A Work-Efficient Parallel Breadth-First Search

Algorithm (or How to Cope with the Nondeterminism
of Reducer Hyperobjects)

Charles E. Leiserson Tao B. Schardl

MIT Computer Science and Artificial Intelligence Laboratory

22nd ACM Symposium on Parallel Algorithms and Architectures
2010

C.E. Leiserson, T.B. Schardl (MIT CSAIL) A Work-Efficient Parallel BFS Algorithm SPAA’10 1/26

Breadth-first search (BFS)

Problem: Given an unweighted graph G = (V, E) and a designated

starting vertex vy, find the shortest path distance from v to all other
ue V.

@ Guarantee that the vertices are visited in breadth-first order: For
all distances d, all vertices that are d away from vy must be visited
before any vertex of distance d + 1.

@ We want a parallel algorithm to solve this problem.

C.E. Leiserson, T.B. Schardl (MIT CSAIL) A Work-Efficient Parallel BFS Algorithm SPAA 10 2/26

SEEIRIRS)

SERIAL-BFS(G = (V, E), vo) @ The queue Qis a FIFO
1 foreachvertexue V—{vw} queue.
2 y di:f ‘fsg = @ The distance of vertex
4 Q- V) u = DEQUEUE(Q) in
5 while Q # 0 !ine 6 is. monotonically
6 u = DEQUEUE(Q) Increasing.
7 for each v € V such that (U, V) cE ") Consequently, vertices
g ifv. d’sf;? > o dist o 1 are visited in

v.aist = u.ais :
10 ENQUEUE(Q, v) breadth-first order.

This algorithm does not parallelize well.
@ FIFO queue is a serial bottleneck.

@ Parallelizing the for loops gives O(E/ V) parallelism, which is
puny for sparse graphs.

C.E. Leiserson, T.B. Schardl (MIT CSAIL) A Work-Efficient Parallel BFS Algorithm SPAA’10 3/26

Summary of results

ssssssssss

@ We have designed a parallel breadth-first search algorithm, called
PBFS, and we have implemented PBFS using Cilk++.

@ PBFS obtains 5x to 6x speedup on eight processing cores on
many real-world benchmark graphs.

@ When run serially, PBFS is competitive with SERIAL-BFS.

@ The theoretical running time of PBFS on P processors is
O((V + E)/P + DIg3(V/D)).

C.E. Leiserson, T.B. Schardl (MIT CSAIL) A Work-Efficient Parallel BFS Algorithm SPAA 10 4/26

ﬂ Strategy for Parallelizing Breadth-First Search

@ The Bag Data Structure
@ Bag Requirements and Usage
@ Bag Design

© Empirical Resuits

e Theoretical Results
@ The DAG Model of Computation
@ Modeling Reducers
@ Theoretical Analysis of PBFS

C.E. Leiserson, T.B. Schardl (MIT CSAIL) A Work-Efficient Parallel BFS Algorithm SPAA’10

a Strategy for Parallelizing Breadth-First Search

C.E. Leiserson, T.B. Schardl (MIT CSAIL) A Work-Efficient Parallel BFS Algorithm SPAA’10 6/26

Strategy for parallelizing breadth-first search

Strategy: consider the graph in layers.

@ The dth layer of G is the set Vy of vertices that are all at distance
d from vp.

@ Breadth-first ordering: all vertices in V are visited before any
vertex in V4.

@ We shall examine the layers V serially, but
@ For each layer V4, we shall process all vertices in Vg in parallel.

C.E. Leiserson, T.B. Schardl (MIT CSAIL) A Work-Efficient Parallel BFS Algorithm SPAA 10 6/26

Strategy for parallelizing breadth-first search

C.E. Leiserson, T.B. Schardl (MIT CSAIL) A Work-Efficient Parallel BFS Algorithm SPAA 10 7126

Strategy for parallelizing breadth-first search

C.E. Leiserson, T.B. Schardl (MIT CSAIL) A Work-Efficient Parallel BFS Algorithm SPAA 10 7126

Strategy for parallelizing breadth-first search

C.E. Leiserson, T.B. Schardl (MIT CSAIL) A Work-Efficient Parallel BFS Algorithm SPAA 10 7126

Strategy for parallelizing breadth-first search

C.E. Leiserson, T.B. Schardl (MIT CSAIL) A Work-Efficient Parallel BFS Algorithm SPAA 10 7126

Strategy for parallelizing breadth-first search

C.E. Leiserson, T.B. Schardl (MIT CSAIL) A Work-Efficient Parallel BFS Algorithm SPAA 10

Strategy for parallelizing breadth-first search

C.E. Leiserson, T.B. Schardl (MIT CSAIL) A Work-Efficient Parallel BFS Algorithm SPAA 10

Strategy for parallelizing breadth-first search

C.E. Leiserson, T.B. Schardl (MIT CSAIL) A Work-Efficient Parallel BFS Algorithm SPAA 10

Strategy for parallelizing breadth-first search

C.E. Leiserson, T.B. Schardl (MIT CSAIL) A Work-Efficient Parallel BFS Algorithm SPAA 10

Strategy for parallelizing breadth-first search

C.E. Leiserson, T.B. Schardl (MIT CSAIL) A Work-Efficient Parallel BFS Algorithm SPAA 10

Strategy for parallelizing breadth-first search

C.E. Leiserson, T.B. Schardl (MIT CSAIL) A Work-Efficient Parallel BFS Algorithm SPAA 10

Strategy for parallelizing breadth-first search

C.E. Leiserson, T.B. Schardl (MIT CSAIL) A Work-Efficient Parallel BFS Algorithm SPAA 10

@ The Bag Data Structure
@ Bag Requirements and Usage

C.E. Leiserson, T.B. Schardl (MIT CSAIL) A Work-Efficient Parallel BFS Algorithm SPAA’10 8/26

Storing a layer of the graph

Problem: We need a data structure to handle a single layer.
Specifically, we need a data structure that does the following:

@ It must store an unordered set of elements.
@ It must support efficient parallel traversal of the stored elements.

@ It must allow parallel workers to add elements simultaneously to
the same structure.

C.E. Leiserson, T.B. Schardl (MIT CSAIL) A Work-Efficient Parallel BFS Algorithm SPAA 10 8/26

Storing a layer of the graph

Solution: Use a bag — a multi-set data structure, which supports the
following operations:

BAG-CREATE
BAG-INSERT
BAG-SPLIT
BAG-UNION

Create a new, empty bag.

Add an element to a bag.

Divide a bag into two equal-sized bags.

Combine the contents of two bags into a single bag.

C.E. Leiserson, T.B. Schardl (MIT CSAIL) A Work-Efficient Parallel BFS Algorithm SPAA 10 9/26

Processing a layer

PROCESS-LAYER(in-bag, out-bag, d)

11
12
13
14
15
16
17
18
19
20
21

if BAG-SIZE(in-bag) < GRAINSIZE
for each u € in-bag
parallel for each v € Adj[u]
if v.dist == 00
v.dist = d+1 // benign race
BAG-INSERT(out-bag, v)
return
new-bag = BAG-SPLIT(in-bag)
spawn PROCESS-LAYER(new-bag, out-bag, d)
PROCESS-LAYER(in-bag, out-bag, d)
sync

C.E. Leiserson, T.B. Schardl (MIT CSAIL) A Work-Efficient Parallel BFS Algorithm SPAA’10

Processing a layer

PROCESS-LAYER(in-bag, out-bag, d)

11
12
13
14
15
16
17
18
19
20
21

if BAG-SIZE(in-bag) < GRAINSIZE
for each u € in-bag
parallel for each v € Adj[u]
if v.dist == co
v.dist = d+1 // benign race
BAG-INSERT(out-bag, v) // malignant race
return
new-bag = BAG-SPLIT(in-bag)
spawn PROCESS-LAYER(new-bag, out-bag, d)
PROCESS-LAYER(in-bag, out-bag, d)
sync

C.E. Leiserson, T.B. Schardl (MIT CSAIL) A Work-Efficient Parallel BFS Algorithm SPAA’10 10/26

Cilk++ reducers

Cilk++ supports a type of parallel data structure, called a reducer.

x =10
X++
xX+=3
X+ =-2
X+=6
X__
X+=4
xX+=3
X++

X +=-9

SQwWoo~NOCOP~,WN =

—

x =10
X++
X+=3
X+=-2
X+=6
x' =0
X' ——

x +=4
x +=3
X' ++

x +=-9
X +=x

ar~r o=

O OO NO®

1

Ea w N

[e27&)

O © 00 N

x =10
X4+
X+=3
x' =0

X +=-2
X' +=6
X' ——
x"=0
X" +=4
X" +=3
X"+

X" +=-9
X +=x
X +=x"

C.E. Leiserson, T.B. Schardl (MIT CSAIL)

A Work-Efficient Parallel BFS Algorithm

SPAA 10

Cilk++ reducers

Cilk++ supports a type of parallel data structure, called a reducer.

x =10
X++
xX+=3
X+ =-2
X+=6
X__
X+=4
xX+=3
X++

X +=-9

SQwWoo~NOCOP~,WN =

—

x =10
X++
X+=3
X+=-2
X+=6
X' =0
X' ——

x +=4
x +=3
X' ++

x +=-9
X +=x

ar~r o=

O OO NO®

1

Ea w N

[e27&)

O © 00 N

x =10
X++
X+=3
x' =0

X +=-2
X' +=6
X ——
x"=0
X"+ =4
X" +=3
X" ++

X" +=-9
X +=x
X +=x"

C.E. Leiserson, T.B. Schardl (MIT CSAIL)

A Work-Efficient Parallel BFS Algorithm

SPAA 10

Cilk++ reducers

Cilk++ supports a type of parallel data structure, called a reducer.

x =10
X++
xX+=3
X+ =-2
X+=6
X__
X+=4
xX+=3
X++

X +=-9

SQwWoo~NOCOP~,WN =

—

x =10
X++
X+=3
X+=-2
X+=6
X' =0
X' ——

x +=4
x +=3
X' ++

x +=-9
X +=x

ar~r o=

O OO NO®

1

Ea w N

[e27&)

O © 00 N

x =10
X++
X+=3
x' =0

X +=-2
X' +=6
X ——
x"=0
X"+ =4
X" +=3
X" ++

X" +=-9
X +=x
X +=x"

C.E. Leiserson, T.B. Schardl (MIT CSAIL)

A Work-Efficient Parallel BFS Algorithm

SPAA 10

Cilk++ reducers

We use the bag as a Cilk++ reducer to solve our malignant race.

@ After stealing a task, a worker starts executing the task with a
local, “identity” copy of a new reducer.

@ Each worker freely manipulates its local copy with write-only
update operations.

@ As tasks return, the workers’ local copies are combined together
into a single data structure using REDUCE operations.

@ If REDUCE is associative, then the program has serial semantics.

C.E. Leiserson, T.B. Schardl (MIT CSAIL) A Work-Efficient Parallel BFS Algorithm SPAA’10 12/26

Cilk++ reducers

We use the bag as a Cilk++ reducer to solve our malignant race.

@ After stealing a task, a worker starts executing the task with a
local, “identity” copy of a new reducer.

e For bags, the identity is an empty bag.
@ Each worker freely manipulates its local copy with write-only
update operations.
e For bags, the update operation is BAG-INSERT.

@ As tasks return, the workers’ local copies are combined together
into a single data structure using REDUCE operations.

e For bags, REDUCE = BAG-UNION.
@ If REDUCE is associative, then the program has serial semantics.

e For bags, BAG-UNION is not strictly associative, since the order of
elements within a bag is nondeterministic. Bags have a notion of
“logical associativity,” which is sufficient for PBFS’s correctness.

C.E. Leiserson, T.B. Schardl (MIT CSAIL) A Work-Efficient Parallel BFS Algorithm SPAA’10 12/26

@ The Bag Data Structure

@ Bag Design

C.E. Leiserson, T.B. Schardl (MIT CSAIL) A Work-Efficient Parallel BFS Algorithm SPAA’10 13/26

The bag data structure

drdnedsn L AP

@ A bag is made up of pennants — complete binary trees with extra
root nodes, which store the elements.
e Pennants may be split and combined in O(1) time by changing
pointers.
@ A pennant is only combined with another pennant of the same size.

@ A bag is an array of pointers to pennants.

e For all i, the ith entry in the array is either null or points to a pennant
of size 2.
o Intuitively, a bag acts much like a binary number.

C.E. Leiserson, T.B. Schardl (MIT CSAIL) A Work-Efficient Parallel BFS Algorithm SPAA’10 13/26

The bag data structure — BAG-INSERT

Inserting an element works similarly to incrementing a binary number.

Gt b

BAG-INSERT runs in O(1) amortized time and O(Ig n) worst-case time.

C.E. Leiserson, T.B. Schardl (MIT CSAIL) A Work-Efficient Parallel BFS Algorithm SPAA’10 14/26

The bag data structure — BAG-INSERT

st
L

e

C.E. Leiserson, T.B. Schardl (MIT CSAIL) A Work-Efficient Parallel BFS Algorithm SPAA’10 15/26

The bag data structure — BAG-SPLIT

Splitting a bag works similarly to an arithmetic right shift.

P U

BAG-SPLIT runs in O(Ig n) time.

C.E. Leiserson, T.B. Schardl (MIT CSAIL) A Work-Efficient Parallel BFS Algorithm SPAA’10 16/26

The bag data structure — BAG-UNION

Unioning two bags is works similarly to adding two binary numbers.

et G

BAG-UNION works in O(Ig n) time.

C.E. Leiserson, T.B. Schardl (MIT CSAIL) A Work-Efficient Parallel BFS Algorithm SPAA’10 17/26

© Empirical Resuits

C.E. Leiserson, T.B. Schardl (MIT CSAIL) A Work-Efficient Parallel BFS Algorithm SPAA’10 18/26

Empirical Results

Name 4 PBFS T

Description Spy Plot |E| Parallelism m PBFS T;/Tg
D

Kkt_power N\ 2.05M

Optimal power flow, Y 12.76 M 104.09 0.705 6.102

nonlinear opt. ~ 31

Freescale1 3.43M

Circuit simulation 174 M 153.06 1.120 5.145
128

Cagel4 1.51M

DNA electrophoresis 271 M 246.35 1.060 5.442
43

Wikipedia 2.4M

Links between 41.9M 179.02 0.804 6.833

Wikipedia pages 460

Grid3D200 8M

3D 7-point 55.8 M 79.27 0.747 4.902

finite-diff mesh 598

RMat23 2.3M

Scale-free 77.9M 93.22 0.835 6.794

graph model 8

Cagei15 5.15M

DNA electrophoresis 99.2 M 675.22 1.058 5.486

> 50

Nipkkt160 8.35 M

Nonlinear optimization 225.4M 331.57 1.138 6.096
163

C.E. Leiserson, T.B. Schardl (MIT CSAIL) A Work-Efficient Parallel BFS Algorithm SPAA’10 19/26

e Theoretical Results
@ The DAG Model of Computation

C.E. Leiserson, T.B. Schardl (MIT CSAIL) A Work-Efficient Parallel BFS Algorithm SPAA’10 20/26

The dag model of computation

continuation sync

strand

2 12 16 17

\ o,

@ We can model a Cilk++ program with a dag (directed acyclic
graph) A.

@ Each vertex in A corresponds to a strand — a sequence of
serially executed instructions.

@ Edges in A describe control dependencies between strands.

C.E. Leiserson, T.B. Schardl (MIT CSAIL) A Work-Efficient Parallel BFS Algorithm SPAA’10

The dag model of computation

@ Work W(A): The sum of the lengths of all of the strands in A.
@ Span S(A): The length of the longest path in A.
@ The Cilk++ scheduler guarantees that A runs in
Tp(A) < W(A)/P + O(S(A)).
@ Parallelism of A: W(A)/S(A).

@ This model does not accurately represent runtime system
operations on reducers.

C.E. Leiserson, T.B. Schardl (MIT CSAIL) A Work-Efficient Parallel BFS Algorithm SPAA’10

e Theoretical Results

@ Modeling Reducers

C.E. Leiserson, T.B. Schardl (MIT CSAIL) A Work-Efficient Parallel BFS Algorithm SPAA’10 22/26

Modeling reducers

For a computation A:
@ Consider the user dag User(A) — a dag where runtime system
operations on reducers are not represented.
e This dag models the computation as the user understands it.

@ Insert REDUCE strands performed by the runtime system into
User(A) before the sync strand that requires its completion to get
a performance dag Perf(A).

@ A delay-sequence argument proves that the performance of A is
Tp(A) < W(Perf(A))/P + O(S(Perf(A))).

@ We want a performance bound in terms of User(A).

SPAA 10 22/26

C.E. Leiserson, T.B. Schardl (MIT CSAIL) A Work-Efficient Parallel BFS Algorithm

Modeling reducers

Let 7 be the worst-case running time of any REDUCE operation. In the
paper, we show that:

@ S(Perf(A)) = O(- S(User(A))) and
@ W(Perf(A)) = W(User(A)) + O(2P - S(User(A))).

C.E. Leiserson, T.B. Schardl (MIT CSAIL) A Work-Efficient Parallel BFS Algorithm SPAA’10 23/26

e Theoretical Results

@ Theoretical Analysis of PBFS

C.E. Leiserson, T.B. Schardl (MIT CSAIL) A Work-Efficient Parallel BFS Algorithm SPAA’10 24 /26

Analysis of PBFS

@ PBFS’s user dag has O(V + E) work and O(DIg(V/D)) span for
bounded-degree input graphs.

@ The worst-case cost of any BAG-UNION in PBFS is O(lg(V/D)).

@ Relating the user and performance dags for PBFS, we have
S(PBFS) = O(DIg?(V/D)) and
W(PBFS) = O(V + E) + O(PDIg®(V/D)).

@ Consequently, we have Tp(PBFS) = O((V + E)/P + DIg®(V/D)).

e If O((V + E)/P) > O(DIg®(V /D)), then we expect linear
speedup from PBFS. We define the effective parallelism of

PBFS to be O (55555) ~ O (5)-

C.E. Leiserson, T.B. Schardl (MIT CSAIL) A Work-Efficient Parallel BFS Algorithm SPAA’10 24/26

Conclusion

@ We have seen a parallel breadth-first search algorithm

implemented in Cilk++, which uses a novel Cilk reducer for
unordered sets.
@ Future work includes:
o Comparing the performance of PBFS versus an implementation
that uses thread-local storage instead of reducers.
o Augmenting PBFS to return a deterministic BFS tree.
e Parallelizing other graph algorithms, such as weighted SSSP, max
flow, or min-cost flow.
e Parallelizing other non-numeric algorithms using Cilk technologies.

C.E. Leiserson, T.B. Schardl (MIT CSAIL) A Work-Efficient Parallel BFS Algorithm SPAA’10 25/26

Thank you

Questions?

C.E. Leiserson, T.B. Schardl (MIT CSAIL) A Work-Efficient Parallel BFS Algorithm SPAA’10 26 /26

Cilk++ reducers

Reducers are implemented in Cilk++ with one additional optimization.
@ After stealing a task, a worker starts executing the task with a
local null copy of a reducer.
e For example, this null copy may be a NULL pointer to a bag.
@ The first time the worker tries to manipulate its local copy of the

reducer after a steal, the runtime system initializes the reducer
using a CREATE-IDENTITY operation.

o For bags, CREATE-IDENTITY = BAG-CREATE.

@ Modeling CREATE-IDENTITY calls in theory is similar (and simpler)
than modeling REDUCE calls.

C.E. Leiserson, T.B. Schardl (MIT CSAIL) A Work-Efficient Parallel BFS Algorithm SPAA’10 27/26

Optimizing the bag data structure

We can improve the real-world efficiency of the bag by storing an array
of data at each node.

@ Each node in a pennant stores a fixed-size array of data, which is
guaranteed to be full.

@ The bag stores an extra fixed-size array of data, called the
hopper, which may not be full.

@ Inserts first attempt to insert into the hopper. Once the hopper is
full, a new, empty hopper is created while the old hopper is
inserted into the bag using the original algorithm.

With this optimization, the common case for BAG-INSERT is exactly like
enqueueing a vertex in a FIFO queue.

C.E. Leiserson, T.B. Schardl (MIT CSAIL) A Work-Efficient Parallel BFS Algorithm SPAA’10 28/26

Locked PBFS

To simplify theoretical analysis, we analyze a locked version of PBFS.

PROCESS-LAYER(in-bag, out-bag, d)

11
12
13
14
15
16
17
18
19
20
21
22
23
24

if BAG-SIZE(in-bag) < GRAINSIZE
for each u € in-bag
parallel for each v € Adj[u]
if v.dist == o0
if TRY-LOCK(V)
if v.dist == 00
v.dist = d + 1
BAG-INSERT(out-bag, v)
RELEASE-LOCK(V)
return
new-bag = BAG-SPLIT(in-bag)
spawn PROCESS-LAYER(new-bag, out-bag, d)
PROCESS-LAYER(in-bag, out-bag, d)
sync

C.E. Leiserson, T.B. Schardl (MIT CSAIL) A Work-Efficient Parallel BFS Algorithm SPAA’10

Relating the user and performance dags

Lemma

Consider a computation A, and let be the worst-case running time of
any REDUCE or CREATE-IDENTITY operation in A. We have
S(Perf(A)) = O(7 - S(User(A))) in expectation.

@ Every successful steal may force a CREATE-IDENTITY operation.

@ Every successful steal may force a REDUCE operation.

C.E. Leiserson, T.B. Schardl (MIT CSAIL) A Work-Efficient Parallel BFS Algorithm SPAA’10 30/26

Relating the user and performance dags

Proof contd.

@ Consider a critical path p in Perf(A).

@ This path p corresponds to some path g in User(A), which has
length at most S(User(A)).

@ Since at most every node in g corresponds to a steal, the length of
pis O(r - S(User(A))) in expectation.

O

v

C.E. Leiserson, T.B. Schardl (MIT CSAIL) A Work-Efficient Parallel BFS Algorithm SPAA’10 31/26

Relating the user and performance dags

Consider a computation A, and let = be the worst-case running time of
any REDUCE or CREATE-IDENTITY operation in A. We have
W (Perf(A)) = W(User(A)) + O(2P - S(User(A))) in expectation.

@ The computation A contains all of the strands in User(A).
@ At most O(P - S(Perf(A))) steals occur during A’'s execution.

@ Consequently, REDUCE and CREATE-IDENTITY strands contribute
O(7P - S(Perf(A))) additional work to User(A).

@ From the previous lemma, we have
S(Perf(A)) = O(7 - S(User(A))).
@ Therefore, we have
W(Perf(A)) = W(User(A)) + O(m2P - S(User(A))) in expectation.

Ol

C.E. Leiserson, T.B. Schardl (MIT CSAIL) A Work-Efficient Parallel BFS Algorithm SPAA’10 32/26

	Strategy for Parallelizing Breadth-First Search
	The Bag Data Structure
	Bag Requirements and Usage
	Bag Design

	Empirical Results
	Theoretical Results
	The DAG Model of Computation
	Modeling Reducers
	Theoretical Analysis of PBFS

	Appendix

