Understanding Git J

Nelson Elhage Anders Kaseorg

Student Information Processing Board

September 29, 2009

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 1/41

Outline

© The Git model

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 2 /41

The Git model

@ A Git repository contains four kinds of objects.
@ An object is either a blob (file), a tree (directory), a commit
(revision), or a tag.

o Every object is uniquely identified by a 40 hex digit number, which is
the SHA-1 hash of its contents.

o Don't worry—identifiers can be abbreviated by truncation, or
referenced with human-readable names.

@ Some objects refer to other objects using their identifiers.

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 3/41

Objects

@ Blobs and trees represent files and directories.

@ Tags are named references to another object, along with some
additional metadata.
@ A commit object contains
e atreeid
@ zero or more parents, which are commit ids
e an author (name, email, date)
e a committer (name, email, date)
o a log message

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 4 /41

The Git model

A commit

(Commit abf75a5033d4da7b8a7e92321d74021d1FcFb502

tree 9d39bb9acd49232d4d8f196f2a83de7d5be681f
parent b2d6744849b5bf6b4593b81c136772d17a238ac9
author Marcel Holtmann <marcel@holtmann.org> 1152762720 +0200
committer Linus Torvalds <torvalds@g5.osdl.org> 1152733825 -0700

-

tree

&wm

arch/
block/

(Commit b2d6744849b5bf6ha593b81c136772dF7a238ace

tree £27260a0b16412449c4205207af114646c29e2c4

parent c67646641cab01c93a56674bfcd96355442dads

parent d2c993d845781d160a7ef759a3e65c6892c4a270

author Linus Torvalds <torvalds@g5.osdl.org> 1152718257 -0700
committer Linus Torvalds <torvalds@g5.osdl.org> 1152718257 -0700

-

.gitignore
COPYING
CREDITS
Documentation/
[PATCH] Fix prctl privilege escalation and suid_dumpable (CVE-2006-2451) Kbuild
MAINTAINERS
Makefile
README
REPORTING-BUGS

kernel/ ——3

Merge branch 'for-linus' of git://git399.0sdl.marist.edu/pub/scm/linux-2.6

parent

arent

492324481196 12a83de7d5be6811

tree 263066b20c5a5028648e381924216d178bal77
.gitignore

Keonfig.hz

Kconfig.preempt

Makefile

acct.c

sys.c —> blob 236198f7ec5d5460 a5eda7d97155bfb712d161
/%
* linux/kernel/sys.c
x

* Copyright (C) 1991, 1992 Linus Torvalds
*/

commit c67646641cab@1c93a56674bfcd96355442dads

commit d2c993d845781d160a7ef759a3e65c6892c4a270

Nelson Elhage, Anders Kaseorg (SIPB)

Understanding Git

September 29, 2009 5/41

More commits

' X

Nelson Elhage, Anders Kaseorg (SIPB)

[PATCH] lockdep: annotate the sysfs i_mute
[PATCH] fix fdset leakage
[PATCH] Fix prctl privilege escal
Merge branch *for-linus' of git://git390.0sdl.n
[5390] Fix sparse warnings.
[$390] path grouping and path verifications
[S$390] xpram module parameter parsing.
[5390] cpu_relax() is supposed to have barri
[5390] fix futex_atomic_cmpxchg_inatomic
[5390] subchannel register/unregister mute:
[5390] raw_local_save_flags/raw_local_irg_re
[S390]1 _ builtin_trap() and gcc version.
Add PlIX4 APCI quirk for the 440MX chipset toc
Merge branch 'splice’ of git://brick.kernel.dk/dz
[PATCH] splice: fix problems with sys_tee()
Xx86 MacMini: make built-in speaker sound actu
Merge branch ‘release’ of git://git.kernel.org/p
Pull dock into release branch
ACPI: ACPI_DOCK: Initialize the atomic nof
Pull acpi_os_allocate into test branch
ACPI: acpi_os_allocate() fixes
Pull acpica-20060707 into test branch

[PATCH] ffsjprocﬁ 'Iargér than buffer size' m'

Understanding Git

Adam B. Jerome <abj@nmI

Arjan van de Ven <arjan@
Kirill Korotaev <dev@open
Marcel Holtmann <marcel
Linus Torvalds <torvalds@
Heiko Carstens <heiko.car
Cornelia Huck <cornelia.ht
Heiko Carstens <heiko.car
Heiko Carstens <heiko.car
Martin Schwidefsky <schw
Cornelia Huck <cornelia.ht
Heiko Carstens <heiko.car
Heiko Carstens <heiko.car
Linus Torvalds <torvalds@
Linus Torvalds <torvalds@
Jens Axboe <axboe@suse.i
Linus Torvalds <torvalds@
Linus Torvalds <torvalds@
Len Brown <len.brown@in
Kristen Accardi <kristen.c.
Len Brown <len.brown@in
Len Brown <len.brown@in
Len Brown <len.brown@in

September 29, 2009

2006-07-12 12:03:07
2006-07-12 12:03:06
2006-07-12 12:03:05
2006-07-12 07:12:00
2006-07-12 11:30:57
2006-07-12 10:41:55
2006-07-12 10:40:19
2006-07-12 10:40:14
2006-07-12 10:39:58
2006-07-12 10:39:55
2006-07-12 10:39:50
2006-07-12 10:39:47
2006-07-12 10:39:42
2006-07-12 11:29:46
2006-07-12 11:14:48
2006-07-10 05:00:01
2006-07-11 01:21:43
2006-07-10 18:14:38
2006-07-10 14:20:17
2006-07-10 14:19:15
2006-07-10 02:39:47
2006-07-10 01:35:51
2006-07-10 02:39:41

6/ 41

A Git repository

@ A Git repository is a collection of refs—branches and tags. (Branches
are also known as heads.)

@ A ref is a named mutable pointer to an object (usually a commit).
HEAD — refs/heads/master

refs/heads/master — commit fec6ed...

refs/heads/ftrace — commit cebcle...

refs/tags/v2.6.8 — commit e8ce2f...

refs/tags/v2.6.27 — tag 4b5127...

@ The repository automatically stores the directed acyclic graph of
objects rooted at these refs.

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 7 /41

The Git model

Branches

o Git was designed to enable lightweight branching and merging.
@ Each repository can have any number of branches.

@ Branches are just refs—pointers into the DAG of commits—and these
pointers themselves are not versioned.

e So you don’t need to be afraid of making throwaway branches for
experiments.

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 8 /41

Consequences of the Git model

o Git tracks the history of your whole project, not the history of
individual files.

o Best practice is to keep projects that are logically separate in separate
Git repositories.
o Git does not track renames as metadata in the repository.
o Instead, renames are automatically detected based on content when
this information is needed.
@ A commit ID cryptographically certifies the integrity of the entire
history of the repository up to that commit.
e Git has powerful tools for rewriting history—but this requires
communication with everyone that has pulled any affected commits
from your repository.

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 9 /41

Outline

© Using Git

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 10 / 41

Getting a Git repository

git init Create an empty Git repository in the current directory.
By default it will have one branch named master.

git clone url Clone the Git repository from url. This may be over
HTTP, SSH, or the Git protocol, or it may be a path to
another local repository.

Both of these operations will create a working copy.

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 11 / 41

Working copy

o Every working copy has its own Git repository in the .git
subdirectory (with arbitrarily many branches and tags).
e The most important ref is HEAD, which refers to the current branch.

@ The .git subdirectory also stores the index: a staging area for
changes on top of HEAD that will become part of the next commit.

o Finally, the files outside of .git are the working tree.

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 12 / 41

Git workflow

@ Changes made to the working tree can be added to the index.

@ The index can be committed to the current branch (where it will then
become the new HEAD).

commit add
»a

HEAD < index

A

working tree

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 13 / 41

Constructing commits

git

git

git

git
git

git

git
git

add file Add or update file from the working tree into the
index.
reset ftle Unstage changes to file in the index, without

touching the working tree.

checkout file Undo modifications to file in the working tree by
reading it back from the index.

rm file Delete file from the index and the working tree.

mv oldfile mewfile Shortcut for mv oldfile newfile plus the
appropriate additions and removals in the index.

status Display the files changed in the index and in the
working tree.

commit Make a commit out of the current index.

commit -a Shortcut for adding all modified files to the index

and committing.

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 14 / 41

Referring to objects

£c8da7a06bb66b707e7£5406657d5a3b7ee42c66 You can always refer to
an object by its full SHA-1 ID, but this gets unwieldy very
quickly.

fc8da7 You can use a truncated SHA-1 as long as it is unambiguous.
refname You can refer to a branch or tag by name.

commit ™ Append a ~ to get the (first) parent of a commit.

commit "2 The second parent of a commit, etc.

commit ~4 Short for commit =~~~ "—the great-great-grandparent of a
commit.

commit : filename The given file or directory inside commit's tree.

...and more (see git help rev-parse for a full description of the
syntax).

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 15 / 41

Displaying changes

git
git

git

git
git

Nelson Elhage, Anders Kaseorg (SIPB)

log

show object

diff

diff --cached

diff commzt

List the commits on the current branch.

Show an object (e.g. the log information and patch
for a commit, or the contents of a file).

Show the differences between the index and the
working tree.

Show the differences between HEAD and the index.

Show the differences between commit and the
working tree.

Understanding Git September 29, 2009 16 / 41

Manipulating branches and tags

git

git

git

git

git

git

git

branch List the branches in your repository, with the
current branch highlighted.

checkout branch Switch to the branch named branch. This
updates HEAD, the index, and the working tree.

checkout -b branch [commit] Create a new branch named
branch starting at commit (defaulting to
current HEAD), and switch to it.

branch -d branch Delete the branch branch.

branch -m oldbranch newbranch Rename oldbranch to
newbranch.

tag tag [commit] Attach a new tag named tag to commit
(defaulting to current HEAD).

tag -d tag Delete the tag named tag.

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 17 / 41

Configuration hints

@ You should tell Git who you are:

$ git config --global user.name "Your Name"
$ git config --global user.email "your@email.edu"

@ And, if you're feeling colorful,
$ git config --global color.ui auto

(This configuration is stored in ~/.gitconfig.)

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 18 / 41

Merging

git merge commit Merge commit into HEAD. The index must not
contain any staged changes.

@ In the general case, this will result in a merge commit—a commit
with more than one parent.

merge

i

C local remote)

1
\/\

base

o If commit is an ancestor of HEAD, then the merge is a no-op.

o If commit is a descendent of HEAD, then the merge degenerates into
a fast-forward.

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 19 / 41

Resolving merge conflicts

@ git merge works roughly by creating a diff against the common
ancestor commit, and applying it against the current HEAD. (The
general case is much more complicated.)

@ Sometimes this patch will not apply to the current HEAD. This
situation is called a merge conflict.

o Git will respond by inserting conflict markers into the conflicted files,
and asking you resolve the conflict.

e Don't panic!

o To resolve the conflict, edit the conflicted files appropriately and then
git add them.

o Alternatively, you can run git mergetool to resolve the conflicts
interactively in a graphical diff program.

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 20 / 41

Merging example

$ seq 5 > numbers

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 21 /41

Merging example

$ seq 5 > numbers
$ git init
Initialized empty Git repository in /tmp/foo/.git/

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 21 /41

Merging example

$ seq 5 > numbers

$ git init

Initialized empty Git repository in /tmp/foo/.git/
$ git add numbers

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 21 /41

Merging example

a
$ seq 5 > numbers

$ git init
Initialized empty Git repository in /tmp/foo/.git/
$ git add numbers
$ git commit -m ’1, 2, 3, 4, 5!’
Created initial commit 4172330: 1, 2, 3, 4, 5!

1 files changed, 5 insertions(+), O deletions(-)
create mode 100644 numbers

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 21 /41

Merging example

$ seq 5 > numbers 1
$ git init 4’-
Initialized empty Git repository in /tmp/foo/.gid

$ git add numbers

$ git commit -m ’1, 2, 3, 4, 5!’

Created initial commit 4172330: 1, 2, 3, 4, 5!

1 files changed, 5 insertions(+), O deletions(-)

create mode 100644 numbers

$ git checkout -b andersk

Switched to a new branch "andersk"

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 21 /41

Merging example

$ seq 5 > numbers

$ git init

Initialized empty Git repository in /tm .git/
$ git add numbers

$ git commit -m ’1, 2, 3, 4, 5!’ 4’-
Created initial commit 4172330: 1, 2, 3, 4, 5!

1 files changed, 5 insertions(+), O deletions(-)
create mode 100644 numbers

$ git checkout -b andersk

Switched to a new branch "andersk"

$ git branch

* andersk
master

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 21 /41

Merging example

$ seq 5 > numbers
$ git init
Initialized empty Git repository in /tmp/foo/.git/

$ git add numbers
$ git commit -m ’1, 2, 3, 4, 5!’ =‘*
Created initial commit 4172330: 1, 2, 3 | 4/-
1 files changed, 5 insertions(+), O deletions(-
create mode 100644 numbers
$ git checkout -b andersk
Switched to a new branch "andersk"
$ git branch
* andersk
master
$ (echo 0; cat numbers) | sponge numbers

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 21 /41

Merging example

1 files changed, 5 insertions(+), O deletions(-)
create mode 100644 numbers
$ git checkout -b andersk
Switched to a new branch "andersk"
$ git branch
* andersk
master
$ (echo 0; cat numbers) | sponge number
$ git diff :
diff --git a/numbers b/numbers 4’-
index 8al1218a..e8371f0 100644
--- a/numbers
+++ b/numbers
Q@ -1,3 +1,4 Q@
+0
1

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009

21/ 41

Merging example

create mode 100644 numbers
$ git checkout -b andersk
Switched to a new branch "andersk"
$ git branch
* andersk
master
$ (echo 0; cat numbers) | sponge numbers
$ git diff
diff --git a/numbers b/numbers 1
index 8al1218a..e8371f0 100644 4/-
--- a/numbers
+++ b/numbers
@@ -1,3 +1,4 @@
+0

w N =

$ git add numbers

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 21 /41

Merging example

$ git branch

* andersk
master

$ (echo 0; cat numbers) | sponge numbers

$ git diff

diff --git a/numbers b/numbers

index 8al218a..e8371f0 100644

--- a/numbers

+++ b/numbers

@@ -1,3 +1,4 Q@ 4’-
+0
1
2
3

$ git add numbers
$ git commit -m ’Numbers start at 0.’
Created commit 7aeb494: Numbers start at O.
1 files changed, 1 insertions(+), O deletions(-)

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 21 /41

Merging example

master
$ (echo 0; cat numbers) | sponge numbers
$ git diff
diff --git a/numbers b/numbers
index 8al218a..e8371f0 100644
--- a/numbers
+++ b/numbers
@@ -1,3 +1,4 @@

+0
1 a
3

$ git add numbers
$ git commit -m ’Numbers start at 0.’
Created commit 7aeb494: Numbers start at O.
1 files changed, 1 insertions(+), O deletions(-)
$ git checkout master
Switched to branch "master"

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 21 /41

Merging example

$ (echo 0; cat numbers) | sponge numbers
$ git diff

diff --git a/numbers b/numbers
index 8al218a..e8371f0 100644
--- a/numbers

+++ b/numbers

@@ -1,3 +1,4 Q@

+0

w N =

initial commit

$ git add numbers
$ git commit -m ’Numbers start at 0.’
Created commit 7aeb494: Numbers start at O.
1 files changed, 1 insertions(+), O deletions(-)
$ git checkout master
Switched to branch "master"
$ echo 6 >> numbers

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 21 /41

Using Git

Merging example

$ git diff

diff --git a/numbers b/numbers
index 8al1218a..e8371f0 100644
--- a/numbers

+++ b/numbers

00 -1,3 +1,4 Q@

+0

1
2
;
$ git add numbers
$ git commit -m ’Numbers start at 0.’
Created commit 7aeb494: Numbers start at O.
1 files changed, 1 insertions(+), O deletions(-)
$ git checkout master
Switched to branch "master"
$ echo 6 >> numbers
$ git add numbers

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009

21/ 41

Merging example

--- a/numbers
+++ b/numbers
@@ -1,3 +1,4 @@
+0

1

2 - -
3 Add 0) C Add 6)

$ git add numbers

$ git commit -m ’Numbers start at 0.’

Created commit 7aeb494: Numbers start at O.
1 files changed, 1 insertions(+), O deletions(-

$ git checkout master

Switched to branch "master"

$ echo 6 >> numbers

$ git add numbers

$ git commit -m ’6 is a number too.’

Created commit 383c158: 6 is a number too.
1 files changed, 1 insertions(+), O deletions(-)

initial commit

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 21 /41

Merging example

2
3

1 files changed, 1 insertions(+), O deletions(-)
$ git add numbers

1 files changed, 1 insertions(+), O deletions(-)
Merge made by recursive.

$ git add numbers
$ git commit -m ’Numbers start at 0.’
merge
Created commit 7aeb494: Numbers start at O. -
$ git checkout master m(dd 0) C dd 6)
Switched to branch "master"
$ echo 6 >> numbers
$ git commit -m ’6 is a number too.’

Created commit 383c158: 6 is a number too.

$ git merge andersk
Auto-merged numbers

numbers | 1+
1 files changed, 1 insertions(+), O deletions(-)

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 21 /41

Merging example

$ echo 6 >> numbers
$ git add numbers

$ git commit -m ’6 is a number too.’ ;
Created commit 383c158: 6 is a number too.
1 files changed, 1 insertions(+), 0 deletions(

$ git merge andersk

Auto-merged numbers m(dd 0) C dd 6)
Merge made by recursive.

numbers | 1+

1 files changed, 1 insertions(+), O deletions(
cat numbers

$
0
1
2
3
4
5
6

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 21 /41

Merging example
$ git commit -m ’6 is a number too.’

Created commit 383c158: 6 is a number too.
1 files changed, 1 insertions(+), O deletions(-)

$ git merge andersk <« |
merge
Auto-merged numbers

Merge made by recursive.

HUInberS | 1 * Add ©) C Add 6)
1 files changed, 1 insertions(+), O dele

cat numbers

initial commit

$
0
1
2
3
4
5

6
$ git checkout andersk
Switched to branch "andersk"

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 21 /41

Merging example

Created commit 383c158: 6 is a number too.

1 files changed, 1 insertions(+), 0 deletions(-)
$ git merge andersk
Auto-merged numbers 4’-
Merge made by recursive.

numbers | 1+

1 files changed, 1 insertions(+) dd 0 :) (: dd 6 :)
cat numbers

initial commit

$
0
1
2
3
4
5

6

$ git checkout andersk
Switched to branch "andersk"
$ echo 5% >> numbers

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 21 /41

Merging example

1 files changed, 1 insertions(+), O deletions(-)
$ git merge andersk
Auto-merged numbers

Merge made by recursive.] master |
merge
numbers | 1+

1 files changed, 1 insertions(+)5 eletions(-)

cat numbers Add 0) C Add 6)

initial commit

$
0
1
2
3
4
5

6

$ git checkout andersk
Switched to branch "andersk"
$ echo 5% >> numbers

$ git add numbers

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 21 /41

Using Git

Merging example
Merge made by recursive.
numbers | 1+ ;\b
1 files changed, 1 inserti ; (—)
2 cat numbers 4’-
1
2 (Add 0) C Add 6)
3
4
:

6

$ git checkout andersk

Switched to branch "andersk"

$ echo 5% >> numbers

$ git add numbers

$ git commit -m ’5% is a better number.’

Created commit 5360c2d: 53 is a better number.
1 files changed, 1 insertions(+), O deletions(-)

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009

21/ 41

Merging example

1 files changed, 1 insertions(+), O deletions(-)

$ cat numbers

: =

1

2
3
4
5

C Add 0) C Add 6)
GHHHHHH’

6

$ git checkout andersk

Switched to branch "andersk"

$ echo 5% >> numbers

$ git add numbers

$ git commit -m ’5% is a better number.’

Created commit 5360c2d: 5% is a better number.
1 files changed, 1 insertions(+), O deletions(-)

$ git checkout master

Switched to branch "master"

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 21 /41

Merging example

o W N

o)

[Endersi— Add 5% *
nerge H master I
$ git checkout andersk
Switched to branch "andersk" dd 0 :) (: add 6
$ echo 5% >> numbers
$ git add numbers
$ git commit -m ’5% is a better number.’
Created commit 5360c2d: 5% is a better number.

1 files changed, 1 insertions(+), O deletions(-)
$ git checkout master
Switched to branch "master"
$ git merge andersk
Auto-merged numbers

CONFLICT (content): Merge conflict in numbers
Automatic merge failed; fix conflicts and then commit the result.

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 21 /41

Merging example

$ git commit -m ’5% is a better number.’
Created commit 5360c2d: 5% is a better number.

1 files changed, 1 1nsert10lraigevrf%|,‘h Add 5% *
$ git checkout master rerae st |
Switched to branch "master"
$ git merge andersk ZN

Auto-merged numbers C dd 0) C dd 6
CONFLICT (content): Merge conflict in num

Automatic merge failed; fix conflicts and then cogmit thg result.
$ git status
numbers: needs merge

On branch master

Changed but not updated:

(use "git add <file>..." to update what will be committed)
#

unmerged: numbers

#

no changes added to commit (use "git add" and/or "git commit -a")

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 21 /41

Merging example

CONFLICT (content): Merge conflict in numbers
Automatic merge failed; fix conflicts and then commit the result.

$ git status B — s *
numbers: needs merge rerge] master |
On branch master

Changed but not updated: :: ::

(use "git add <file>..." to update wh(: Add 0 :) co{: add 6
#
unmerged: numbers

:
no changes added to commit (use "git add" and/or —flit -a"

$ git mergetool
Merging the files: numbers

Normal merge conflict for ’numbers’:
local: modified
remote: modified
Hit return to start merge resolution tool (meld):

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 21 /41

Merging example

numbers.LOCAL.9189 : numbers : numbers.REMOTE.9189 - Meld ==X
File Edit Settings Help

A

0 & ¥
$ New Save Re Down Up
N numbers.LOCAL.9189 : numbers : numbers.REMOTE.9189 X ‘
‘itmp,ffnn,'numbers.LC‘ b4 ‘ ‘ﬁmwse...| ‘,ftmp,ffnufnumbers ‘ ~ ‘ ‘Emwse...‘ ‘ftmpffnufnumbers.RE| ~ Hgmwse... ‘
3] 2]]

1 1 1
2 2 2

3 3 3
#| 4 4 4

5 5 5
DB > 4€<<<<<<< HEAD:numbers > €53 |:|

6
L
5%
n >>>>>>> andersk:numbers
Me¢
N
[+
Hi
INS : Ln 12, Col 1

o F
Understanding Git September 29, 2009 21 /41

Merging example

#

no changes added to commit (use "git add" and/or "git commit -a")
$ git mergetool (T e

Merging the files: numbers] master |

merge
Normal merge conflict for ’numbers’:
local: modified C dd 0) C dd 6)
remote: modified

Hit return to start merge resolution tool (meld)»
cat numbers

initial commit

$
0
1
2
3
4
5

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 21 /41

Merging example

|andersk F)
Add 5%
H master I
merge
1
53

6 Add 0) C Add 6
$ git status

On branch master

O W N

Changes to be committed:
(use "git reset HEAD <file>..." to unstage)

Untracked files:

#
#
#
#
#
(use "git add <file>..." to include in what will be committed)
#

numbers.orig

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 21 /41

Merging example —

3 merge)"l master I
4

5 [— Add 5%

52 Y

6 merge

$ git status

On branch master dd 0) C dd 6)
Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

:

#

#

Untracked files:

(use "git add <file>..." to include in what will be committed)
#

numbers.orig

$ git commit

Created commit fc8da7a: Merge branch ’andersk’

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 21 /41

Getting out of trouble

gitk --all The graphical repository browser is
immensely useful for visualizing what's
going on In your repository.

git reflog Show the reflog entries for HEAD.

git reflog show ref Show the reflog entries for ref.

git reset --hard commit Resets the ref pointed to by HEAD, as well
as the index and working tree, to commit.

@ The reflog tracks all local changes to refs. Whenever a ref is updated
to point at a new commit, it gets an entry in the reflog.

@ If you find yourself somewhere you don't expect, you can examine the
log or the reflog, and then use reset to get back to a known point.

@ This works even in a conflicted merge or rebase, if you just want to
bail out and try something different.

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 22 /41

A peek at the reflog

$ git reflog

fc8da7a... HEAD@O: commit (merge): Merge branch ’andersk’
994be80... HEAD@1l: checkout: moving from andersk to master
5360c2d... HEAD@2: commit: 5% is a better number.
T7Taeb494... HEADQ@3: checkout: moving from master to andersk
994be80... HEADQ@4: merge andersk: Merge made by recursive.
383c158... HEAD@5: commit: 6 is a number too.

4172330... HEADQ@6: checkout: moving from andersk to master
T7aeb494... HEADQ7: commit: Numbers start at O.

4172330... HEAD@8: checkout: moving from master to andersk
$ git reflog show master

fcB8da7a... master@0: commit (merge): Merge branch ’andersk’
994be80. .. master@l: merge andersk: Merge made by recursive.
383c158... master@2: commit: 6 is a number too.

4172330... master@3: commit (initial): 1, 2, 3, 4, 5!
$ git reflog show andersk

5360c2d... andersk@0: commit: 5% is a better number.
7aeb494 ... andersk@l: commit: Numbers start at O.
4172330... andersk@2: branch: Created from HEAD

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 23 /41

Cherry-picking and reverting

git cherry-pick commit Constructs a new commit on HEAD that

git revert commit

performs the same changes as commit.

Constructs a new commit on HEAD that
performs the reverse of the changes in
commzt.

@ These commands construct a new commit that does not preserve any
parent information pointing back to the old one. Use with care.

@ Instead of cherry-picking from your development branch into your

stable branch, for example, it is usually better to make the commit on
stable and merge the entire stable branch into development.

Nelson Elhage, Anders Kaseorg (SIPB)

Understanding Git September 29, 2009

24 /41

Outline

© Collaboration with Git

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 25 /41

Collaboration with Git

o Git allows bidirectional communication between any pair of
repositories.

o Git speaks many protocols.
SSH

HTTP/HTTPS

DAV

Git protocol

rsync

direct filesystem access

@ This flexibility lets you implement a wide range of centralized or
distributed development models.

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 26 / 41

The simple case

@ A freshly cloned repository has one remote called origin, which is
the default source for pulls and destination for pushes.

git fetch Download commits from origin. Each remote branch
branch will be made available with the name
origin/branch.

git branch -r List the available remote branches.

git branch -a List the available local and remote branches.
@ Development is done on local branches. To work on a remote branch,

you first create a local tracking branch, and then push any changes
back to the remote branch as a separate operation.

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 27 / 41

Collaboration with Git

Tracking branches

git checkout -b branch origin/branch Create and switch to a new

git pull

git push

git push origin :branch

git remote prune origin

Nelson Elhage, Anders Kaseorg (SIPB)

tracking branch named branch, set up to
track the remote branch origin/branch.

Update the current tracking branch from
origin/branch. Short for git fetch;
git merge origin/branch.

Push the current tracking branch back to
origin/branch. This will only
fast-forward the remote branch by default,
so you may need to git pull first.
Delete the remote branch branch.

Clean up any refs to branches that have
been deleted remotely.

Understanding Git September 29, 2009 28 / 41

Remotes

@ A Git repository can be configured with references to any number of
remotes.

o By default, a newly cloned repository has one remote named origin
pointing to the source of the clone.

$ git clone /mit/andersk/Public/git/nss_nonlocal.git
Initialized empty Git repository in /tmp/nss_nonlocal/.git/
$ cat nss_nonlocal/.git/config

[remote "origin"]

url = /mit/andersk/Public/git/nss_nonlocal.git
fetch = +refs/heads/*:refs/remotes/origin/*
[branch "master"]

remote = origin

merge = refs/heads/master

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 29 / 41

Hosting a public Git repository

@ A repository that's used for cloning, pulling, and pushing should
usually be a bare repository (git clone --bare). A bare repository
has no working tree, and lives in a directory named project.git
instead of project/.git.

@ The quickest solution at MIT is to drop your repository into AFS.

@ To serve a repository on the web, you need to run git
update-server-info, and enable the hooks/post-update hook.
@ To serve a repository via the Git protocol, you need to create the
git-daemon-export-ok file inside it.
e scripts.mit.edu provides a Git hosting service. Drop your repository
into /mit/locker/Scripts/git/project.git and access it at
git://locker.scripts.mit.edu/project.git.

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 30/ 41

Outline

@ Rewriting history

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 31 /41

Rewriting history

o Git includes powerful tools for rewriting history.

o Of course, since modifying a commit changes its SHA-1 identifier, by
“rewriting history” we actually mean “transforming a sequence of
commits into a different sequence of commits”.

@ You need to be careful about rewriting commits that others may have
already pulled.

e By default, Git will prevent you from pushing changes that are not
fast-forwards, unless you ask very hard.

@ Rewriting is extremely useful for cleaning up a private branch before
making it publicly available.

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 32 /41

Why rewriting is useful

@ A good history will include one commit for each self-contained logical
change to the tree.
@ Avoid cluttering the history with typos and trivial bugs that are fixed
in the following commits.
e This makes things more pleasant for anyone who wants to read or
review your changes.
o It also makes it easier to pinpoint bugs with git bisect.
@ You don't need to worry about making your commits perfect as you
write them, since you can rearrange them later.

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 33 /41

Rewriting history

Resetting branches

git reset —--hard commtt
git reset commit
git reset --soft commit

git commit --amend

Nelson Elhage, Anders Kaseorg (SIPB)

Resets the current HEAD, as well as the
index and working tree, to commit.

Resets the current HEAD and index to
commit, without touching the working tree.
Resets the current HEAD to commit, without
touching the index or the working tree.
Adds the modifications in the index to the
current commit at HEAD “in place”.
Approximately equivalent to git reset
HEAD"; git commit.

Understanding Git September 29, 2009 34 /41

Rebasing

git rebase commit Rebase HEAD onto commit.

git pull --rebase Short for git fetch; git rebase
origin/branch.

@ rebase finds all commits that are in HEAD but not in commst, and
re-applies them starting with commit. The current branch is reset to
the result.

@ This has a similar effect to a merge, but maintains a linear history, at
the cost of losing some information.

@ rebase changes the object identifiers of the re-applied commits.

@ rebase is often preferred to keep history clean.

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 35 /41

Rebase vs. merge

@ We have development on both a topic branch and master.

*
e,

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 36 / 41

Rebase vs. merge

@ merge results in a forked history:

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git

September 29, 2009

36 / 41

Rewriting history

Rebase vs. merge

@ rebase rewrites commits and maintains a linear history:

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 36 / 41

Interactive rebasing

git

rebase -i commit Rebase HEAD onto commtt, letting you
interactively edit the resulting history.
(Typically commit will already be an ancestor
of HEAD, to edit history “in place”.)

Git will start your editor on a list of the commits to be applied on top
of commit.

You can cut and paste to arbitrarily reorder the commits.
You can delete a line to remove that commit completely.

You can insert the squash directive to fuse a commit into the
previous commit.

You can insert the edit directive to have Git pause after applying a
commit, so you can amend it in place or insert new commits, before
further commits are applied.

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 37 /41

Advanced rewriting

git filter-branch Rewrite history by mapping each commit through
an arbitrary script.

.git/info/grafts Causes the local repository to pretend that certain
commits have different parents than their real ones.
(git filter-branch can then rewrite the fake
parents into real ones.)

git fast-export Dump history in a human-readable format, with
SHA-1 IDs replaced by symbolic marks, so that it
can be edited by hand.

git fast-import Read back commits produced by git
fast-export.

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 38 /41

Outline

© And beyond!

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 39 /41

Other awesome Git commands

git bisect Easily pinpoint a regression in your history using a
repeated bisection search.

git blame Annotate each line of a file with information about
its last modification.

git cvsimport, git svn Use Git to work with repositories in other
formats. (I think Git makes a much better CVS or
SVN client than the native ones!)

git format-patch, git send-email, git am Send and receive Git
patches by email.

git grep Search for a regex in a Git tree.

git stash Quickly stash away and reapply temporary changes
while you do other work.

git submodule Manage a group of related Git repositories.

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 40 / 41

Exploring Git yourself

There are many commands we haven't talked about, and the ones we
have take additional options that can help you work more efficiently.

Anything you think you should be able to do within the Git model can
probably be done.

Git is designed to be conveniently scriptable.
o Git has extensive documentation—start with man git.

e To get documentation on any git command, run git help command
or (equivalently) man git-command.

Nelson Elhage, Anders Kaseorg (SIPB) Understanding Git September 29, 2009 41 /41

	The Git model
	Using Git
	Collaboration with Git
	Rewriting history
	And beyond!

