Skip to content ↓

McGovern Institute funds collaborative neurotechnology projects

The McGovern Institute for Brain Research has announced six new funding awards to develop technologies aimed at accelerating neuroscience research and developing new therapeutic approaches for brain disorders. The new projects are on themes ranging from brain-machine interfaces to new genetic tools and brain imaging methods.

The awards are part of the McGovern Institute Neurotechnology (MINT) program, established in 2006 to promote collaborations between neuroscientists and researchers from other disciplines within and beyond MIT. "Neuroscience has always been driven by new technologies," explained Charles Jennings, the MINT program director. "We want to take advantage of the extraordinary range of technological expertise at MIT to develop new methods that could transform the field."

The MINT awards typically provide up to $100,000 for one year of seed funding to test innovative ideas that traditional funding sources rarely support, and to determine if they are worth pursuing further.

To date, MINT has supported 11 projects, involving faculty members from seven MIT departments as well as a local startup company. "We're on the lookout for new ideas and we'd be delighted to hear from anyone who wants to work with us," Jennings said.

Two of the newly funded projects involve developing electrodes for long-term recordings in the brain. These have potential applications for studies of learning, and eventually for neuroprosthetic devices that could, for example, allow a paralyzed patient to control a robotic arm or a computer through mental activity. One of the new projects will explore the use of carbon nanotubes as a biocompatible material for electrode fabrication. Another will develop biodegradable coatings for thin flexible polymer electrodes to make them easier to insert into the brain.

Neuroscientists often face a challenge in analyzing the large datasets produced by human brain imaging studies. Two MINT projects will apply new computational approaches to fMRI data from visual recognition studies. If successful, these methods could reveal new insights into the brain's functional organization. They could also advance the study of brain disorders, for example by identifying relationships between brain activity, genetics and clinical diagnostic categories.

A fifth project will use optical methods to manipulate cell signaling pathways in vivo, with potential use in identifying targets for drug development. In the sixth project, the collaborators will develop a 3-D laser-based method for dissecting single neurons from brain tissue. The ability to analyze gene expression and other biochemical processes in single cells is especially important in the brain, where cells of many different types are closely intermingled.

Further details of these and previous MINT projects can be found at http://web.mit.edu/mcgovern/html/News_and_Publications/2008_seed.shtml.

A version of this article appeared in MIT Tech Talk on October 29, 2008 (download PDF).

Related Links

Related Topics

More MIT News