.e. at x = l,
where l is the length of the thermoelectric elements,
RT ðx ¼ l; tÞ ¼ T h: ð3Þ
RWhen the right-hand side of Eq. (1) equals 0, we obtain the steady state temperature distribution
TSS(x)
T SSðxÞ ¼ T c þ ðT h � T cÞð2x=l� x2=l2Þ; ð4Þ
UNCO

. Schematic drawing: (a) free standing TE element, (b) axisymmetric TE element with variable cross-sectional

cf. Section 2.3) and (c) cooling object and micro TE cooler integrated system (cf. Section 3).
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where Tc is the cold junction temperature. The solution to the steady state problem for a material
with Z independent of temperature [1] leads to the maximum steady state temperature difference
Tmax ¼ T h � T 1 ¼ ZT 2

1=2, where T1 is the minimum steady state cold side temperature at j0 = aT1/
ql. After the initial steady state temperature distribution is obtained, the current is suddenly in-
creased to jt to obtain the transient cooling. We define a normalized pulse magnitude P as
P = jt/j0 for a square pulse. After the cold junction temperature increases back to its steady state
value T1, the current is switched back to its optimum steady state value j0. Fig. 2 shows the numer-
ical simulation of the cold junction temperature in a typical transient cycle. Also shown are the
definitions of several time constants. The holding time, which is the period to keep the cold side
temperature below a certain temperature, depends on its application limit. The recovery period is
the time required for the TE element to reach its steady state temperature after removing the ap-
plied transient current, and the steady state optimum current is applied as shown in Fig. 2.
Babin and Iordanishvili [6] analyzed the transient response of free standing TE elements and

found that for currents that are at least twice as large as the steady state optimum current j0 ,
it is a reasonable approximation to treat the TE element as a semi-infinite body because the
TRM is small compared to the diffusion time constant for a large transient pulse ta = l2/a . They
showed that the transient cooling effect DTt = T1 � T2, where T2 is the minimum transient tem-
perature of the cold side, does not depend on the TE element length when the TE element is longer
than 3

ffiffiffiffiffiffiffi
atm

p
. The time to reach the minimum temperature (TRM) tm can be approximated as
Fig. 2

consta
tm ¼ A2
0ðkqcpÞ=ðj2S2Þ; ð5Þ
UNCORRECTE
D
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where A0 is determined by the properties of the TE elements and can be determined by:
Fig. 3

mode

integr

n = (k
ZT 1 ¼
1

c

ffiffiffi
p

p
A0 expA

2
0erfcA0

1�
ffiffiffi
p

p
A0 expA

2
0erfcA0

ð6Þ
D
PROOF

Our numerical simulation confirms that the transient cooling effect DTt = T1 � T2 (where T2 is
the minimum transient temperature) does not depend on the TE element length. Fig. 3(a) com-
pares the numerical solution of the maximum cooling effect with the model by Babin and Iordan-
ishvili [6]. The model agrees well with the numerical solution for large current pulse. A simplified
model by linearization of the transient term in Eq. (1) has been established and documented in
[10]. Although the length does not have much effect on the minimum transient temperature for
free standing TE elements for a given transient pulse as shown in Fig. 4(a), it determines the ther-
mal inertia of the TE elements. This indicates that the length of a TE element affects the holding
time as well as the recovery period. For easy comparison, we have defined the holding time as the
time period over which it is possible to maintain the temperature within the range of 2 K (the
choice of 2 K is arbitrary as stated before) from the lowest temperature possible in this section.
Fig. 4 shows the holding time (Fig. 4(b)) as a function of TE element length for different normal-
ized pulse magnitudes and the duty cycle (Fig. 4(c)), which is defined as the percentage of the hold-
ing time over the recovery period. As shown in Figs. 4(a) and (b), the holding time is longer as the
length of the element increases. This is because the applied current flux is much larger for shorter
elements, and thus, ther is high heat dissipation density close to the cold junction, for example the
applied current pulse (5 · j0) for the 50 lm element is ten times larger than that of the 500 lm
UNCORRECTE
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P
element. However, the recovery period will be longer for the longer element and vice versa. This
results in the duty cycle not being a function of the TE element length but being a function of the
magnitude of the transient pulse only.

2.2. Pulse shape effect

The current pulse shape also affects the transient response. Using the variational method, Lan-
decker and Findlay [4] concluded that the transient temperature would approach absolute zero
with temperature independent thermal and thermoelectric properties, provided that the current
were allowed to rise indefinitely. No one has been able experimentally to demonstrate this by
far. Fig. 5 shows the temperature response for three different pulse shapes for a 0.5 mm TE ele-
ment obtained from numerical simulations. We found that the lowest temperature that can be ob-
tained is approximately the same for any pulse shape, but the holding time differs for different
pulse shapes. In order to take advantage of the spatial difference between the Peltier and Joule
effects, a better approach would be that the applied current pulse should be higher at the begin-
ning, and subsequently, it should be reduced, similar to the pulse j = t�0.5 . This will enable a long-
er holding time compared to a ramp pulse or the square pulse, as shown in Fig. 5.

2.3. Effects of TE element shape

It has been known that the minimum temperature achievable by a TE device in steady state
does not depend on the shape, but it has been conjectured that the TE element shape might have
an effect on the transient performance of thermoelectric devices [11]. The cross-sectional areas of
the hot end Ah and cold end Ac determine the thermal resistance for the Joule heat. By increasing
the ratio of Ah to Ac, Hoyos et al. [7] experimentally showed that it is possible to obtain better
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transient performance, i.e. lower temperature and shorter recovery time after turning off the tran-
sient pulse, compared to TE elements having equal cross-sectional area. In microfabricated de-
vices, the TE legs might not be straightly vertical, as in electrodeposition of thermoelectric
microdevices [16]. However, rigorous theoretical study on the TE element shape effect on the tran-
sient cooling effect has yet to be reported. This section presents numerical results on the effects of
leg shape on the transient cooling performance. Again, the analysis here is based on the assump-
tion that the thermoelectric properties are independent of temperature and the contact resistance
is negligible.
For axisymmetric TE elements with variable cross-sectional area as shown in Fig. 1(b), the gov-

erning differential equation should be written as
EC

1

a
dT
dt

¼ I2q

kA2ðxÞ
þ 1

AðxÞ
dAðxÞ
dx

dT
dx

þ d2T
dx2

; ð7Þ
Rwhere I is the total current flow through cross-sectional area A(x). The shape effect is reflected by
the second term of the right-hand side of Eq. (7). The results presented below are for tapered axi-
symmetric TE legs with the cross-sectional area changing linearly with the TE leg length,
R

AðxÞ ¼ Ac 1þ Ah � Ac

Ac

x
l

� �
; ð8Þ
UNCO

where Ac is the cross-sectional area at the cold end x = 0 and Ah is the cross-sectional area at the
hot end x = l . Similar to the cylindrical TE elements, the maximum transient temperature differ-
ence and the holding time for the tapered axisymmetric TE elements also do not depend on the
absolute value of the cross-sectional area. Fig. 6(a) shows the normalized holding time and the
minimum cold side temperature with different area ratio of the cold end and the hot end. The
holding time is normalized to that of the cylindrical TE leg whose cross-sectional area is the same
as the average area of the tapered element. The tapered leg makes the thermal resistance asymmet-
ric, and the Joule heat will preferentially be conducted towards the end that has the larger cross-
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Dsectional area. However, more Joule heat is generated close to the end that has the smaller cross-

sectional area. The competition between these two effects results in a lower minimum transient
temperature for the tapered axisymmetric thermoelectric legs with smaller cross-sectional area
at the cold end. However, the holding time is decreased by several times for such tapered thermo-
electric legs with the smaller cross-sectional area at the cold end. The increase of holding time of
those TE legs with larger cross-sectional area at the cold end can potentially be useful for the de-
vice to be operated for a longer time. Fig. 6(b) shows the minimum transient temperature as a
function of the magnitude of the applied transient current and the area ratio.
UNCORRE

3. Response of integrated thtermoelectric-passive load system

In applications, it is expected that an additional mass (i.e, the object to be cooled) be attached
to the TE element. The performance of such an integrated system differs from that of the stand
alone TE elements. The thermal properties of the attached mass can severely affect the transient
performance of the integrated system. Here, we focus discussion particularly on important prop-
erties such as thermal conductivity, heat capacitance and density. We begin our analysis with a
system that consists of a semi-infinite object to be cooled that is attached to a semi-infinite TE
element. Later, the discussion is extended to a more realistic situation where a finite length object
is attached to a finite length TE element. No active heat generation is assumed in the load.
The object to be cooled can be treated as a passive mass load attached to a thermoelectric ele-

ment when contact resistance is neglected. Fig. 1(c) shows the schematic configuration of an inte-
grated TE-load system. The governing equation for heat conduction in the loaded mass
(�ll < x < 0) is
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o2T

o2x2
¼ 1

al

oT
ot

: ð9Þ
The subscript l denotes the cooling object. The boundary conditions at the interface between the
cooling object and the TE element are
�k1
oT
ox

¼ �k
oT
ox

þ SjT ; ð10Þ

T ð0�; tÞ ¼ T ð0þ; tÞ: ð11Þ
FThe other end of the attached mass is insulated, thus
 OoT
ox

jx¼�l1
¼ 0: ð12Þ
D
PRO3.1. Transient response of semi-infinite integrated systems

In a previous study [13], we analyzed the transient temperature difference based on the assump-
tion that both the TE element and the object to be cooled are semi-infinite and maintained at
room temperature. In a real situation, the TE element must be maintained at its optimum steady
state before an additional transient current is applied. The initial temperature distribution of the
TE element degrades the transient temperature difference predicted in [13] and should be taken
into account. That is, the new initial condition should be written as
TET ðxÞ ¼ T h � ðT h � T 1Þ 1� x
l

� �2

; l > x > 0;

T ðxÞ ¼ T 1; �l1 < x < 0:

8<
: ð13Þ
ECFollowing the same technique as in [13] and taking into account the initial steady state temper-
ature distribution, we obtain the following analytical solution for the transient temperature differ-
ence DTt for a square pulse:
RRDT t ¼ 1� c0

P

	 

	 T 1 ð1� expB2erfcBÞ 	 1

Z 0T 1

þ 1� c0

1� c0=P

� �
� 2Bffiffiffi

p
p

Z 0T 1

	 
�

� k1=
ffiffiffiffiffi
a1

p

k1=
ffiffiffiffiffi
a1

p þ k=
ffiffiffi
a

p 	 1
Z 0 1� expB2erfcB� 2Bffiffiffi

p
p

	 
�
; ð14Þ
Owhere
 Cc0 ¼ 2ðT h � T 1Þ

T 1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ZT h

p
� 1ÞP

; Z 0 ¼ Z
k2=a

k=
ffiffiffi
a

p
þ k1=

ffiffiffiffiffi
a1

p �2 ; B ¼ Sj
ffiffi
t

p

k=
ffiffiffi
a

p
þ k1=

ffiffiffiffiffi
a1

p : ð15Þ
NThe condition for maximum DTt is obtained when B = B0 satisfies
UZ 0T 1 ¼
½1� ðk1=

ffiffiffiffiffi
a1

p Þ=ðk=
ffiffiffi
a

p
þ k1=

ffiffiffiffiffi
a1

p Þ�
f

ffiffiffi
p

p
B0 expB2

0erfcB0

1�
ffiffiffi
p

p
B0 expB2

0erfcB0

; ð16Þ
where f ¼ 1�c0

1�c0=P.
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The effect of the initial temperature distribution is reflected in c 0. Eq. (14) shows that the initial
temperature distribution indeed reduces the additional temperature drop derived in [13].
Fig. 3(b) shows the maximum transient temperature difference of the semi-infinite integrated

system as a function of the magnitude of the applied transient current and the effusivity ratio
n = (kqCp)1/(kqCp) . With the mass attached at the cold end, the cooling power produced diffuses
into the cooling object, which degrades the additional temperature drop compared to the free
standing TE element. It shows that a decrease in the value of the effusivity of the object to be
cooled helps in decreasing the thermal diffusion into the object and, hence, achieving a larger max-
imum transient temperature difference. This partial cooling of the object might be attractive for
some applications such as cooling the active region of a semiconductor laser rather than the whole
substrate. The model is also compared with numerical simulation results. The analytical model
agrees well with the numerical simulation in the semi-infinite regime.

3.2. Integrated system with finite length TE element

In practical applications, the cooling object and the TE element integrated system might behave
neither like a free standing TE element nor like a semi-infinite integrated system. The transient
temperature response of a practical integrated system with finite length depends on not only
the transient current but also the length and the thermal properties of the object to be cooled
and TE elements. Since general analytical solutions for such cases are difficult, a numerical meth-
od is used to study the transient effect for a practical integrated load and TE cooler system as
shown in Fig. 1(c). In addition, experiments were conducted on a system as shown in the inset
of Fig. 7. It consists of two 1 mm · 1 mm · 6 mm Bi2Te3 thermoelectric legs soldered by a 3.5
mm · 2.5 mm copper sheet that is 35 lm thick. The details of such experimental studies are re-
ported in [10]. Fig. 7 compares the numerical simulation results with experimental data. Copper
is treated as the cooling object and the properties used were obtained by fitting the steady state
response of the TE element. To treat the system as 1D problem, the length of the copper stub
is equivalent to a length of 153 lm with the same cross-sectional area while considering the high
thermal conductivity of copper. k1 = 350 W/(m K) and (qcp)1 = 1.20 · 106 J/m3 K are used for the
copper properties. The properties of Bi2Te3 are fitted as: (qcp) = 1.20 · 106 J/m3 K, k = 1.20 W/
(m K), S = 235 lV/K , ZT300 K = 0.706. Fig. 7 shows that the numerical model developed here
can be used to predict the transient response. The deviation between the experimental data and
the simulation results in Fig. 7 after the transient pulses are turned off is due to the thermal resist-
ance of the hot side heat sink, which is not considered in our current model.
Fig. 8(a) shows the effect of thermal conductivity on the maximum transient temperature dif-

ference. It shows that the thermal conductivity does not have much effect on the maximum tran-
sient temperature difference when l1/l is small, where l1 is the length of the cooling object and l is
the length of the TE element. This means that the attached cooling object is cooled uniformly be-
cause the transient cooling power diffuses effectively to the whole cooling object. As the length
ratio l1/l increases, the maximum transient temperature difference becomes independent of the
length ratio because both sides can be treated as semi-infinite. In this case, however, the thermal
conductivity of the load affects the maximum temperature difference. A high load thermal conduc-
tivity leads to a smaller transient cooling effect due to the larger heat spreading in the load side.
Fig. 8(b) shows the effect of the volumetric heat capacity on the maximum transient temperature
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Fig. 7. Comparison of numerical simulation and experimental results (line––numerical results, dots––experimental

results). The inset shows the configuration of the experimented TE cooler. It consists of two 1 mm · 1 mm · 6 mm

Bi2Te3 thermoelectric legs soldered by a 3.5 mm · 2.5 mm copper sheet that is 35 lm thick.
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Fig. 8. The maximum transient temperature difference of integrated systems as a function of the length ratio: (a)

thermal conductivity effect, (b) heat capacity effect and (c) applied current effect.
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Udifference. The maximum transient temperature difference increases when decreasing the heat
capacity of the cooling object for any length ratio. Fig. 8(c) shows the effect of the applied tran-
sient current on the maximum transient temperature difference. All three figures show a flat region
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of the maximum transient temperature difference when l1/l is larger than a certain value. This is
the interfacial cooling region. In this regime, the thermoelectric legs and the passive load can
be treated as semi-infinite. The maximum transient temperature difference does not change with
the length ratio but depends on the thermal conductivity or thermal effusivity ratio. In the other
limit, the uniform cooling regime, the thermal conductivity of the load does not affect the maxi-
mum transient temperature difference. The maximum transient temperature difference is a func-
tion of the thermal mass ratio of the load to the thermoelectric elements. In the uniform
cooling regime, the transient response can be modeled as a small attached mass system.
Fig. 9(a) shows that different cooling objectmicro TE element (Bi2Te3) integrated systems might

fall in different cooling regimes under the transient pulse. The conductivity of the cooling object
has been chosen to be k1 = 3.5 W(m K), which mimics the active region of the InAs/AlSb mid-IR
laser. For a given integrated system, the transient cooling might change from uniform cooling to
interfacial cooling if the applied current increases substantially. For a small normalized pulse
magnitude P, the cooling object is cooled uniformly and the cooling effect follows similarly to
3(a), i.e. the system can be treated as a free standing TE element with a very small attached mass,
if the TE element is long enough that the holding time is much larger than the thermal diffusion
time to the other end of the cooling object. The holding time decreases with the normalized pulse
magnitude P. For a large normalized pulse magnitude P, the holding time is shorter than the ther-
mal diffusion time to the other end of the cooling object, and the transient effect is confined to the
interface region. In both extremes, the cold junction temperature decreases with increasing pulse
magnitude. In the transition regime, the competition between the localized cooling at the interface
and the cooling power diffused into the loaded mass results in the increase of the cold junction
temperature with increasing pulse. Fig. 9(b) is to illustrate these arguments. It shows the transient
cooling effect in a 75 lm cooling object––1000 lm Bi2Te3 integrated system. Uniform cooling
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occurs at P = 5, and interfacial cooling occurs at P = 70. The temperature profile for P = 18 shows
the competition of localized cooling at the interface and the cooling power diffusion into the
loaded mass.
Lumped analysis shows that the holding time th of an integrated system, which is defined as the

time that the cold junction is maintained below the steady state minimum temperature, is
th ¼
1

ðP þ 1Þ2
l2

a
ð17Þ
OOFwhich is around four times as long as the TRM [10]. This holding time expression is approxi-
mately valid for both free standing TE elements and integrated cooling systems. To utilize the
transient cooling effect in a uniform cooling mode, the holding time must be larger than the dif-
fusion time, which is the time required for the transient cooling effect to diffuse from the interface
to the other end of the object to be cooled. Comparing the scale of the holding time and the dif-
fusion time, we found that the criterion for utilizing the transient cooling effect is
Rl1

l
<

1

P þ 1

ffiffiffiffiffi
a1
a

r
: ð18Þ
PIn other words, when l1 > l

Pþ1
ffiffiffi
a1
a

p
, the integrated system can be treated as a semi-infinite system,

and the maximum transient temperature difference can be predicted by Eq. (1). To utilize interfa-
cial cooling, the critical dimension lc of the cooling target should satisfy lc < l

Pþ1
ffiffiffi
a1
a

p
< l.
D
RRECTE4. Conclusions

The transient cooling effect should be characterized by both the minimum temperature and sev-
eral time constants, such as the time to reach the minimum temperature (TRM) and the holding
time. We systematically studied the effects on the transient cooling performance of the current
pulse amplitude, thermoelectric element length, applied current shape and the TE element geom-
etry using primarily the finite difference method. Because the cooling object is a passive mass load,
it will affect the transient performance. The performance of the cooling object and micro TE ele-
ment integrated system are analyzed. Two distinctive cooling regimes (uniform cooling and inter-
facial cooling) are identified, and the criterion for utilization of the transient cooling effect is
established based on the time constants.
CO
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