Different Fokker-Planck approaches to simulate electron transport in plasmas.

F. Alouani Bibi1, J-P. Matte1 and M.M. Shoucri2

1INRS-EMT, Université du Québec, Varennes, Québec, Canada;
2Institut de Recherche en Électricité du Québec, Varennes, Québec, Canada.

On the basis of our Fokker-Planck code “FPI”, a new kernel for nonlocal electron transport in plasmas has been developed. Large scale simulations of plasma macroscopic characteristics have been made by using both this Fokker-Planck and a new Hydrodynamic code using the new kernel [1]. However, these simulations were made with the approximation of spherical Rosenbluth potentials. We have now added the option of “linearized” non-spherical Rosenbluth potentials [2], and we will report on the influence of this on heat transport. The influence of the number of Legendre polynomials used in the simulations has been investigated. A comparison between our Legendre expansion code (FPI) and our new (v, µ) Fokker-Planck code with fully anisotropic Rosenbluth potentials is made for the problem of the relaxation of a bi-Maxwellian ($T_{\perp} \neq T_{||}$) electron distribution function.