Defending against Zero-Day attacks

Bob Mahoney
Zanshin Security, LLC

MIT Security Camp August 15-16, 2006

Presentation focuses on the Incident Response relevance of a research project Zanshin did for Verdasys, Inc. (http://verdasys.com) earlier this year.

Project considered the role their “Digital Guardian” product might play in a Defense-in-Depth strategy, and gauging the effectiveness against Zero-Day attacks.

I lifted this image from http://web.bvu.edu/students/pickbry/others.htm I sent mail asking for permission, or a pointer to someone who could give permission. no answer yet. And you can see, I’m using it anyway.

Somewhere, an intellectual property lawyer just got his wings.
Defending against Zero-Day attacks

Digital Guardian and Defense-in-Depth

Bob Mahoney Zanshin Security, LLC

MIT Security Camp August 15-16, 2006

Presentation focuses on the Incident Response relevance of a research project Zanshin did for Verdasys, Inc. (http://verdasys.com) earlier this year.

Project considered the role their “Digital Guardian” product might play in a Defense-in-Depth strategy, and gauging the effectiveness against Zero-Day attacks.

I lifted this image from http://web.bvu.edu/students/pickbry/others.htm I sent mail asking for permission, or a pointer to someone who could give permission. no answer yet. And you can see, I’m using it anyway.

Somewhere, an intellectual property lawyer just got his wings.
The following presentation contains graphic references to commercial software, and may be inappropriate for our younger viewers.

Yes, this is a commercial product.

But like the other tips and techniques we share at Camp, the content or ideas might be useful to some people.

Most of us have some commercial software in play already anyway, but I want to make clear where I'm coming from:

Not here to sell you a product. Don't know what it costs. I have no personal interest in the matter should you buy it.
The following presentation contains graphic references to commercial software, and may be inappropriate for our younger viewers.

Yes, this is a commercial product.

But like the other tips and techniques we share at Camp, the content or ideas might be useful to some people.

Most of us have some commercial software in play already anyway, but I want to make clear where I'm coming from:

Not here to sell you a product. Don't know what it costs. I have no personal interest in the matter should you buy it.
Defense-in-Depth is a strategy of implementing multiple layers of defensive capabilities around a protected item or system. This reduces the reliance on any one mechanism, and adds opportunities to block or reduce the damage from attacks against previously unknown vulnerabilities.

Malware is a general term for “malicious software”. Everyone agrees a virus is malware, but near the edges live things like “beneficial” worms and DRM mechanisms such as the now famous “Sony rootkit”.

Zero-day exploits are released on the same day the vulnerability becomes known to the public. The term derives from the number of days between a public advisory and the release of an exploit. The term 'zero-day exploits' is sometimes used to indicate publicly known exploits for which patches have not yet been made available.
Defense-in-Depth is a strategy of implementing multiple layers of defensive capabilities around a protected item or system. This reduces the reliance on any one mechanism, and adds opportunities to block or reduce the damage from attacks against previously unknown vulnerabilities.

Malware is a general term for "malicious software". Everyone agrees a virus is malware, but near the edges live things like "beneficial" worms and DRM mechanisms such as the now famous "Sony rootkit".

Zero-day exploits are released on the same day the vulnerability becomes known to the public. The term derives from the number of days between a public advisory and the release of an exploit. The term 'zero-day exploits' is sometimes used to indicate publicly known exploits for which patches have not yet been made available.
Defense-in-Depth is a strategy of implementing multiple layers of defensive capabilities around a protected item or system. This reduces the reliance on any one mechanism, and adds opportunities to block or reduce the damage from attacks against previously unknown vulnerabilities.

Malware is a general term for “malicious software”. Everyone agrees a virus is malware, but near the edges live things like “beneficial” worms and DRM mechanisms such as the now famous “Sony rootkit”.

Zero-day exploits are released on the same day the vulnerability becomes known to the public. The term derives from the number of days between a public advisory and the release of an exploit. The term 'zero-day exploits' is sometimes used to indicate publicly known exploits for which patches have not yet been made available.
Defense-in-Depth is a strategy of implementing multiple layers of defensive capabilities around a protected item or system. This reduces the reliance on any one mechanism, and adds opportunities to block or reduce the damage from attacks against previously unknown vulnerabilities.

Malware is a general term for “malicious software”. Everyone agrees a virus is malware, but near the edges live things like “beneficial” worms and DRM mechanisms such as the now famous “Sony rootkit”.

Zero-day exploits are released on the same day the vulnerability becomes known to the public. The term derives from the number of days between a public advisory and the release of an exploit. The term 'zero-day exploits' is sometimes used to indicate publicly known exploits for which patches have not yet been made available.
Digital Guardian
Digital Guardian

Central server manages intelligent agents
Digital Guardian

Central server manages intelligent agents
Agents enforce compliance with policy
Digital Guardian

Central server manages intelligent agents
Agents enforce compliance with policy
Server provides alert and audit functions
Digital Guardian

Central server manages intelligent agents
Agents enforce compliance with policy
Server provides alert and audit functions
System functions as a “Reference Monitor”
The Reference Monitor model:

Provides mandatory enforcement of security policies regarding all user, program, or data transactions.

“The Reference Monitor watches what other processes do and, where necessary, intervenes; otherwise it is, like the very best security products, entirely invisible and entirely inescapable. A good conscience is like that, too; just as no one wants to live with people who do not have a conscience it is now time to say that no computer that has its hands on valuable bits should not have a reference monitor.”

http://www.craigchamberlain.com/ has a link to a paper by Craig Chamberlain, Donato Bucella, Daniel Geer, Sc.D. Presented at DHS Science & Technology 2005:

“The Reference Monitor watches what other processes do and, where necessary, intervenes; otherwise it is, like the very best security products, entirely invisible and entirely inescapable. A good conscience is like that, too; just as no one wants to live with people who do not have a conscience it is now time to say that no computer that has its hands on valuable bits should not have a reference monitor.”

http://www.craigchamberlain.com/ has a link to a paper by Craig Chamberlain, Donato Bucella, Daniel Geer, Sc.D. Presented at DHS Science & Technology 2005:

Program: **iexplore.exe** is attempting to save:

 c:\documents and settings\jsmith\desktop\payload.bat

Please contact the helpdesk. You might need updates.

Please check [Policy Manual](http://verdasys.com/demos/def_in_depth) for more information

Screen shots grabbed from this Flash demo: http://verdasys.com/demos/def_in_depth
Unauthorized application: **gain.exe** attempting to communicate outbound.

The execution of this program is not permitted by corporate security policy.

Please check [Policy Manual](http://verdasys.com/demos/def_in_depth) for more information.
Screen shots grabbed from this Flash demo: http://verdasys.com/demos/def_in_depth
A primary goal of an organization’s IT security function is to make sure that the IT assets are available for their intended use, and can be relied upon. Other goals such as preventing fraud, intrusion, or other misuse are critical, of course, but IT assets are a tool, and the tool has to function as intended for their to be any basic value.

We need to protect corporate financial records, but the primary role of these systems is to manage and support the financial operations of the organization.

When security appears to trump functionality, it’s likely that the real function of the asset is security-related. (military, life-safety, etc)
Our Mission:

Maintain the integrity, availability, and security of organizational IT assets.

A primary goal of an organization’s IT security function is to make sure that the IT assets are available for their intended use, and can be relied upon. Other goals such as preventing fraud, intrusion, or other misuse are critical, of course, but IT assets are a tool, and the tool has to function as intended for their to be any basic value.

We need to protect corporate financial records, but the primary role of these systems is to manage and support the financial operations of the organization.

When security appears to trump functionality, it’s likely that the real function of the asset is security-related. (military, life-safety, etc)
Incident response takes place in the presence of high uncertainty

Functionality *always* trumps security

High Uncertainty means we might not have seen this coming, at least not as a specific event in time. We may not be sure at first what is happening. Things we do with the best intentions might make things worse, or obscure the actual causes.

At the user/organizational level, Functionality is demanded. The security of systems and processes is often merely *assumed*. ("Life is not fair")

Incident Response can be hard: The kitchen is hot, everything is sharp, and the lights keep going out. (see “Life”, above)
Challenges

People, of course, are the biggest challenge.
Challenges

Fear and Uncertainty cause delay and confusion

People, of course, are the biggest challenge.
Challenges

Fear and Uncertainty
cause delay and confusion

Time and Trust Pressures
make achieving consensus
on incident response hard

People, of course, are the biggest challenge.
Incident Management

With luck, you have smart security people, and you’ve done your homework.

Early notice of problems via trusted channels, if you’re lucky.

Determine what your exposure is

Figure out what you’ll do about it

Communicate to user community, and take steps to prevent problems
Incident Management

Border Protections

With luck, you have smart security people, and you’ve done your homework.

Early notice of problems via trusted channels, if you’re lucky.

Determine what your exposure is

Figure out what you’ll do about it

Communicate to user community, and take steps to prevent problems
Incident Management

Host-based protections

With luck, you have smart security people, and you’ve done your homework.

Early notice of problems via trusted channels, if you’re lucky.

Determine what your exposure is

Figure out what you’ll do about it

Communicate to user community, and take steps to prevent problems
With luck, you have smart security people, and you’ve done your homework.

Early notice of problems via trusted channels, if you’re lucky.

Determine what your exposure is

Figure out what you’ll do about it

Communicate to user community, and take steps to prevent problems
Incident Management

User Education and Awareness

With luck, you have smart security people, and you’ve done your homework.

Early notice of problems via trusted channels, if you’re lucky.

Determine what your exposure is

Figure out what you’ll do about it

Communicate to user community, and take steps to prevent problems
Getting this right is hard

Security Response is hard, and sometimes, the other kids don’t much like us...
Getting this right is hard

Most actions have side effects

Security Response is hard, and sometimes, the other kids don’t much like us…
Getting this right is hard

Most actions have side effects

Most side effects represent costs

Security Response is hard, and sometimes, the other kids don’t much like us…
Getting this right is hard

Most actions have side effects

Most side effects represent costs

New costs will meet resistance

Security Response is hard, and sometimes, the other kids don’t much like us…
Image stolen under the assumption that “Anarchy, Inc.” probably doesn’t have a lot of intellectual property attorneys.
University networks are rather more subject to individual freedom and choice than in most organizations...

Image stolen under the assumption that “Anarchy, Inc.” probably doesn’t have a lot of intellectual property attorneys.
Patches are hard. They must be written under pressure, usually by the group “responsible” for the problem at hand.

Patches must be tested thoroughly, because damage to systems, not to mention further damage to vendor reputation, is at stake.

“Pick One...”
Patches are hard. They must be written under pressure, usually by the group “responsible” for the problem at hand.

Patches must be tested thoroughly, because damage to systems, not to mention further damage to vendor reputation, is at stake.

“Pick One...”
Patches are hard. They must be written under pressure, usually by the group “responsible” for the problem at hand.

Patches must be tested thoroughly, because damage to systems, not to mention further damage to vendor reputation, is at stake.

“Pick One...”
Patches are hard. They must be written under pressure, usually by the group "responsible" for the problem at hand.

Patches must be tested thoroughly, because damage to systems, not to mention further damage to vendor reputation, is at stake.

"Pick One..."
This section on threat “trends” is based on analysis of recent reports and publications done by Dan Geer, who generously shared his work with me for use in this talk. Sources include the CSI/FBI Report, the Symantec Threat Report, the Anti-Phishing Working Group, Webroot Software, and the Counterpane Attack Trends Report.

My thanks to him for sharing his work and insights, and for taking all those statistics courses... (I wasn’t going to pass anyway)
Top 3 new Bot variants

0 2,000 4,000 6,000 8,000

- Gaobot
- Randex
- Spybot

2004 Jul-Dec 2005 Jan-Jun 2005 Jul-Dec

Note that for Spybot, this is 1.5 new variants Every Hour

Dan: “One can almost consider variation rates like this to be denial of service (DoS) attacks on the computer immune system.”

Data Source: Symantec Threat Report
Phishing

From Anti-Phishing WG data
Phishing
Phishing email reports are up 35%
From Anti-Phishing WG data
Phishing

Phishing email reports are up 35%
Number of URLs used is up 250%

From Anti-Phishing WG data
Phishing & Malware

From Anti-Phishing WG data
Phishing & Malware

Over the past year:

From Anti-Phishing WG data
Phishing & Malware

Over the past year:

172% increase in malware variants

From Anti-Phishing WG data
Phishing & Malware

Over the past year:

172% increase in malware variants

324% increase in urls used

From Anti-Phishing WG data
Phishing & Malware

There are over 200 new variants of ride-along malware each month

From Anti-Phishing WG data
Us vs. Them

We (defenders) need to work harder as the number of attacks increases.

They (attackers) need to work only hard enough to make the next variant.

“As [creating new variants] is now automated, the arms race between attacker and defender can be manipulated by the attacker to bankrupt the defender.”
Us vs. Them

Malware variants increased by 28X

We (defenders) need to work harder as the number of attacks increases.

They (attackers) need to work only hard enough to make the next variant.

“As [creating new variants] is now automated, the arms race between attacker and defender can be manipulated by the attacker to bankrupt the defender.”
Us vs. Them

Malware variants increased by 28X
Phishing urls increased by 35X

We (defenders) need to work harder as the number of attacks increases.
They (attackers) need to work only hard enough to make the next variant.

“As [creating new variants] is now automated, the arms race between attacker and defender can be manipulated by the attacker to bankrupt the defender.”
Us vs. Them

Malware variants increased by 28X
Phishing urls increased by 35X
Defender’s work factor is cumulative

We (defenders) need to work harder as the number of attacks increases.

They (attackers) need to work only hard enough to make the next variant.

“As [creating new variants] is now automated, the arms race between attacker and defender can be manipulated by the attacker to bankrupt the defender.”
Us vs. Them

Malware variants increased by 28X
Phishing urls increased by 35X

Defender’s work factor is cumulative
Attacker’s work factor is the cost of a new variant

We (defenders) need to work harder as the number of attacks increases.

They (attackers) need to work only hard enough to make the next variant.

“As [creating new variants] is now automated, the arms race between attacker and defender can be manipulated by the attacker to bankrupt the defender.”
“When you are dealing with rootkits and some advanced spyware programs, the only solution is to rebuild from scratch. In some cases, there really is no way to recover without nuking the systems from orbit.”

Mike Danseglio, Program Manager, Security Solutions Group, Microsoft, April 3, 2006.

“Reality Bites”
Microsoft’s
Antivirus Defense-in-Depth Guide

“...viruses, worms, and Trojan horses continue to infect computer systems around the world.

There is no single reason for this apparent contradiction, but the current situation indicates that the standard approach of deploying antivirus software on each computer in your environment may not be sufficient.”

http://www.microsoft.com/technet/security/topics/serversecurity/avdind_0.mspx
Zero-Day Project Goals:

Project Summary: “We would like you to dip our product in a variety of poisons and hot oils, and see what happens.”
Zero-Day Project Goals:

Consider Digital Guardian’s role in a successful Defense in Depth strategy

Project Summary: “We would like you to dip our product in a variety of poisons and hot oils, and see what happens.”
Zero-Day Project Goals:

Consider Digital Guardian’s role in a successful Defense in Depth strategy

Investigate DG’s ability to provide protection against Zero-Day attacks

Project Summary: “We would like you to dip our product in a variety of poisons and hot oils, and see what happens.”
Simply put, if we can do this, we win.
Approach

Protect User Data

Simply put, if we can do this, we win.
Approach

Protect User Data
Prevent Network Abuse

Simply put, if we can do this, we win.
Approach

Protect User Data

Prevent Network Abuse

Protect Local OS

Simply put, if we can do this, we win.
Approach

- Protect User Data
- Prevent Network Abuse
- Protect Local OS
- Protect Local Applications

Simply put, if we can do this, we win.
Zanshin Security assembled a library of malware from existing collections (including the Nepenthes library as of February 2006) and private efforts. At the time of this project, Our malware library included some 3260 unique worm samples (of which 2552 were Korgo/Padobot variants).

We selected 24 worms to serve as a representative sample, covering 93% of our library. Our samples included one of each uniquely-identified variant from each worm type/family. Identification was performed using ClamAV.

Nepenthes has since merged with the mwcollect project: http://nepenthes.mwcollect.org/
Zanshin Security assembled a library of malware from existing collections (including the Nepenthes library as of February 2006) and private efforts. At the time of this project, Our malware library included some 3260 unique worm samples (of which 2552 were Korgo/Padobot variants).

We selected 24 worms to serve as a representative sample, covering 93% of our library. Our samples included one of each uniquely-identified variant from each worm type/family. Identification was performed using ClamAV.

Nepenthes has since merged with the mwcollect project: http://nepenthes.mwcollect.org/
Zanshin Security assembled a library of malware from existing collections (including the Nepenthes library as of February 2006) and private efforts. At the time of this project, Our malware library included some 3260 unique worm samples (of which 2552 were Korgo/Padobot variants).

We selected 24 worms to serve as a representative sample, covering 93% of our library. Our samples included one of each uniquely-identified variant from each worm type/family. Identification was performed using ClamAV.

Nepenthes has since merged with the mwcollect project: http://nepenthes.mwcollect.org/
Zanshin Security assembled a library of malware from existing collections (including the Nepenthes library as of February 2006) and private efforts. At the time of this project, Our malware library included some 3260 unique worm samples (of which 2552 were Korgo/Padobot variants).

We selected 24 worms to serve as a representative sample, covering 93% of our library. Our samples included one of each uniquely-identified variant from each worm type/family. Identification was performed using ClamAV.

Nepenthes has since merged with the mwcollect project: http://nepenthes.mwcollect.org/
Zanshin Security assembled a library of malware from existing collections (including the Nepenthes library as of February 2006) and private efforts. At the time of this project, our malware library included some 3260 unique worm samples (of which 2552 were Korgo/Padobot variants).

We selected 24 worms to serve as a representative sample, covering 93% of our library. Our samples included one of each uniquely-identified variant from each worm type/family. Identification was performed using ClamAV.

Nepenthes has since merged with the mwcollect project: http://nepenthes.mwcollect.org/
Malware Injection

http://www.metasploit.com/
Malware Injection

Metasploit framework

http://www.metasploit.com/
Malware Injection

Metasploit framework

Servers in the test environment

http://www.metasploit.com/
Malware Injection

Metasploit framework

Servers in the test environment

Manually

http://www.metasploit.com/
Malware
Strategy & Tactics
Malware Strategy & Tactics

Infection mechanisms and targets
Malware
Strategy & Tactics

Infection mechanisms and targets

Propagation
Malware
Strategy & Tactics

Infection mechanisms and targets

Propagation

Self-Preservation
Targets
Targets

Executable files
Targets

Executable files

Documents and data files
Propagation
Propagation

Removable storage
Propagation

Removable storage

Email and other network downloads
Self-preservation

Stealth by Design Malware doesn’t rely on conventional rootkit technology to hide itself, instead makes stealth a core design goal.

See http://invisiblethings.org

Polymorphic code is code that mutates while keeping the original algorithm intact.

Metamorphic code is code that can reprogram itself. Often, it does this by translating its own code into a temporary representation, and then back to normal code again. This is used by some viruses when they are about to infect new files, and the result is that their "children" will never look like themselves.

(see http://en.wikipedia.org/ and many other sources)
Stealth by Design Malware doesn’t rely on conventional rootkit technology to hide itself, instead makes stealth a core design goal.

See http://invisiblethings.org

Polymorphic code is code that mutates while keeping the original algorithm intact.

Metamorphic code is code that can reprogram itself. Often, it does this by translating its own code into a temporary representation, and then back to normal code again. This is used by some viruses when they are about to infect new files, and the result is that their "children" will never look like themselves.

(see http://en.wikipedia.org/ and many other sources)
Stealth by Design Malware doesn’t rely on conventional rootkit technology to hide itself, instead makes stealth a core design goal.

See http://invisiblethings.org

Polymorphic code is code that mutates while keeping the original algorithm intact.

Metamorphic code is code that can reprogram itself. Often, it does this by translating its own code into a temporary representation, and then back to normal code again. This is used by some viruses when they are about to infect new files, and the result is that their "children" will never look like themselves.

(see http://en.wikipedia.org/ and many other sources)
Self-preservation

Stealth by Design (SbD)

Polymorphism and metamorphism

Antivirus deactivation

Stealth by Design Malware doesn’t rely on conventional rootkit technology to hide itself, instead makes stealth a core design goal.

See http://invisiblethings.org

Polymorphic code is code that mutates while keeping the original algorithm intact.

Metamorphic code is code that can reprogram itself. Often, it does this by translating its own code into a temporary representation, and then back to normal code again. This is used by some viruses when they are about to infect new files, and the result is that their "children" will never look like themselves.

(see http://en.wikipedia.org/ and many other sources)
Malware very often uses predictable pathnames that have little or no overlap with pathnames important to human users wishing to create files.

Malware propagation mechanisms often use network ports that are needed by relatively few, well-known, legitimate system programs.

Although malware does often write to the registry, it is uncommon for registry changes alone to be sufficient for the malware's viability, and it is rare for the registry changes to have an independent impact on the integrity or usability of the system.
Malware very often uses predictable pathnames that have little or no overlap with pathnames important to human users wishing to create files.

Malware propagation mechanisms often use network ports that are needed by relatively few, well-known, legitimate system programs.

Although malware does often write to the registry, it is uncommon for registry changes alone to be sufficient for the malware's viability, and it is rare for the registry changes to have an independent impact on the integrity or usability of the system.
Malware often uses predictable pathnames

Malware propagation often uses network ports that are needed by a small number of known, legitimate programs

Malware very often uses predictable pathnames that have little or no overlap with pathnames important to human users wishing to create files.

Malware propagation mechanisms often use network ports that are needed by relatively few, well-known, legitimate system programs.

Although malware does often write to the registry, it is uncommon for registry changes alone to be sufficient for the malware's viability, and it is rare for the registry changes to have an independent impact on the integrity or usability of the system.
Malware very often uses predictable pathnames that have little or no overlap with pathnames important to human users wishing to create files.

Malware propagation mechanisms often use network ports that are needed by relatively few, well-known, legitimate system programs.

Although malware does often write to the registry, it is uncommon for registry changes alone to be sufficient for the malware's viability, and it is rare for the registry changes to have an independent impact on the integrity or usability of the system.
Initial Results

In the actual tests performed, we found that 30% of network worms were completely blocked, and the remaining 70% were ineffective but left some artifacts on the system.

In one of these cases, the vulnerability was not exploited successfully, causing LSASS.EXE to crash and the system to reboot 60 seconds later (the expected result under these conditions).
Initial Results

30% of worms tested were blocked outright

In the actual tests performed, we found that 30% of network worms were completely blocked, and the remaining 70% were ineffective but left some artifacts on the system.

In one of these cases, the vulnerability was not exploited successfully, causing LSASS.EXE to crash and the system to reboot 60 seconds later (the expected result under these conditions).
Initial Results

30% of worms tested were blocked outright
The remaining 70% of attacks were rendered ineffective.

In the actual tests performed, we found that 30% of network worms were completely blocked, and the remaining 70% were ineffective but left some artifacts on the system.

In one of these cases, the vulnerability was not exploited successfully, causing LSASS.EXE to crash and the system to reboot 60 seconds later (the expected result under these conditions).
Initial Results

30% of worms tested were blocked outright

The remaining 70% of attacks were rendered ineffective.

We identified a possible extension to the ruleset language which will cover 100% of the worm, virus, and Trojan horse attack vectors.

In the actual tests performed, we found that 30% of network worms were completely blocked, and the remaining 70% were ineffective but left some artifacts on the system.

In one of these cases, the vulnerability was not exploited successfully, causing LSASS.EXE to crash and the system to reboot 60 seconds later (the expected result under these conditions).
Initial Results

30% of worms tested were blocked outright.

The remaining 70% of attacks were rendered ineffective.

We identified a possible extension to the ruleset language which will cover 100% of the worm, virus, and Trojan horse attack vectors.

In the actual tests performed, we found that 30% of network worms were completely blocked, and the remaining 70% were ineffective but left some artifacts on the system.

In one of these cases, the vulnerability was not exploited successfully, causing LSASS.EXE to crash and the system to reboot 60 seconds later (the expected result under these conditions).
The background for the sort of IR events we’re considering was discussed in more detail in our paper on incident response and large event management:

We can push out rules to block a specific activity

The background for the sort of IR events we’re considering was discussed in more detail in our paper on incident response and large event management:

We can push out rules to block a specific activity.

We have the agility to rapidly refine the rule as new information warrants.

The background for the sort of IR events we’re considering was discussed in more detail in our paper on incident response and large event management:

We can push out rules to block a specific activity.

We have the agility to rapidly refine the rule as new information warrants.

This capability can be built into security policies and procedures ahead of time.

The background for the sort of IR events we’re considering was discussed in more detail in our paper on incident response and large event management:

Traditional Approaches
Traditional Approaches

Emergency update of virus definitions?
Traditional Approaches

Emergency update of virus definitions?
Might not be effective, and malware might disable antivirus
Traditional Approaches

Emergency update of virus definitions?
 Might not be effective, and malware might disable antivirus

Network blocking?
Traditional Approaches

Emergency update of virus definitions?
 Might not be effective, and malware might disable antivirus

Network blocking?
 Not all hardware, not all network topologies
Traditional Approaches

Emergency update of virus definitions?
 Might not be effective, and malware might disable antivirus

Network blocking?
 Not all hardware, not all network topologies

Patch and reboot every machine?
Traditional Approaches

Emergency update of virus definitions?

Might not be effective, and malware might disable antivirus

Network blocking?

Not all hardware, not all network topologies

Patch and reboot every machine?

Labor-intensive and time-consuming, not possible in the case of 0day events
How can Digital Guardian help?
How can Digital Guardian help?

The network traffic required to deploy a new rule is a fraction of that required by a patch.
How can Digital Guardian help?

The network traffic required to deploy a new rule is a fraction of that required by a patch.

Machines can be updated without requiring a reboot, unlike most patches.
How can Digital Guardian help?

The network traffic required to deploy a new rule is a fraction of that required by a patch.

Machines can be updated without requiring a reboot, unlike most patches.

All of this is done on the organization’s schedule, and focused on their priorities.
Example DG Response
Example DG Response

IT Staff sees increased port 135 traffic
Example DG Response

IT Staff sees increased port 135 traffic
Action: Deploy ruleset blocking port 135
Example DG Response

IT Staff sees increased port 135 traffic
Action: Deploy ruleset blocking port 135
Result?
Example DG Response

IT Staff sees increased port 135 traffic
Action: Deploy ruleset blocking port 135
Result?

No new infections
Example DG Response

IT Staff sees increased port 135 traffic
Action: Deploy ruleset blocking port 135
Result?

No new infections

Network utilization returns to normal
Example DG Response

IT Staff sees increased port 135 traffic
Action: Deploy ruleset blocking port 135
Result?

No new infections
Network utilization returns to normal
We’ve bought ourselves analysis time
Tentative conclusions:
Tentative conclusions:

Port 135 traffic was a worm
Tentative conclusions:

Port 135 traffic was a worm
Some port 135 traffic is important
Response Continues

Tentative conclusions:

Port 135 traffic was a worm
Some port 135 traffic is important

Action:
Tentative conclusions:
- Port 135 traffic was a worm
- Some port 135 traffic is important

Action:

Protect servers & Domain Controllers
Tentative conclusions:

Port 135 traffic was a worm
Some port 135 traffic is important

Action:

Protect servers & Domain Controllers

Refine ruleset to include exceptions for Server and Domain Controller addresses
Analysis?
Analysis?

We have stopped spread of the worm
Analysis?

We have stopped spread of the worm

We now have time to patch and clean up
Analysis?

We have stopped spread of the worm

We now have time to patch and clean up

We had functional blocking without resorting to infrastructure blocking
Analysis?

We have stopped spread of the worm

We now have time to patch and clean up

We had functional blocking without resorting to infrastructure blocking

We served local needs and priorities, with much better control over schedule
Analysis?

We have stopped spread of the worm
We now have time to patch and clean up
We had functional blocking without resorting to infrastructure blocking
We served local needs and priorities, with much better control over schedule
What if it had been a port 80 worm?
Main points

• Digital Guardian offers a powerful and flexible new tool against observed or predictable malicious activity
Main points

- Digital Guardian offers a powerful and flexible new tool against observed or predictable malicious activity
- Digital Guardian presents a very attractive ad-hoc response capability in emergent situations
Main points

- Digital Guardian offers a powerful and flexible new tool against observed or predictable malicious activity
- Digital Guardian presents a very attractive ad-hoc response capability in emergent situations
- This capability empowers organizations to respond to threats effectively, and with local priorities in mind
Very Special thanks to our malware project staff, Alejandro Sedeno and Matt Power. You folks do cool work...

Some Other References

The Metasploit Project
OSVDB: The Open Source Vulnerability Database
CVE - Common Vulnerabilities and Exposures
Common Malware Enumeration (CME)
mwcollect.org
Mal-Aware.org
“Hey, hey, hey- Don't be mean. ”

-Buckaroo Banzai

bob@zanshinsecurity.com

Bob Mahoney, Principal • Zanshin Security, LLC • http://zanshinsecurity.com

Very Special thanks to our malware project staff, Alejandro Sedeno and Matt Power. You folks do cool work...

Some Other References

The Metasploit Project
OSVDB: The Open Source Vulnerability Database
CVE - Common Vulnerabilities and Exposures
Common Malware Enumeration (CME)
mwcollect.org
Mal-Aware.org