
6.170 Preliminary Design Document

Team 44 – “The Nihilists”

May 1, 2007

System Design

Overview

The overall design of our Antichess program follows an MVC pattern. Our
system consists of four major components, each of which is subdivided into
classes as appropriate: the Board, the View, the Controller, and the AI. The
Board component serves as the model in the MVC pattern. In Antichess it
acts as programmatic model of the chess board, equipped with chess pieces
and the logic to move those pieces on the board and distinguish between legal
and illegal moves. The View is the only component that directly interacts
with the user. The View represents the board to the user in some manner
(graphically or textually) and accepts input from the user of the moves
he/she would like to make. While the View can read the current status of
the Board directly, it can only modify the Board through the Controller.
The Controller accepts requests from the user and modifies the state of the
Board appropriately and safely as a result of those requests, then pushes
the result of these changes back to the View. The final major component of
this system are the game players. On his/her turn each game player queries
the Board for its current state and based off of this state makes a decision
concerning the next move it would like to make. The game player then
submits this desired move to the Controller, which either determines that
the requested move is legal and updates the Board accordingly by applying
that move to the Board, or determines that the requested move is illegal
and responds accordingly to the game player. To support both human and
AI play, two game players are implemented, one for each of these different
types of players. The human player simply takes input passed from the
view concerning the moves the human would like to make, while the AI
will ultimately perform a multithreaded minimax search of future possible

1



gamespaces and decide upon a desired move based on the results of this
search.

Module overviews

The Controller

Due to the inherent complexity of the system, and the crucial role of the
controller coupled with a relatively low amount of actual code needed to
actually write the controller, we chose to use a prototyping model for devel-
opment with the controller. This current iteration has a lot of nice things,
but some failings. The controller can easily be divided into two separate
parts, the ControllerMaster and the GameController. The ControllerMas-
ter handles creating new games, saving games, loading games and setting
the state of the GameController. The GameController handles the actual
running of a Chess or Antichess Game.

First we will discuss the GameController class. The GameController
class handles communication with GamePlayers, the Board and the Game-
Clock. A GamePlayer is an interface which represents any entity the Game-
Controller can ask for legal moves. The Board and the GameClock are part
of the model. The cycle of communication goes as follows: The GameCon-
troller asks the Board whose turn it is. It then asks who ever turns it is for
a move. If that GamePlayer has a move they return it, if they do not they
return null and the GameController waits for the GamePlayer to notify that
it has a move. The GameController asks the Board to do the move and then
checks to see if anyone has won from time conditions or from conditions that
the Board determines. Interspersed in these actions are checks that the time
has not run out and if the ControllerMaster wants the GameController to
halt it’s operations.

The GameController communicates to the View and the AI through the
GamePlayer interface. A GamePlayer, as mentioned before, represents an
entity that the GameController can ask for moves. This includes RandomAI,
AIPlayer, and HumanPlayer. HumanPlayer is an interface for communicat-
ing between the GameController and the View. This was implemented for
Chess and Antichess with the class ChessPlayer. The HumanPlayer player
communicates to the View through anyting that extends BoardView.

The ControllerMaster saves games by using the GameWriter class. It
loads games by using the GameReader class. When it wants the Game-
Controller to stop the ControllerMaster sets an internal value requesting a
pause. It is the responsibility of the GameController to check if the Con-

2



trollerMaster wants a pause. This also requires that the ControllerMas-
ter knows whether the GameController is running or not. This is handled
by having the GameController inform the ControllerMaster whenever it is
switching from running to not running or vice versa. To summarize, the
ControllerMaster sets flags, the GameController must check the state of the
ControllerMaster and inform it how its doing. The newGame, saveGame,
and loadGame methods are called directly from the View.

Things that will improve in later iterations of the the Controller: The
communication between the GameController and the ControllerMaster needs
to be improved. Pausing and then restarting the GameController requires
that the ControllerMaster spawns new threads. There is a better way. Also
rather late in development (last Friday) the Board was made to be generic.
The GameController does not take this into account and it would be best if
it did.

The Board

The antichess Board will necessarily need to remember the arrangement of
chess pieces on the current board and what moves those pieces can legally
make. In order to handle a range of move and rule complexities we have
divided the design of our Board into a hierarchy of abstract classes and
interfaces. At the base of this hierarchy are the Pieces that go on the
board. Pieces follow a flyweight pattern, where each piece on the board is
a singleton implementation of an abstract piece type associated with some
state information, including its location on the board. Pieces are immutable,
so changes in a piece’s location will result in a new piece object, a new set
of state information associated with an existing piece type implementation.
Pieces possess Move Generators based on their piece type, which determine
what moves are legal on the single piece level. These Move Generators return
Moves, which simply contain information about an action some piece takes
during a single turn of the game. The Board containing all of the pieces for
a given game then looks at all of the moves these Move Generators deam
as possible and examines overarching consequences of the moves to finally
determine their legality in the game; for example, the board determines if
some legal move would leave the current player’s king in check, which would
render it illegal in the game. In this way, the Move Generators for the Pieces
feed piece-level legal moves up to the Board, which then looks at the greater
consequences of these moves to determine if they truely are legal.

Our particular implementation of the Board allows for a large amount of
flexibility. In our implementation, while Moves fit into a general framework

3



of a Piece and some pair of coordinates that that piece effects in a given turn,
this design is subclassed to contain more specific data based on the game. In
the case of Chess, therefore, the afforementioned pair of coordinates depict
where that piece is moving to in that turn, and ChessMoves can optionally
remember a captured Piece which the Piece captures in some way as a result
of its movement on the Board. The general abstract Board class is similarly
subclassed depending on the game in question, allowing this abstract class to
cater to a variety of Games and for data that the Board needs to manage but
is unrelated to the game of Chess or Antichess to be handled outside of the
specific implementation of the Board for Chess or Antichess. Furthermore,
since many of the rules for Antichess are very similar to those for Chess, we
chose to implement the Antichess Board as a sublcass of the Chess Board,
allowing the Antichess Board to be solely concerned with those details of
the game that differed from Chess and allowing our system to be sufficiently
flexible to handle either of these games.

Timing is handled in two classes. A GameTimer represents one timer
ticking down. This has start and stop methods. A GameTimer also contains
a list of A GameClock represents many GameTimers with at most one timer
running at one time.

The View

A BoardView is a class that displays a Board and accepts input from the
user. The BoardView is set to accept input by a HumanPlayer. From the
user input, the BoardView generates sets of coordinates that it passes to the
HumanPlayer who then converts the sets of coordinates to moves, checks if
they are legal and then notifies the GameController that there is a move.

The main class in the view when playing Chess or Antichess is the Chess-
GUI. The ChessGUI contains, creates and displays all of the elements of
the View. The ChessGUI communicates directly with the ControllerMaster
class when requesting the creation of new games, saving games, and loading
games. Loading and savig are handled in through dialogs initiated by menu
items. Creating a new game is handled by the NewGameWindow class. For
displaying the state of the Board and the Clock the ChessGUI contains: a
ChessBoardView which extends BoardView, MoveHistoryView, and Timer-
Label. BoardView is described above. MoveHistoryView displays the moves
that have been performed in this game. A TimerLabel displays a timer that
is ticking down during a persons move. A TimerLabel is a display for a
GameTimer.

4



The AI

The Antichess AI uses a standard minimax search algorithm to search the
space of potential moves. It implements the alpha-beta heuristic to prune
the game tree, and uses iterative deepening to search the move space in a
breadth-first fashion. In addition, when searching at a deeper level, the AI
searches the principal variation discovered at a shallower search depth in
order to hopefull achieve an alpha-beta cutoff sooner.

The AI also implements the so-called “Killer Heuristic” – when searching
a given level of the game tree, the move that last caused a cutoff at the same
level is searched first, again with the hope of causing a quick cutoff.

While searching, the AI module makes use of the Board’s ability to per-
form and then undo moves to search, by performing moves, then recursively
doing an evaluation of the move, then undoing the move. All searching is
executed on a local copy, in order to ensure that the copy referenced by the
View and Controller remains up-to-date and consistent.

At present, the AI is not yet multithreaded; Concurrent search of the
game tree will be implemented for the final release.

The AI is abstracted into the GameAI hierarchy of classes; There is also a
AIPlayer class that implements GamePlayer that allows the AI to be used
by the controller during interactive game play. The MachinePlayer class,
for interacting with other computer implementations, uses a GameAI object
directly.

Testing

Our overall testing strategy was composed of essentially two parts. First,
we wrote unit tests, black box and glass box alike, to test specific methods
inside of our classes. In some cases we would write test cases for classes that
we did not write ourselves, in order to provide greater detachment from the
code we were testing while we were designing our tests. In a number of cases,
however, simple unit testing of individual methods was simply not a practical
means of testing our system. In the Board, for example, it was impractical
to attempt to test several of the methods on a roughly individual basis; more
integrated tests, such as those between determining what legal moves existed
on the Board and whether the Board could properly execute those moves,
were simply more practical to test together, even though the final result
was that the successful completion of those tests depended on a number of
Board methods all working properly together. This feature of our system
was found to be highly prevalent, so integration tests, both automated as

5



just described and non-automated through 3rd party user interaction with
the working system, were a crucial component of our testing strategy. Every
member of the team tested the working system in its various stages (as a
Chess program and as an Antichess program; with a respectable AI and
with an AI that made purely random moves) and contributed to finding
additional desirable features and bugs in the system. The program was
also passed to 3rd parties (fulfilling our quota of jokingly named ”Angry
Russian testing”) who had no previous experience with our system in order
to provide a different perspecitve on the functionality of our system. This
variety of testing approaches to our system created a highly comprehensive
set of tests for our system.

Appendix

Figures and Diagrams

6



Figure 1: Mockup of the game UI

7



Figure 2: Mockup of the new game dialog

8



Figure 3: High-level MDD of the Antichess system

9



Figure 4: Dataflow between high-level Antichess interfaces

10


