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ABSTRACT 

 

 

Engineering the behavior of liquids on solid surfaces has wide applications ranging from the 

design of water-repelling surfaces for daily use to fluid flow manipulation in lab on chip devices 

and inhibiting corrosion of machinery. Given the ubiquitous interaction of liquids with solids, 

these applications only represent a drop in the seemingly endless ocean of opportunities. Thus it 

is not surprising that researchers have been trying to decipher this phenomenon for several 

centuries now but the complexity of this multi-scale phenomenon has left much to be 

understood.  

 

Recent advances in micro/nano manufacturing have granted researchers an unprecedented ability 

to control surface texture and properties. This, combined with the fact that surface forces become 

increasingly important at small scale, makes it an opportune time to focus studies in the area. 

Understanding liquid-solid interaction and developing applications around the same has been a 

central theme of this thesis.  

 

In this work, I have explored the solid-liquid interaction at a fundamental level and developed a 

thermodynamic model of a liquid drop on a rough surface. The model is validated by several 

experimental observations from other researchers. Using the model, I have shown that the 

geometry of roughness features could play an important role in the determination of 

thermodynamic state of the liquid on the surface as well as characterization of solid surface. 

Further, I have used this understanding to predict wetting anisotropy on asymmetric sawtooth 

surface and demonstrated the same experimentally.  
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I also demonstrate a passive cascadable microfluidic logic scheme. The design is centered around 

interfacial phenomena and does not require any external power and has no electronic 

components. The scheme could replace electronic controls in diagnostic systems leading to 

increased portability and reduced costs. It can also be used in environment harmful for silicon 

electronics. In another application, geometry based surface patterning is explored in creating wall 

less flow in microchannels. I have used the latter to add scalability to the passive cascadable 

logic scheme. Wall less flow could also provide tremendous increase in liquid-gas surface area 

and open up opportunities to develop liquid-gas reactions systems or possibly óself-cleaningô air-

filters.  

 

 

 

 

 

 

 

 

 

 

 

 



iv 

 

 

 

 

 

 

 

 

 

 

 

 

Dedicated to my wonderful parents 

 

 

 

 

 

 

 

 

 

 

 



v 

 

ACKNOWLEDGEMENTS  

 

First and foremost I want to thank my advisor Prof. Nicolas X. Fang.  I much appreciate his 

contribution of time, ideas and funding. He always encouraged me to be independent and 

challenged me to hone my ideas. His achievements have always inspired me and I am thankful 

for the excellent example he has provided as a successful professor and researcher.  

 

The members of the Fang group have contributed immensely to my personal and professional 

time at University of Illinois. I would like to thank: Chunguang Xia, Pratik Chaturvedi, Shu 

Zhang, Howon Lee, Anil Kumar, Hyunjin Ma, Keng Hsu, Jun Xu and Matthew Alonso for their 

friendship and good advice. Their hard work has always been a source of inspiration.   

 

I would also like to thank my committee members: Prof. Anthony M. Jacobi, Prof. Paul J. A. 

Kenis and Prof. Taher A. Saif. They have been very supportive and have always provided me 

with much valuable guidance.   

 

I am grateful to the staff of MNMS cleanroom: Bruce Flachsbart, Michael Hansen, Glennys 

Mensing and Adam Sawyer. They have helped me immensely and provided much needed 

guidance for my work in the cleanroom. I would also like to thank Ankit Raj, Ashutosh Dixit and 

Huan Li for help with my experiments and device fabrication.  

 



vi 

 

My special thanks to the staff members of Mechanical Engineering at the University of Illinois, 

especially Kathryn Smith. She has been very cooperative and has gone out of her way to help 

me.     

 

My time at University of Illinois was made enjoyable in large part due to the many friends who 

became a part of my life. They have been my family away from home and have provided me 

with support, encouragement and love. I have immensely enjoyed their company and learnt 

much from them.  

 

Lastly, I would like to thank my wonderful parents for all their love, encouragement and 

sacrifice. I am much thankful to my brother and his wife for keeping me cheerful and always 

being supportive. My extended family has always been very encouraging and supported me in all 

my pursuits. Special thanks to my loving, encouraging and patient fiancé Neha, whose support 

during the final stages of this Ph.D. is so appreciated. 

 

 

 

 

 

 

 

 

 



vii  

 

TABLE OF CONTENTS  

 

1.  BACKGROUND AND MOTIVATION ................................................................................ 1 

1.1 Research objective and scope................................................................................................... 1 

1.2 Thesis organizationé............................................................................................................... 4 

2.  THERMODYNAMIC MODELING OF ROUGH SURFACES : ROLE OF 

ROUGHNESS FEATURES......................................................................................................... 5 

2.1 Introduction.............................................................................................................................. 5 

2.2 Theory..................................................................................................................................... 10 

2.3 óSystem equilibriumô state of the drop.................................................................................... 27 

2.4 Comparison with experimental data....................................................................................... 32 

2.5 Conclusions............................................................................................................................. 36 

2.6 References............................................................................................................................... 37 

3. ANISOTROPIC WETTING SURFACES ............................................................................ 40 

3.1 Introduction............................................................................................................................. 40 

3.2 Theory..................................................................................................................................... 41 

3.3 Experiments............................................................................................................................ 44 

3.4 Comparison of experiment and theory.................................................................................... 50 

3.5 Conclusions............................................................................................................................. 51 

3.6 References............................................................................................................................... 52 

4. PASSIVE CASCADABLE MICROFLUIDIC LOGIC ....................................................... 53 

4.1 Introduction............................................................................................................................  53 

4.2 Theory and results................................................................................................................... 55 



viii  

 

4.3 Passive microfluidic half adder .............................................................................................. 65 

4.4 Scalable and cascadable logic scheme.................................................................................... 67 

4.5 Methods................................................................................................................................... 70 

4.6 Conclusionsé......................................................................................................................... 71 

4.7 References............................................................................................................................... 72 

5. WALL LESS FLOW IN MICROCHANNELS ................................................................... 76 

5.1 Theory..................................................................................................................................... 77 

5.2 Methods................................................................................................................................... 80 

5.3 Liquid-wall demonstration...................................................................................................... 81 

5.4 óTransfer-channelô design....................................................................................................... 82 

5.5 Summary................................................................................................................................. 88 

5.6 References............................................................................................................................... 88 

APPENDIX A: Determination of trapped volume and modified Gibbs Energy Barriers ... 90 

APPENDIX B: Maximum height and radi us of curvature for liquid -wall flow................... 94 

AUTHORôS BIOGRAPHY ........................................................................................................ 98 

 

 

 

 

 

 

 



ix 

 

 



 

1 

 

1.  BACKGROUND AND MOTIVATION  

 

Engineering the behavior of liquids on solid surfaces has wide applications ranging from the 

design of ówater-repellingô surfaces to fluid flow manipulation in lab on chip devices and 

designing better surfaces to inhibit corrosion and prevent fouling. Given the ubiquitous 

interaction of liquids with solids, these applications only represent a drop in the seemingly 

endless ocean of opportunities that understanding the behavior of liquids on solids would 

provide. Thus it is not surprising that researchers have been trying to decipher this phenomenon 

for several centuries now but the complexity of this multi-scale phenomenon has left much to be 

understood.  

 

Recent advances in micro/nano manufacturing have granted researchers an unprecedented ability 

to control surface texture and properties. This, combined with the fact that surface forces become 

increasingly important at small scale, makes it an opportune time to focus studies in the area. 

Understanding liquid-solid interaction and developing applications around the same has been a 

central theme of this thesis.  

 

1.1 Research Objective and Scope 
 

 

The objective of this research is two fold: (1) To develop a theoretical understanding of wetting 

on rough/structured surfaces and (2) to use the understanding to develop specific applications - 

(a) Anisotropic wetting surfaces (b) Cascadable passive microfluidic logic (c) Wall-less flow in 

microchannels 
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The first objective stems from gaining a fundamental understanding, from a thermodynamic 

point of view, of the behavior of liquid on rough/structured surfaces. Liquid-solid interactions 

are multi-scale, with shaping forces ranging from Van der Walls at the molecular scale to gravity 

at the macroscopic level. But recent studies have allowed making reasonable approximations and 

a microscopic modeling of the interaction has been shown to be suffice in explaining certain 

macroscopic observations. Several researchers have presented such microscopic models in 

explaining observations like contact angle, which has been shown to represent one of the several 

metastable states that exists for a liquid drop placed on a rough solid surface. Further, it has been 

shown that the lowest energy of all such states corresponds to the contact angle determined by 

Wenzel relation, called the Wenzel angle, and experimental determination of Wenzel angle can 

be used to characterize solid surfaces. However, researchers have neglected the geometry of 

surface roughness features in their modeling efforts. In this work the focus has been on 

developing a thermodynamic model to qualitatively understand the behavior of a drop on 

rough/textured surfaces by accounting for the effect of geometry of roughness features as the 

latter could physically limit the states available to the drop and thus modify the associated Gibbs 

energy barriers.  

 

Further, several applications are developed based upon the results and insights from the study. 

The first application is related to controlling the direction of wettability of a surface based upon 

the surface structure. Such surfaces are termed as óanisotropicô and can be useful in manipulating 

liquid flow with applications in microfluidics.  

 

The second application deals with developing a microfluidics based logic scheme which can be 
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used to integrate control system into lab-on-chip type devices. Although, microfluidic based 

logic schemes have been demonstrated in the past but they have either used active devices (like 

pumps) or havenôt been scalable and cascadable. Here, a passive microfluidics based on 

interfacial phenomena is explored in designing a scalable and cascadable logic scheme. Such a 

system could lead to cheap use-and-throw diagnostic devices and can also be used in 

environments which are too harsh for silicon electronics.  

 

In the third application, geometry based surface patterning is explored in creating liquid-walls in 

microchannels. This could provide tremendous increase in liquid-gas surface area and open up 

opportunities to develop liquid-gas reactions systems or possibly óself-cleaningô air-filters.  

 

 

 

 

Figure 1.1: Research scope and objective  
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1.2 Thesis Organization 

 

This thesis is divided into 5 sections. Following this introduction section is section 2, 

ñThermodynamic modeling of rough surfaces: Role of Gibbs energy barriersò. Section 3 

presents, ñDesign of anisotropic surfacesò based on the thermodynamic model in Section 2. 

Section 4 details out ñCascadable passive microfluidic logic schemeò. Section 5 entails ñWall-

less flow in microchannelsò.   
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2. THERMODYNAMIC MODELING OF ROUGH SURFACES : ROLE OF 

ROUGHNESS FEATURES  

 
Assessment of the Youngôs contact angle (YCA) plays an important role in the characterization 

of solid surfaces by determination of their surface tension. However, common measurement of 

contact angle usually involves measuring a óstaticô contact angle, which is one of the many 

metastable states available to the drop. It has been suggested that YCA could be determined by 

experimental determination of the global energy minimum of the drop, which has been shown to 

correspond to the classical Wenzel angle for ólargeô drops. However, the equivalence of global 

energy minimum and Wenzel angle has only be rigorously proven for a drop infinitely larger 

than the scale of the roughness, which discounts the geometry of the roughness features and is 

not realistic.   

 

Here I present the calculations for a drop, much larger than the scale of roughness, and account 

for the effect of geometry of roughness features. It is shown that the latter could physically limit 

the states available to the drop. This modifies Gibbs energy barriers and alters global energy 

minimum so that the latter may not correspond to the Wenzel angle.  

 

2.1 Introduction  

 

Wetting is the process of making contact between a solid and a liquid [1] in a medium which is 

either vapor or another immiscible fluid. It is ubiquitous in nature and has applications in areas 

like printing, adhesion, lubrication, painting and many more. Thus, it is not surprising that 
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researchers have been trying to decipher this phenomenon for more than a century now, but 

much is left to be understood.  

 

An important and measureable characteristic of wetting systems is the contact angle (CA). It is 

defined as the angle between the tangent to the liquidïfluid interface and the tangent to the solid 

interface at the contact line of the three phases [2]. It is usually measured on the liquid side.  

 

On an ideal solid surface, which is smooth, homogeneous, isotropic and non-deformable, the 

contact angle is correlated to the interfacial tensions by Youngôs equation [3].  

 

<2.1> 

where, qY, is the Youngôs contact angle (YCA) and  gSF, gLF and gSL denote solid-fluid , liquid- 

fluid and solid-liquid interfacial energy, respectively. It has been suggested that the molecular 

interactions between the three phases, in the immediate vicinity of the contact line, alter the 

interfacial energies between each pair of phases and thus modify Youngôs equation for ideal 

surfaces [4, 5]. However, the modification has been found to be significant only for nanoscale 

drops [6-8] and for larger drops, which would be the focus of this study, equation 2.1 applies as 

it is.  

 

Assessment of YCA plays an important role in the characterization of solid surfaces by 

determination of their surface tension [2]. If Gibbs energy of an ideal wetting system (consisting 

of a liquid drop on an ideal surface) is plotted, it can be shown that YCA represents the unique 

minimum [1] and thus, is also the equilibrium contact angle. However, most real solid surfaces 

SLYLFSF gqgg += cos
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are rough and chemically heterogeneous and far from the ideal surface that the YCA was derived 

for. Therefore, the determination of the actual contact angle (qac), which is the angle that the 

tangent to the liquidïfluid interface subtends with the actual surface of the solid, and its 

relationship to YCA, is of fundamental interest.  

 

It has been proven theoretically, in a general way that applies to three-dimensional systems, that 

the actual contact angle of a macroscopic drop at equilibrium, is equal to the YCA [9, 10]. 

However, with the current experimental methods, it is usually impossible to measure the actual 

contact angle as the same is either inaccessible on rough surfaces or varies from point to point, at 

a microscale, due to heterogeneity. Thus, researchers have directed their efforts in finding the 

relationship between YCA and an experimentally measurable quantity, which is usually the 

apparent contact angle (APCA), also known as the geometric contact angle (GCA).  

 

 

Figure 2.1: Macroscopically observable solid surface is in fact the apparent surface and the 

macroscopically observable CA is the apparent CA (qap). 

 

APCA (qap) is defined as the angle that the tangent to the liquid-fluid interface makes with the 

macroscopically observable solid surface, when the system is at equilibrium (Figure 2.1). 
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However, it has been found that a range of observable APCAs exist for real surfaces [11-15]. 

The maximum observable contact angle is called the advancing contact angle, qa, and the 

minimum is termed the receding contact angle, qr. The names are apt as these angles are 

observed when contact line just advances or recedes respectively when liquid is added or 

removed from a sessile drop. The difference between advancing and receding contact angle is 

termed as the contact angle hysteresis (CAH). It is not immediately clear as to how to interpret 

the existence of various APCAs and use the information to determine the YCA and thus it 

necessary to understand the nature of CAH.   

 

CAH can result due to several factors including surface roughness [13, 14], surface heterogeneity 

[12, 15], liquid absorption and/or retention [16-18] and presence of liquid film [19]. Since 

roughness and heterogeneity are common characteristics of real surfaces, they have been 

investigated most widely. In this paper, the surface is assumed as homogeneous and rough and 

heterogeneity would be dealt with in future studies. It is also assumed that the liquid fil ls in the 

roughness grooves of the surface or in other words, the wetting is homogeneous.  

 

Wenzel [20] was the first to describe the effect of surface roughness on surface wettability by 

defining a characteristic óWenzel angleô, qW, for rough surfaces as:  

 

cos(qW) = rwenzel*cos(qY)        <2.2> 

where, rwenzel is the ratio of the actual surface area to the geometrically projected surface area.  

The equation was developed based on an intuitive understanding of wetting by averaging out the 

details of the rough surface. Shuttleworth and Bailey [13] first pointed out the concept of APCA 
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and provided a quantitative estimate of CAH. Later, Johnson and Dettreôs seminal paper 

provided a thermodynamic perspective of liquid-fluid-solid interaction on rough surfaces [14]. 

They modeled a two-dimensional drop placed on an axisymmetric sinusoidal surface and 

demonstrated the existence of numerous metastable states, which represented different APCAs. 

They showed that Gibbs energy barriers exist between different metastable states and argued that 

the droplet will assume a metastable state, and the corresponding APCA, based on the available 

vibrational energy. Johnson and Dettre also pointed out that when roughness features are small 

compared to the drop, the global minimum in Gibbs energy can be approximated by the Wenzel 

angle. Several models with additional considerations like gravity [21] and generalized roughness 

profiles [22] have been presented since and have corroborated Johnson and Dettreôs results.  

 

Recently, Wolanski et al. [23] have shown mathematically that for ódrops infinitely large 

compared with the scale of the roughness,ô Wenzel angle does indeed correspond to the óglobal 

minimumô in Gibbs energy. Although they have not calculated how large the drop should 

realistically be, a ratio of two to three orders of magnitude seems sufficient [24].  

 

Thus, it has been suggested that if the global energy minimum is determined experimentally, 

YCA can then be calculated using the Wenzel equation. A few methods have been used by 

researchers to experimentally determine the global energy minimum, most notably by placing a 

drop on a rough surface and subjecting it to vibrations. This allows the drop to overcome Gibbs 

energy barriers and reach the ósystem equilibriumô or the ómost stableô state, which will 

correspond to global energy minimum. However, the parameters used to identify the ómost stable 

stateô have not been completely and conclusively established. Furthermore, the relation between 
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the óglobal energy minimumô and Wenzel angle has only been rigorously proven for an infinitely 

large drop ï which is far from a realistic case.  

In this study, I present a simplified thermodynamic model of a drop on a rough surface, with the 

drop much larger than the scale of roughness. The geometry of the roughness features is 

accounted for in the model and it is shown that it physically restricts access to various states that 

would have been otherwise available to the drop. The effect of the same on Gibbs energy barriers 

and Gibbs energy profile of the system is further explored.  

 

2.2. Theory 

 

Consider a drop sitting on a rough surface with isosceles triangular roughness features. The 

particular roughness features have been assumed for ease of calculations and the model 

developed henceforth shall apply similarly to other roughness geometries.  

 

The following assumptions are made ï  

 

1. Solid surface is non-deformable and chemically homogeneous. 

2. Roughness features are infinitely long and extend in direction perpendicular to the paper.  

3. Volume of the drop is constant. 

4. Drop is long and cylindrical.  

5. Drop is ólargeô so that line tension can be ignored [6-8] 

6. It is assumed, on physical grounds, that the vertices of the roughness profile are rounded 

over a very short distance  
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7. Drop wets the solid in the grooves i.e. wetting regime is non-composite 

8. Drop is in thermal equilibrium with the surroundings and there are no external forces. 

Chemical reactions are neglected. 

9. Dynamic effects due to motion of contact line have been neglected.  

10. Adsorbed liquid and liquid-film contribution to contact angle hysteresis are neglected   

11. Effect of gravity is negligible 

12. Drop is surrounded by air at standard temperature and pressure STP  

 

Using the above assumptions, the drop can be assumed to be two dimensional (2-D). The 

schematic of the 2-D wetting system is shown in Figure 2.2. Although a 2-D model is simplistic, 

the attempt is here is to illustrate general features of the wetting system. Similar 2-D models 

have been previously employed by researchers [14,25-28] and several trends have been validated 

by experimental observations. For further discussion on experimental validation, please refer to 

section 4.  

 

Figure 2.2: Schematic of two-dimensional drop on a rough surface (x ï distance of contact line 

from center, P ï roughness pitch, q ï geometric/apparent contact angle for a given x and Adrop) 

x

q
X ·Ω
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P
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Adrop

Ldrop
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To model the system, the equation that relates the Gibbs energy of the system to the geometric 

contact angle (GCA) of the drop is derived. In Figure 2.2, GCA is the angle q that the tangent to 

the drop-air interface at X or Xô subtends with the apparent surface, represented by the horizontal 

line XXô, at a given value of x. It is also referred to as the apparent contact angle (APCA) in 

literature.  

 

The Gibbs energy (GE) of the solid-liquid system can be calculated by considering the 

contribution of the interfacial energies due to liquid-air (LA), liquid-solid (SL) and the unwetted 

solid-air (SA) areas [25] ï  

                                                   

<2.3> 

 

For the 2D droplet, the solid-liquid area (ASL) per unit length of the drop is given by the wetted 

length of surface roughness features, s ï 

 

<2.4> 

 

The liquid-air area (ALA) per unit length of the 2D drop is the perimeter of the drop-air interface, 

Ldrop ï        

           <2.5> 

With the given assumptions, Youngôs equation is locally valid [6-10] and equation 2.3 can be 

simplified to obtain relative Gibbs energy per unit length of the drop: 

LALASLSLSASA AAAGE ggg ++=

ö
÷

õ
æ
ç

å
=
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q
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x
Ldrop

öö
÷

õ
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ç

å
=
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                                                                   <2.6> 

 

Where, LSA is the total area of solid surface (ASA ) per unit length of the surface. Since LSA is 

constant for the given problem, it is hereby ignored and the Gibbs energy of the system is 

referred to as the órelativeô Gibbs energy (equation 2.7). Further, to normalize, gLA has been 

assumed to be 1. It should be noted that equation 2.7 is similar to the equation derived by 

Johnson and Dettre [14]. 

 

<2.7> 

 

A relation can be obtained between GCA (q) and x by imposing constant volume constraint. The 

volume of the drop per unit length, Adrop (Figure 2.2) is given as:   

 

Adrop = Vol. of OXXô ï Vol. of roughness features above XXô + Vol. of liquid below XXô    

 

Using simple geometry it can be shown that:  

 

<2.8> 

 

 

<2.9> 
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<2.10> 

 

where, N = x/P rounded off to the lowest integer and xs = (x/P ï N)*P 

 

Thus, for a given x, q is calculated, which is then substituted in equation 2.6 to calculate the 

relative Gibbs energy of the drop. Thereby x is varied and a plot of relative Gibbs energy is 

obtained for varying q.  

 

For this study, the roughness pitch has been assumed as 10 mm. Initial GCA and x have been 

assumed to be 5 Deg. and 5000 mm respectively. This results in a drop volume that corresponds 

to a circular 2D droplet with diameter ~ 5.5 mm, which is around 550 times the pitch of 

roughness features. The volume of the roughness features is ~3% the volume of the drop.  

 

I model two cases, one with b = 50
o
 and the other with b = 60

o
. Youngôs angle is assumed to be 

70
o
. Calculation for Youngôs angle > 90

o
 are not shown, but will follow in a similar fashion.    

 

2.2.1 CASE I: b = 50
o
 and P = 10 mm 

 

With the given roughness parameters, relative Gibbs energy of the drop can be calculated using 

equation 2.6 and has been plotted in Figure 2.3. 
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The relative Gibbs energy profile initially appears smooth but a close look (inset) shows that it is 

sawtooth-like and consists of óvalleysô and óhillsô. The valleys represent local minimum or 

metastable states and correspond to the state when contact line is at the top vertices of the 

roughness features, point B in Figure 2.2. The hills represent local maxima or unstable states and 

correspond to the state when the contact line is at the bottom vertices of roughness features, 

points A or C in Figure 2.2. It should be noted that since the top and bottom vertices are rounded 

over a very short distance, they allow the Youngôs contact angle to be locally valid for a given 

GCA.   

 

 

Figure 2.3: Relative Gibbs energy vs. geometric contact angle for triangular roughness profile 

with P = 10 mm, b = 50
o
, circular 2D water drop with diameter ~ 5.5 mm, qY = 70

o
. Inset: 

Zoomed in image 
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The difference in the relative Gibbs energy of a valley (metastable state) and the adjacent hill 

(unstable state) is called Gibbs Energy Barrier (GEB) and represents the energy required by the 

drop in a given valley to jump to the adjacent valley. If the adjacent valley has a larger GCA, 

GEB is termed as GEB - larger GCA (GEB-L) and if the adjacent valley has a smaller GCA, 

GEB is called GEB - smaller GCA (GEB-S). This is shown in Figure 2.4, where GEB-L1 and 

GEB-S1 are the GEBs associated with state 1.  

 

Figure 2.4: Schematic of Gibbs Energy Barrier 

 

The GCAs corresponding to GEB-L = 0 and GEB-S = 0 represent the maximum advancing and 

minimum receding angles, respectively. Metastable states exist only for GCA values between the 

maximum advancing and the minimum receding angles. Here, the term maximum and minimum 

is applied to advancing and receding angle because they represent the limiting metastable states 

in a system with zero perturbation/external noise.  
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Figure 2.5 shows the plot of GEB-S and GEB-L. The maximum advancing and the minimum 

receding contact angle are also shown. It can be seen that the maximum advancing contact angle 

is (qY + b) and the minimum receding angle is (qY - b), where qY = 70
o
 and b = 50

o
. These 

angles were first determined by Shuttleworth and Bailey [13] and are representative of the fact 

that the Youngôs equation is locally valid.  

 

The states represented by the lines joining the valleys and hills correspond to the state of the drop 

between the vertices A and B or A and C in Figure 2.2. These are ónon-equilibriumô states as the 

Youngôs equation cannot be locally satisfied (except for a unique case where GCA = qY). Thus, 

the relative Gibbs energy associated with these should only be interpreted qualitatively.   

 

 

Figure 2.5: Gibbs energy barriers for triangular roughness profile (P = 10 mm, b = 50
o
) and 

circular 2D water drop with diameter ~ 5.5 mm with qY = 70
o
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The GCA with the least Gibbs free energy is shown in Figure 2.3 and 2.5. Although, it is not 

possible to mathematically determine the angle corresponding to the global minimum Gibbs 

energy for a metastable system [29], it has been suggested that for ólargeô drops, the angle can be 

approximated by the classical Wenzel angle [14,23,24]. The approximation seems valid for this 

case as the Wenzel angle is qW = 57.8
o
.  It is interesting to note that the global energy minimum 

is the state where GEB-S is equal to GEB-L. The reasons for the same would be discussed later.  

 

While plotting Figure 2.3 and 2.5, it has been assumed that all the states are available and 

accessible to the drop. However, the geometry of roughness features physically restricts access to 

certain óunstableô states  or hills, which correspond to the state of the drop in the bottom vertices 

of the roughness features, represented by A and C in Figure 2.2. This modifies Gibbs energy 

barriers and alters Gibbs energy profile. To demonstrate the same, two situations are considered 

in this study and described as follows:  

 

Case A: q > (180 - b) 

 

Consider Figure 2.6a where the dropôs contact line is at B1 or in other words, the drop is in a 

metastable state B1. The adjacent hill and valley correspond to the state of drop in vertex C1and 

B2 respectively and the energy required to ójumpô from B1 to B2 is given by GEB-S for state B1:  

 

GEB-S(B1) = GERel,C1 ï GERel,B1        <2.11> 
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The terms on right hand side are calculated using equation 2.6.  

 

But as shown in Figure 2.6b, when q1 > (180 - b), the roughness geometry physically restricts the 

access to the unstable state at C1. The drop can be assumed to intersect B2 as soon as it reaches 

C2, an intermediate point on the roughness profile. Therefore, the geometry of the roughness 

features modifies GEB-S of state B1 and the modified value is given as: 

 

GEB-S(B1) MOD = GERel,C2 ï GERel,B1        <2.12> 

 

 

a)     b)     c) 

Figure 2.6: a) Drop with q1 > (180 - b) b) Drop ójumpsô to adjacent peak B2  when q2 > 

(180 - b)  c) Configuration of the drop after the ójumpô 

 

Since, B1 represents local Gibbs energy minimum and C1 represents local Gibbs energy 

maxima, therefore the relative Gibbs energy of the intermediate point C2 will lie between the 

relative Gibbs energy of C1 and B1 or GERel,C1  > GERel,C2 > GERel,B1. Thus, from equations 2.11 

and 2.12: 
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GEB-S(B1)  > GEB-S(B1-B2) MOD      <2.13> 

 

Hence, for the given roughness profile, when q > 130
o
, the actual GEB-S for state B1 is lower as 

compared to the value calculated without accounting for the geometry of the roughness features.  

 

Due to the above reasons, GEB-L of state B2 would also be affected and it is assumed that:  

 

GEB-L (B2) MOD = GERel,B2 ï GERel,C2.      <2.14> 

 

Again, it can be shown that:  

 

GEB-L (B2) > GEB-L (B2) MOD        <2.15> 

  

It should be noted that since the drop is not at equilibrium at C2, the reduction in GEB-L and 

GEB-S should be interpreted only qualitatively. For the same reason, Figure 2.6b is just a 

representative of one of the several possible configurations of the liquid-air interface. The details 

of the calculation can be found in supplementary material. 

 

Case B: q < b 

 

Another geometric constraint occurs when the GCA is less than b, so that the corresponding 

unstable state is inaccessible to the drop.  
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Consider Figure 2.7, when q1 < b, the unstable state corresponding to the vertex C1 is 

inaccessible to the drop and it is assumed that, from an initial metastable state B1, the drop can 

jump to B2 as it reaches an intermediate point C2. In this case, GEB-L for state B1 is affected 

and it can be shown that the modified Gibbs energy barrier (GEB-L (B1) MOD) is lower than Gibbs 

energy barrier calculated without taking the geometric constraint into account. Thus,   

 

GEB-L(B1)  > GEB-L(B1) MOD.         <2.16> 

 

 

a)     b)     c) 

Figure 2.7: a) Drop with q1 < b  b) Drop ójumpsô to adjacent peak B2 when q2 < b c) 

Configuration of the drop after the ójumpô with trapped liquid volume 

 

Further, as the drop moves from C2 to the metastable state B2, a small volume of liquid is 

trapped in the roughness feature (Figure 2.7c). This liquid volume achieves its own equilibrium 

and subtends the Youngôs contact angle with the slanted walls of the shown triangular roughness 

feature. The energy and volume of this trapped liquid is taken into account while calculating 

Gibbs free energy of the system. Figure 2.8 shows the trapped volume and the change in total 

volume of the drop for the case being considered. The details of the calculations for the trapped 

volume can be found in the supplementary material. 

Trapped 
volume
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GEB-S for state B2 is similarly affected and can be calculated as:   

 

GEB-S (B2) MOD = GEB2 ï GEC2.        <2.17> 

 

As demonstrated earlier, GEB-S (B2) MOD < GEB-S (B2); where GEB-S (B2) = GEB2 ï GEC1 

 

Again, the state of drop at C2 is ónon-equilibriumô and Figure 2.7b is just a representative of one 

of the several possible configurations of the liquid-air interface. Thus the reduction in GEB-S 

and GEB-L should be interpreted only qualitatively.  

 

A ógeometric limitô is thus defined as the range of GCAs outside which the Gibbs energy barriers 

are modified.  

The lower and the upper bound of the geometric limit for the roughness features are given by 

b and (180 - b) respectively. For the given roughness profile, the geometric limit exists for 50
o
 < 

GCA < 130
o
.  

 

Figure 2.9a shows a plot of relative Gibbs energy for the given roughness profile, both with and 

without accounting for the ógeometric limitô. It can be seen that for this case, the global energy 

minimum of the wetting system is unaffected and is given by the Wenzel angle.  
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Figure 2.8: Total volume and trapped volume (inset) as a function of GCA for triangular 

roughness profile (P = 10 mm, b = 50
o
) and circular 2D water drop with diameter ~ 5.5 mm with 

qY = 70
o
. 

 

Figure 2.9b shows the GEBs. Circles and crosses represent GEB-S and GEB-L calculated 

without accounting for the geometric limit. Outside the geometric limit, GEB-S and GEB-L are 

modified, as represented by diamond and square respectively. The modified GEBs should be 

interpreted only qualitatively. As can be seen, the maximum advancing and the minimum 

receding angles are unaffected by the modification of GEBs. It should be noted that GEB-L is 

equal to GEB- S at the GCA corresponding to the global energy minimum, given by Wenzel 

angle.  
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(a) 

 

(b) 

Figure 2.9: (a) Modified Relative Gibbs Energy and (b) Gibbs energy barriers for triangular 

roughness profile (P = 10 mm, b = 50
o
) and circular 2D water drop with diameter ~ 5.5 mm with 

qY = 70
o
. GEBs remain unchanged inside the ógeometric limitô 
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Next, calculations are presented for roughness profile with b = 60
o
 and P = 10mm 

 

2.2.2 CASE II: b = 60
o
 and P = 10mm 

 

Similar to the analysis for Case I, roughness configuration with b = 60
o
 is modeled. Figure 2.10 

shows the total volume of the drop and trapped volume as a function of GCA.  

 

 

Figure 2.10: Total volume and trapped volume (inset) as a function of GCA for triangular 

roughness profile (P = 10 mm, b = 60
o
) and circular 2D water drop with diameter ~ 5.5 mm with 

qY = 70
o
. 
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(a) 

 

(b) 

Figure 2.11: (a) Modified Relative Gibbs Energy and (b) Gibbs energy barriers for triangular 

roughness profile (P = 10 mm, b = 60
o
) and circular 2D water drop with diameter ~ 5.5 mm with 

qY = 70
o
. GEBs remain unchanged inside the ógeometric limitô 
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The upper and lower bounds for the ógeometric limitô are 120
o
 and 60

o
 respectively and the 

relative Gibbs energy and GEBs are shown in Figure 2.10. It can be seen that unlike the previous 

case, Wenzel angle is not the GCA corresponding to the global energy minimum of the wetting 

system. This would be discussed in detail in the next section. The GCAs corresponding to zero 

GEBs represent the minimum receding and the maximum advancing contact angle and are 10
o
 

and 120
o
 respectively. As earlier, the maximum advancing contact angle is (qY + b) and the 

minimum receding angle is (qY - b), where qY = 70
o
 and b = 60

o
. 

 

2.3 óSystem equilibriumô state of the drop 

 

óSystem equilibriumô state is defined as the state which the system will tend to achieve or, if 

moved away, will tend to return to under perturbations which have a Maxwell-Boltzmann 

distribution, representative of thermal energy of the molecules at a given temperature. By second 

law of thermodynamics, the ósystem equilibriumô state will always correspond to the global 

energy minimum. However, for a metastable system, there is no analytical way of determining 

the global energy minimum [29]. This section explains as to how the ósystem equilibriumô state 

can be determined using Gibbs energy barrier plot and it is shown that modification in the latter 

could shift the ósystem equilibriumô.  

 

For a wetting system, existence of several metastable states was established by early models and 

experiments [14,15, 30-34] and can be seen from the two cases modeled here. At a given 

moment, the state in which the drop exists depends on several factors like the method of drop 

deposition and the history of the drop. Say, the system in a given state is perturbed and at a given 
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time the magnitude of perturbation is DE. Further, assume that the perturbations have a Maxwell-

Boltzmann distribution.  

 

Figure 2.12 shows a section of the relative Gibbs energy profile. Assume that state 3 is the 

current state of the system and the corresponding Gibbs energy of the system = GE3. The energy 

required to move the system from state 3 is the difference in Gibbs energy of state 3 and an 

adjacent óhillô ï which is either 4 or 2. This difference is given by the GEBs as shown. For 

simplicity, it is assumed that GEB-L5 = GEB-L3 

 

Under perturbation DE, there could be three scenarios: 

Case 1: DE < GEB-S3 

Case 2: GEB-L3 > DE > GEB-S3 

Case 3: DE > GEB-L3 

 

 

Figure 2.12: Section of Gibbs Energy profile 
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In Case 1, the system maintains status quo as it does not have enough energy to reach either state 

4 or 2. In Case 2, the system attains state 4 and either comes back to state 3 or goes to state 5. If 

the system goes to state 5, it does not have enough energy to come back to state 3 as GEB-L5 > 

DE and therefore, either the system stays in state 5 or it could move to a state with a smaller 

GCA depending on the energy barrier required to do so. In Case 3, the system could either move 

to state 4 or state 2 and either return to state 3 or move to state 5 or state 1. If the system moves 

to state 5 or state 1, it again has enough energy to return to state 3.  

 

As the perturbations are Gaussian, a perturbation with lower magnitude is more likely a higher 

magnitude one. Therefore, since the perturbation required to move to state 5 is smaller than the 

one required to move to state 1, it is more likely for the system to move to state 5 as compared to 

state 1. For a general case, if Gibbs energy barrier (GEB) required to move to a state with lower 

geometric contact angle is less than the GEB required to move to a state with higher geometric 

contact angle, over time, the system moves to a state with lower geometric contact angle. A 

similar argument will hold if the inverse is true. Thus, to understand the dynamics of the system, 

the variation of GEBs for the two cases, modeled here, needs to be understood.  

 

2.3.1 CASE I (b = 50
o
 and P = 10mm) 

 

For this case, the following observations can be made from Figure 2.9b:  

1. Wenzel Angle lies inside the ógeometric limitô 

2. GEB-S = GEB-L at the Wenzel angle 
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To start with, assume that the drop is in a metastable state corresponding to a GCA lower than 

Wenzel angle. This state is to the left of the Wenzel angle in Gibbs energy barrier plot (Figure 

2.9b) and it can seen that for such a state GEB-L is lower than GEB-S. As explained earlier, over 

time, the system would move to a higher GCA and such a movement will continue until the drop 

reaches the state where GEB-L is equal to GEB-S, which in this case corresponds to the Wenzel 

state. A similar argument would apply when the initial state corresponds to a GCA greater than 

the Wenzel angle. Again, the drop would try to attain the Wenzel state where GEB-S is equal to 

GEB-L. Further, if the system is moved away from the Wenzel state, in either direction, it will 

tend to return back. Thus, for this case, Wenzel state is the ósystem equilibriumô state. Thus, in 

this case the modification of GEBs does not play a role in determination of the ósystem 

equilibriumô angle. 

 

It can be seen from Figure 2.9a that Wenzel state is also the state corresponding to the global 

energy minimum of the system. This is no coincidence but follows from second law of 

thermodynamics. It can be shown a perpetual motion machine can be created if the ósystem 

equilibriumô state does not correspond to the global energy minimum.  

 

2.3.2 CASE II (b = 60
o
 and P = 10mm) 

 

For this case, the following observations can be made from the Figure 2.11 ï 

1. Wenzel Angle lies outside the ógeometric limitô 

2. Due to the modification of GEBs, GEB-S and GEB-L are equal at a GCA different from the 

Wenzel Angle. 



 

31 

 

Using similar arguments as earlier, it can be shown that over time, the drop tends to move 

towards the state where GEB-L and GEB-S are equal. Due to modification of GEBs, this state is 

different from the Wenzel state (Figure 2.11b). Thus, in this case, the ósystem equilibriumô angle 

does not correspond to the Wenzel angle.  

 

Also, it can be seen from Figure 2.11a that Wenzel state is not the state corresponding to the 

global energy minimum of the system. This state is represents GCA for which GEB-S is equal to 

GEB-L and again this follows from second law of thermodynamics. Thus, a generalized set of 

condition for isosceles triangular roughness features can be stated as:  

 

If,  b < qW < 180 - b ; then qW = óSystem equilibriumô angle 

qW < b < 180 - b ; then qW Í óSystem equilibriumô angle 

b < 180 - b < qW ; then qW Í óSystem equilibriumô angle 

Where, slope of triangular roughness feature = b, Wenzel angle = qW.  

 

When qY < 90
o
, the above relations reduce to: if b < qW; only then qW = óSystem equilibriumô 

angle. This is plotted in Figure 2.13. Although Youngôs angle canôt be directly measured, it 

represents the hydrophilicity of the surface and is inversely related to the latter. The regime 

marked as ócomplete wettingô represents the area where numerically Wenzel angle Ò 0, since qY 

Ò cos
-1

(1/r).  

 

It can be seen that for isosceles triangular roughness features, when geometric limit is taken into 

account, the range of applicability of Wenzel relation doesnôt change appreciably unless when 
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roughness features are sharp. However, real surfaces consist of both sharp and blunt three 

dimensional roughness features. Such surfaces canôt be modeled by simply averaging out the 

roughness features into a roughness factor, r as geometry could significantly modify the Gibbs 

energy barriers and play an important role in determination of ósystem equilibriumô. For such 

surfaces, it is not immediately apparent as to if the Wenzel angle would correspond to the 

ósystem equilibriumô angle (global energy minimum state) and experimental validation is 

necessary.  

 

 

Figure 2.13: Applicability of Wenzel relation for hydrophilic surface with isosceles triangular 

roughness features 

 

2.4 Comparison with experimental data 
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Several studies [24, 30-34] have attempted the experimental determination of ósystem 

equilibriumô contact angle for rough surfaces, yet the same remains an open problem. However, 

experiments have helped elucidate some key aspects of the nature of liquid-solid interaction 

which allow comparison of the modeling effort and the experimental studies for rough surfaces. 

These are presented below - 

 

1. Multiple metastable states: The existence of multiple metastable states of a sessile drop on a 

rough surface is very well known [30-33] and supported by the current model.  

 

2. Effect of vibrations on contact angle hysteresis: Experimental studies [31-33] have reported 

the reduction of contact angle hysteresis in presence of vibrations. This matches well with the 

predictions from the model that vibrational energy allows the drop to overcome Gibbs energy 

barriers, thus reducing the advancing angle and increasing the receding angle and thereby 

reducing the contact angle hysteresis.  

 

3. Distribution of Gibbs energy barriers: Volpe et al. [32] added vibrations to a standard 

Wilhelmy microbalance experiment to obtain a ósystem equilibriumô state of the meniscus on 

rough and/or heterogeneous surfaces. They showed that Gibbs energy barriers increase going 

toward the absolute Gibbs energy minimum. This result matches with the predictions from the 

model for Case I (P = 10mm and b = 50
o
). However, there is still debate over the method used 

to experimentally determine the ósystem equilibriumô state. Further, the model presented here 

shows that it is not necessary that the Gibbs energy barriers would always increase going to 
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the ósystem equilibriumô state (Case II: P = 10mm and b = 60
o
) and careful experiments are 

required to validate the same.   

 

4. Advancing and Receding angles: The values of advancing and receding contact angles match 

the predictions by Shuttleworth and Bailey, which have been experimentally shown to be 

relevant [34,35].  

 

5. Reproducibility of advancing and receding angles: It has been observed during experiments 

[36] on hydrophilic substrates, that receding angle measurements are difficult to reproduce as 

compared to advancing angles. This could be attributed to the modelôs prediction that there 

are numerous metastable states for contact angles close to receding value while higher contact 

angles, close to the advancing value, have fewer metastable states. This can be seen in Figure 

2.14. 

 

Figure 2.14: Histogram of metastable states for the same surface as used in Figure 2.11. Each bar 

represents the number of metastable states for a GCA range of +/- 5 degrees. 
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6. Relation between Wenzel angle and global energy minimum (GEM): Researchers have 

suggested measuring the ósystem equilibriumô state of the drop, which will correspond to the 

GEM, by placing a drop on a rough surface and subjecting it to vibrations. As the drop 

overcomes Gibbs energy barriers, it tries to reach the ósystem equilibriumô state. However, no 

conclusive guideline has been established to recognize the ómost stable stateô.  

 

Wolanski et al. [37] proved mathematically that when the drop is sufficiently large compared 

to the roughness scale, it becomes axisymmetric as it reaches the GEM. Meiron et al. [24] 

used the opposite but unproven statement that is: ñfollowing vibrations when a large drop on a 

rough surface becomes round, it is at the global minimum in energyò, as the working 

hypothesis to identify GEM. They measured apparent contact angle on homogeneous surfaces 

of varying roughness by vibrating a sessile drop. They used data only from axisymmetric 

drops to calculate the contact angle from dropôs diameter and weight. Their measurements of 

ómost stableô contact angle matched well with the global energy minimum calculations, as 

approximated by Wenzel angle, for the rough surfaces. However, the empirical evidence is not 

conclusive as the parameters used to identify the ómost stable stateô have not been completely 

and conclusively established.  

 

Further, it is shown in this study that since several states are inaccessible to the drop, Gibbs 

energy barriers are modified and global energy minimum may not correspond to the Wenzel 

angle. However, as pointed out, this shift in ósystem equilibriumô state from the Wenzel state 
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may only occur for surfaces with sharp roughness features and careful experiments are 

required to test this conclusion.  

 

2.5 Conclusions 

 

The study presents a two dimensional thermodynamic model for a drop, in a non-composite 

state, on a rough hydrophilic surface (Youngôs angle < 90
o
) with triangular features. Due to the 

simplistic nature of model, similar to other two-dimensional models [14,25-28], the attempt is to 

illustrate general features of a wetting system.  

 

The model reaffirms the existence of several local equilibrium states for a drop placed on a rough 

surface. However, it is pointed out that, due to the geometry of roughness features, the drop is 

physically unable to access all the local equilibrium states. This leads to reduction in the Gibbs 

energy barriers for the metastable states outside the defined ógeometric limitô. It is further shown 

that if the Wenzel angle lies outside the ógeometric limit,ô it will not correspond to the global 

energy minimum.  

 

For real surfaces, the result could mean that the Wenzel equation might hold only for surfaces 

with weak roughness, where small and blunt roughness features result in a large ógeometric 

limitô, or surfaces with weak hydrophilicity, where Wenzel angle is large. For hydrophobic 

surfaces, it can be shown that the Wenzel angle might hold only for either weakly hydrophobic 

surfaces or surfaces with weak roughness.  
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Although a quantitative estimate of the reduction in Gibbs energy barriers cannot be obtained, 

calculations here demonstrate a trend. In cases where Wenzel angle doesnôt correspond to the 

ósystem equilibriumô state, a theoretical determination of global energy minimum is not possible 

and the same would have to be measured experimentally. However, such a measurement might 

be useless in the estimation of Youngôs contact angle as there may not be any single analytical 

equation which could relate the two for surfaces of different roughness.  

 

Supporting Informati on Available 

 

Appendix A shows the calculation of trapped volume and the modification in Gibbs energy 

barriers due to the geometry of roughness features.  
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3. ANISOTROPIC WETTING SURFACES 

 

3.1 Introduction 

 

Anisotropic wetting surfaces have special wetting characteristics as they favor wetting in certain 

directions more than the others. These surfaces have several possible application e.g. in 

microfluidics, preferential drainage in air-conditioning evaporators, evaporation-driven 

deposition etc.. Wetting anisotropy has been demonstrated both chemically [1] and using 

predefined surface structures [2-6] and the scope of this study is limited the design of anisotropic 

surfaces based on the latter.  

 

Several studies have been carried out to design and model anisotropic surfaces based on surface 

structure but most of them have been concerned with micro/nano scale parallel grooved 

structures [2-6] which provide orthogonal anisotropy - that is the advancing and/or receding 

angles are different in directions perpendicular and parallel to the grooves as shown in Figure 

3.1. 

 

Figure 3.1: Parallel grooved structures showing orthogonal anisotropy. Insets b) and c) show the 

difference in the shape of the drop when it is placed parallel and perpendicular to the grooves 

respectively [2] 
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There have been very few studies in left-right anisotropy and those have been mostly limited to 

hair/fiber like structures [7]. For a grooved structure, left-right anisotropy implies that the 

advancing and/or receding angles depend on the direction of measurement perpendicular to the 

grooves. This is shown in Figure 2.2. 

 

 

Figure 3.2: Left-right anisotropy in bent hair like structures [7] 

 

Based upon the results from the model developed in the earlier section, left-right anisotropic 

structures are proposed and characterized in this work. 

 

3.2 Theory 

 

In earlier study, a thermodynamic model was developed for a drop placed on a rough surface. 

The roughness was assumed to consist of isosceles triangles. Using the same method, a 
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thermodynamic model is developed for roughness features consisting of asymmetric triangles. 

Again, the drop size is ómuch largerô than the size of the drop.  

 

Two surfaces are shown in Figure 3.3 with same geometric features but different orientations. 

The assumptions are same as for the model in earlier chapter.  The parameters used to model the 

surface were - Youngôs contact angle = 70
o
, b = 20

o
, a = 70

o
, P = 20 mm.  

 

(a)       (b) 

Figure 3.3: Two-dimensional symmetric profiles of sawtooth with asymmetric triangular features 

 

Since, Gibbs energy barriers play a key role in determination of advancing and receding angles, 

the same are plotted for both the roughness configurations, as shown in Figure 3.4 a) and b). In 

this study, the role of ógeometric limitô is not considered as it has been shown that the same 

would not affect the values of advancing and receding angles here. 

 

As earlier, the maximum advancing and the minimum receding angles in Figure 3.4 correspond 

to the maximum and minimum apparent angles as determined by Shuttleworth and Bailey [8]. 

Also, since Wenzel factor, r [9] is same for both the profiles and hence the Wenzel angle is also 

the same (~64
o
) and corresponds to geometric contact angle with GEB-L = GEB-S.  
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(a)  

      

(b) 

Figure 3.4: Gibbs energy barrier vs. geometric contact angle for roughness configuration shown 

in inset with P = 20 mm, a = 70
o
, b = 20

o 
and circular 2D liquid drop with diameter ~1.4 mm 

with qY = 70
o
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However, it is interesting to note the two surfaces have different advancing and receding angles. 

This result is used in the design of anisotropic surfaces in the next section.  

 

3.3 Experiments 

 

Simulations in the previous section demonstrated the difference in the advancing and receding 

angles of two similar roughness profiles with different orientations. Based upon the simulations, 

it is proposed that surface with an asymmetric periodic sawtooth profile would demonstrate 

anisotropy and the advancing and receding angles would depend upon the direction in which 

measurements are taken along the sawtooth.  

 

Figure 3.5a shows the surface profile of an Echelle grating (GE1325-0875) having 79 

grooves/mm and a blaze angle of 75
o
 that was purchased from THOR labs (www.thorlabs.com). 

The surface of the grating is coated with Alumina and has the desired asymmetric periodic 

sawtooth profile. As shown in the figure, a nomenclature of +ve and ïve is assumed to denote 

the orientation of sawtooth.  

 

 (a) 

Figure 3.5: Continued on next page 

+X

-X

http://www.thorlabs.com/
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(b) 

Figure 3.5: (a) Schematic of Echelle grating GE1325-0875 with 79 grooves/mm. Direction of 

arrow indicates orientation of sawtooth, +x and ïx represent the head and tail of the arrow 

respectively  (b) SEM image of the grating 

 

Contact angle measurements were made using a Contact Angle System OCA 20 (DataPhysics 

Instruments GmbH, Germany) at 18.8 C and 40% RH. The usual contact angle variability for the 

measurement technique used is +/- 2°. 

 

3.3.1 Measuring wetting anisotropy 

 

A common method to measure the wettability of a solid surface for a given liquid is to determine 

the static contact angle. Researchers have used difference in static contact angle as a measure of 

anisotropy, specially so in the case of orthogonal anisotropy [2, 6]. However, it was shown in the 

earlier chapter that static contact angle of a liquid on a rough solid surface represents one of the 

several metastable states that the drop can exist in. Hence, static contact angle is not a good 
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measure of anisotropy as it is not repeatable and depends on method of drop deposition and thus 

should only be used as a qualitative measure of anisotropy. 

 

Tilt angle required for sliding of drops deposited on a surface have also been used to measure 

anisotropy [4]. However, the critical tilt angle of a drop depends on the advancing and receding 

angle and the shape of contact line. The latter could be difficult to reproduce in different 

experiments and thus doesnôt provide a repeatable method of measuring anisotropy.  

 

In this study, advancing and receding contact angle measurements have been used to measure 

left-right anisotropy. The measurements have been shown to be repeatable using two different 

experimental methods.  

 

3.3.2 Static contact angle measurements 

 

As pointed out earlier, static angle measurements should only be used as a qualitative 

measurement of anisotropy. Here, static contact angles are measured by depositing a 3ml drop 

from different heights on to the surface of the grating. The measurement data is shown in Figure  

Figure 3.6 (a) and (b) for the parallel and perpendicular directions with respect to the sawtooth 

profile respectively. The different contact angles in Figure 3.6 are representative of different 

metastable states that the drop assumed as it was let go from different heights.  
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(a) 

 

(b) 

Figure 3.6: Contact angle data (a) parallel and (b) perpendicular to the sawtooth 

 

Although, the contact angle data above doesnôt show any significant anisotropy, the same is 

apparent when liquid is added and removed from the droplet.  

 

As shown in Figure 3.7a, as liquid is added to the droplet, the contact line advances in only one 

direction and the droplet becomes asymmetric with respect to the fixed red colored reference 

line. Also, as the liquid is removed from the droplet, Figure 3.7b, the contact line starts receding 

from one end, which is different from the end where the contact line was advancing.  
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(a) 

 

(b) 

Figure 3.7: Wetting anisotropy apparent in unidirectional advance of contact line with (a) 

addition and (b) removal of water 

 

3.3.3 Advancing and receding contact angle measurements 

 

Due to wetting anisotropy, the measurement of advancing and receding contact angles was not 

possible in the usual manner -  that is by addition and removal of liquid from the drop, as the 

liquid would advance and recede from only one end. Thus, two different methods were used and 

compared for repeatability.  

 

A) Constant drop volume, varying tilt stage angle 
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In this method, the drop volume was fixed at 30 ml and the tilt stage angle was varied until the 

drop just started to slide and the advancing and receding angles were measured. This experiment 

was only done for the orientation of sawtooth shown in Figure 3.8.  The measured advancing and 

receding angles were 89
o
 and 25

o
 respectively. This is shown in Figure 3.8, for the given 

orientation of the sawtooth.  

 

 

Figure 3.8: Measurement of advancing and receding angle using fixed drop volume method. 

Orientation of sawtooth shown in the images. Advancing angle = 87
o
, Receding angle = 25

o 

 

B) Varying drop volume, constant tilt stage angle 

 

In the second experiment, the tilt angle of the stage was fixed and water was added to the droplet 

until the contact line started to move. This gave an advancing angle of 130
o
 and 85

o
 for drop 

sliding towards the +ve and the ïve direction respectively. The latter reading matches well with 

the data from fixed drop volume, varying tilt angle experiment. 

Drop

Grating

Tilt stage
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(a)       (b) 

Figure 3.9: Measurement of advancing angle with fixed tilt angle method. Orientation of 

sawtooth is shown in the images  

 

3.4 Comparison of experiment and theory 

 

Table 3.1 compares the advancing and receding angle measurements from the experiments and 

the predicted value based upon Shuttleworth and Bailey equation [8]. It should be noted that the 

predictions are the theoretical maximum values for the advancing and recessing angles as the 

vibrations havenôt been taken into account. The Youngôs contact angle assumed for Alumina is 

65
o
.  

 

As can be seen, the advancing angle measurements match well with the predictions. The model 

overestimates the receding angle measured along the direction of the arrow as shown in Figure 

3.5a. This error could be due to the presence of liquid film on the surface [10]. 

~130 Deg


