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Breadth-first search (BFS)

Problem: Given an unweighted graph G = (V, E) and a designated

starting vertex vy, find the shortest path distance from v to all other
ue V.

@ Guarantee that the vertices are visited in breadth-first order: For
all distances d, all vertices that are d away from vy must be visited
before any vertex of distance d + 1.

@ We want a parallel algorithm to solve this problem.
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This algorithm does not parallelize well.
@ FIFO queue is a serial bottleneck.

@ Parallelizing the for loops gives O(E/ V) parallelism, which is
puny for sparse graphs.

C.E. Leiserson, T.B. Schardl (MIT CSAIL) A Work-Efficient Parallel BFS Algorithm SPAA’10 3/26



Summary of results

ssssssssss

@ We have designed a parallel breadth-first search algorithm, called
PBFS, and we have implemented PBFS using Cilk++.

@ PBFS obtains 5x to 6x speedup on eight processing cores on
many real-world benchmark graphs.

@ When run serially, PBFS is competitive with SERIAL-BFS.

@ The theoretical running time of PBFS on P processors is
O((V + E)/P + DIg3(V/D)).
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a Strategy for Parallelizing Breadth-First Search
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Strategy for parallelizing breadth-first search

Strategy: consider the graph in layers.

@ The dth layer of G is the set Vy of vertices that are all at distance
d from vp.

@ Breadth-first ordering: all vertices in V are visited before any
vertex in V4.

@ We shall examine the layers V serially, but
@ For each layer V4, we shall process all vertices in Vg in parallel.
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Strategy for parallelizing breadth-first search
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Strategy for parallelizing breadth-first search
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@ The Bag Data Structure
@ Bag Requirements and Usage
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Storing a layer of the graph

Problem: We need a data structure to handle a single layer.
Specifically, we need a data structure that does the following:

@ It must store an unordered set of elements.
@ It must support efficient parallel traversal of the stored elements.

@ It must allow parallel workers to add elements simultaneously to
the same structure.
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Storing a layer of the graph

Solution: Use a bag — a multi-set data structure, which supports the
following operations:

BAG-CREATE
BAG-INSERT
BAG-SPLIT
BAG-UNION

Create a new, empty bag.

Add an element to a bag.

Divide a bag into two equal-sized bags.

Combine the contents of two bags into a single bag.
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Processing a layer

PROCESS-LAYER(in-bag, out-bag, d)

11
12
13
14
15
16
17
18
19
20
21

if BAG-SIZE(in-bag) < GRAINSIZE
for each u € in-bag
parallel for each v € Adj[u]
if v.dist == 00
v.dist = d+1 // benign race
BAG-INSERT(out-bag, v)
return
new-bag = BAG-SPLIT(in-bag)
spawn PROCESS-LAYER(new-bag, out-bag, d)
PROCESS-LAYER(in-bag, out-bag, d)
sync
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Processing a layer

PROCESS-LAYER(in-bag, out-bag, d)

11
12
13
14
15
16
17
18
19
20
21

if BAG-SIZE(in-bag) < GRAINSIZE
for each u € in-bag
parallel for each v € Adj[u]
if v.dist == co
v.dist = d+1 // benign race
BAG-INSERT(out-bag, v) // malignant race
return
new-bag = BAG-SPLIT(in-bag)
spawn PROCESS-LAYER(new-bag, out-bag, d)
PROCESS-LAYER(in-bag, out-bag, d)
sync
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Cilk++ reducers

Cilk++ supports a type of parallel data structure, called a reducer.
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Cilk++ reducers

We use the bag as a Cilk++ reducer to solve our malignant race.

@ After stealing a task, a worker starts executing the task with a
local, “identity” copy of a new reducer.

@ Each worker freely manipulates its local copy with write-only
update operations.

@ As tasks return, the workers’ local copies are combined together
into a single data structure using REDUCE operations.

@ If REDUCE is associative, then the program has serial semantics.
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Cilk++ reducers

We use the bag as a Cilk++ reducer to solve our malignant race.

@ After stealing a task, a worker starts executing the task with a
local, “identity” copy of a new reducer.

e For bags, the identity is an empty bag.
@ Each worker freely manipulates its local copy with write-only
update operations.
e For bags, the update operation is BAG-INSERT.

@ As tasks return, the workers’ local copies are combined together
into a single data structure using REDUCE operations.

e For bags, REDUCE = BAG-UNION.
@ If REDUCE is associative, then the program has serial semantics.

e For bags, BAG-UNION is not strictly associative, since the order of
elements within a bag is nondeterministic. Bags have a notion of
“logical associativity,” which is sufficient for PBFS’s correctness.
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@ The Bag Data Structure

@ Bag Design
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The bag data structure

drdnedsn L AP

@ A bag is made up of pennants — complete binary trees with extra
root nodes, which store the elements.
e Pennants may be split and combined in O(1) time by changing
pointers.
@ A pennant is only combined with another pennant of the same size.

@ A bag is an array of pointers to pennants.

e For all i, the ith entry in the array is either null or points to a pennant
of size 2.
o Intuitively, a bag acts much like a binary number.
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The bag data structure — BAG-INSERT

Inserting an element works similarly to incrementing a binary number.

Gt b

BAG-INSERT runs in O(1) amortized time and O(Ig n) worst-case time.
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The bag data structure — BAG-INSERT

st
L

e
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The bag data structure — BAG-SPLIT

Splitting a bag works similarly to an arithmetic right shift.

P U

BAG-SPLIT runs in O(Ig n) time.
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The bag data structure — BAG-UNION

Unioning two bags is works similarly to adding two binary numbers.

et G

BAG-UNION works in O(Ig n) time.
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© Empirical Resuits
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Empirical Results

Name 4 PBFS T

Description Spy Plot |E| Parallelism m PBFS T;/Tg
D

Kkt_power N\ 2.05M

Optimal power flow, Y 12.76 M 104.09 0.705 6.102

nonlinear opt. ~ 31

Freescale1 3.43M

Circuit simulation 174 M 153.06 1.120 5.145
128

Cagel4 1.51M

DNA electrophoresis 271 M 246.35 1.060 5.442
43

Wikipedia 2.4M

Links between 41.9M 179.02 0.804 6.833

Wikipedia pages 460

Grid3D200 8M

3D 7-point 55.8 M 79.27 0.747 4.902

finite-diff mesh 598

RMat23 2.3M

Scale-free 77.9M 93.22 0.835 6.794

graph model 8

Cagei15 5.15M

DNA electrophoresis 99.2 M 675.22 1.058 5.486

> 50

Nipkkt160 8.35 M

Nonlinear optimization 225.4M 331.57 1.138 6.096
163
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e Theoretical Results
@ The DAG Model of Computation
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The dag model of computation

continuation sync

strand

2 12 16 17

\ o,

@ We can model a Cilk++ program with a dag (directed acyclic
graph) A.

@ Each vertex in A corresponds to a strand — a sequence of
serially executed instructions.

@ Edges in A describe control dependencies between strands.
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The dag model of computation

@ Work W(A): The sum of the lengths of all of the strands in A.
@ Span S(A): The length of the longest path in A.
@ The Cilk++ scheduler guarantees that A runs in
Tp(A) < W(A)/P + O(S(A)).
@ Parallelism of A: W(A)/S(A).

@ This model does not accurately represent runtime system
operations on reducers.
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e Theoretical Results

@ Modeling Reducers
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Modeling reducers

For a computation A:
@ Consider the user dag User(A) — a dag where runtime system
operations on reducers are not represented.
e This dag models the computation as the user understands it.

@ Insert REDUCE strands performed by the runtime system into
User(A) before the sync strand that requires its completion to get
a performance dag Perf(A).

@ A delay-sequence argument proves that the performance of A is
Tp(A) < W(Perf(A))/P + O(S(Perf(A))).

@ We want a performance bound in terms of User(A).

SPAA 10 22/26
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Modeling reducers

Let 7 be the worst-case running time of any REDUCE operation. In the
paper, we show that:

@ S(Perf(A)) = O( - S(User(A))) and
@ W(Perf(A)) = W(User(A)) + O(2P - S(User(A))).
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e Theoretical Results

@ Theoretical Analysis of PBFS
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Analysis of PBFS

@ PBFS’s user dag has O(V + E) work and O(DIg(V/D)) span for
bounded-degree input graphs.

@ The worst-case cost of any BAG-UNION in PBFS is O(lg(V/D)).

@ Relating the user and performance dags for PBFS, we have
S(PBFS) = O(DIg?(V/D)) and
W(PBFS) = O(V + E) + O(PDIg®(V/D)).

@ Consequently, we have Tp(PBFS) = O((V + E)/P + DIg®(V/D)).

e If O((V + E)/P) > O(DIg®(V /D)), then we expect linear
speedup from PBFS. We define the effective parallelism of

PBFS to be O (55555 ) ~ O (5)-
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Conclusion

@ We have seen a parallel breadth-first search algorithm

implemented in Cilk++, which uses a novel Cilk reducer for
unordered sets.
@ Future work includes:
o Comparing the performance of PBFS versus an implementation
that uses thread-local storage instead of reducers.
o Augmenting PBFS to return a deterministic BFS tree.
e Parallelizing other graph algorithms, such as weighted SSSP, max
flow, or min-cost flow.
e Parallelizing other non-numeric algorithms using Cilk technologies.
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Thank you

Questions?
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Cilk++ reducers

Reducers are implemented in Cilk++ with one additional optimization.
@ After stealing a task, a worker starts executing the task with a
local null copy of a reducer.
e For example, this null copy may be a NULL pointer to a bag.
@ The first time the worker tries to manipulate its local copy of the

reducer after a steal, the runtime system initializes the reducer
using a CREATE-IDENTITY operation.

o For bags, CREATE-IDENTITY = BAG-CREATE.

@ Modeling CREATE-IDENTITY calls in theory is similar (and simpler)
than modeling REDUCE calls.
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Optimizing the bag data structure

We can improve the real-world efficiency of the bag by storing an array
of data at each node.

@ Each node in a pennant stores a fixed-size array of data, which is
guaranteed to be full.

@ The bag stores an extra fixed-size array of data, called the
hopper, which may not be full.

@ Inserts first attempt to insert into the hopper. Once the hopper is
full, a new, empty hopper is created while the old hopper is
inserted into the bag using the original algorithm.

With this optimization, the common case for BAG-INSERT is exactly like
enqueueing a vertex in a FIFO queue.
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Locked PBFS

To simplify theoretical analysis, we analyze a locked version of PBFS.

PROCESS-LAYER(in-bag, out-bag, d)

11
12
13
14
15
16
17
18
19
20
21
22
23
24

if BAG-SIZE(in-bag) < GRAINSIZE
for each u € in-bag
parallel for each v € Adj[u]
if v.dist == o0
if TRY-LOCK(V)
if v.dist == 00
v.dist = d + 1
BAG-INSERT(out-bag, v)
RELEASE-LOCK(V)
return
new-bag = BAG-SPLIT(in-bag)
spawn PROCESS-LAYER(new-bag, out-bag, d)
PROCESS-LAYER(in-bag, out-bag, d)
sync
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Relating the user and performance dags

Lemma

Consider a computation A, and let  be the worst-case running time of
any REDUCE or CREATE-IDENTITY operation in A. We have
S(Perf(A)) = O(7 - S(User(A))) in expectation.

@ Every successful steal may force a CREATE-IDENTITY operation.

@ Every successful steal may force a REDUCE operation.
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Relating the user and performance dags

Proof contd.

@ Consider a critical path p in Perf(A).

@ This path p corresponds to some path g in User(A), which has
length at most S(User(A)).

@ Since at most every node in g corresponds to a steal, the length of
pis O(r - S(User(A))) in expectation.

O

v
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Relating the user and performance dags

Consider a computation A, and let = be the worst-case running time of
any REDUCE or CREATE-IDENTITY operation in A. We have
W (Perf(A)) = W(User(A)) + O(2P - S(User(A))) in expectation.

@ The computation A contains all of the strands in User(A).
@ At most O(P - S(Perf(A))) steals occur during A’'s execution.

@ Consequently, REDUCE and CREATE-IDENTITY strands contribute
O(7P - S(Perf(A))) additional work to User(A).

@ From the previous lemma, we have
S(Perf(A)) = O(7 - S(User(A))).
@ Therefore, we have
W(Perf(A)) = W(User(A)) + O(m2P - S(User(A))) in expectation.

Ol
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