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Solid-liquid slip from a transition state theory lens
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Using molecular dynamics simulations, we assess the ability of transition state theory
(TST) to describe the slip length of a simple liquid in contact with a simple solid under
a wide range of pressures and temperatures, as well as other system parameters. In the
linear regime of low shear rates that is of practical interest, TST leads to an Arrhenius-
type expression with temperature and density-dependent pre-exponential factors. Extensive
comparison with molecular dynamics simulation results shows that the resulting model can
fit simulation data very well. Of particular note is the model’s ability to capture the strong
dependence of slip on pressure; according to the model, this dependence originates in the
work of expansion associated with hole formation in the activated state and appears in the
Arrhenius exponent as part of the Gibbs free energy of activation. We also show that under
certain conditions, the model reduces to particularly simple expressions for describing the
slip as a function of the system thermodynamic state.
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I. INTRODUCTION

We have recently marked the bicentennial anniversary of the Navier slip condition [1]

us = β
∂u

∂η
(1)

describing the slip velocity us at the fluid-solid boundary as a function of the gradient of the
tangential flow velocity in the direction normal to the boundary, η. In contrast to the case of dilute
gases, where first principles approaches [2–4] allow the exact calculation of the slip length, β,
determination of the latter remains a significant challenge for dense liquids [2]. Although slip can be
measured experimentally, including via computer experiments such as molecular dynamics (MD)
simulations provided an accurate interaction potential for describing the solid-liquid interface is
available, predictive models which relate the slip length to the system parameters and thermody-
namic state have yet to be fully developed.

Notable progress in this respect has been made by Bocquet and collaborators [5–7] who used
Green-Kubo (GK) theory to obtain a model for the slip length in simple fluids in terms of the
fluid structure factor in the first liquid layer (FLL) [8] in contact with the solid and the charac-
teristic timescale associated with the solid-liquid force autocorrelation integral. Unfortunately, no
models exist for connecting these quantities to readily available system properties. Moreover, this
approach requires knowledge of the hydrodynamic wall location [9], which in some cases may be
significantly different from the actual wall location [10] and for which no reliable predictive model
exists [2,10].

A different class of approaches relies on mechanistic models of the solid-liquid interaction
and resulting slip process. Notable approaches include the work by Lichter and collaborators
[11,12] who developed a variable density Frenkel-Kontorova equation for this purpose and showed
that its numerical solutions are in qualitative agreement with MD simulations. The author of
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this article has shown [13] that by using a simpler model for the fluid-fluid interactions in the
above formulation, a much more tractable governing equation results, which readily lends itself
to numerical solutions and even analytical treatments in some limiting cases. This latter model was
shown [13] to be in good quantitative agreement with MD simulations. Unfortunately, these mech-
anistic models require knowledge of the atomistic-level friction coefficient, which is not known in
general.

A simpler but potentially powerful approach for modeling the slip process relies on transition
state theory (TST) [14], in the sense pioneered by Blake [15], to model the motion of contact
lines. This approach is motivated by the success enjoyed by Blake’s "molecular kinetic theory" in
modeling contact-line motion [16–19]. The consistency between various aspects of the more general
slip phenomenon and TST predictions has been pointed out by a number of researchers [12,20–24],
making a strong case that, at least under certain conditions which need to be determined, TST might
be able to model slip processes in a predictive sense.

The most important drawback associated with simple TST-based models is the simplified
treatment of the physics governing slip motion, resulting from the assumption that the latter
is a result of a single, well-defined thermally activated process. With this in mind, the cur-
rent work aims to provide a deliberate investigation of the ability of this class of models to
describe slip quantitatively. Although our investigation spans a wide range of conditions and
fluid-solid system parameters, we pay particular attention to the strong dependence of slip on
pressure (see data in [5], for example), which, in our opinion, has not received sufficient attention
to date.

To this end, in Sec. II we use Eyring’s reaction rate theory to develop a more complete expression
for the slip length compared to the simple model presented in [24]. In Sec. III, we use MD
simulations to validate this relation extensively, in order to provide a better understanding of the
strengths and limitations of this approach as a way of assessing its potential of being developed into
a reliable and perhaps predictive model of slip. This comparison is limited to the linear limit of low
shear rate since, as we explain in more detail later, essentially all problems of practical interest fall
in the small driving force regime. Discussion of our results, as well as some conclusions, can be
found in Sec. IV.

II. MODEL FORMULATION

A. TST for liquid slip

In the interest of simplicity, we consider a planar, stationary solid wall parallel to the x − y plane
in contact with a liquid that occupies the z > 0 dimension. The liquid is subject to simple shear,
resulting in a shear stress τxz = μγ̇ , where γ̇ denotes the shear rate and μ the liquid viscosity. The
system temperature and pressure are given by T and P, respectively.

The slip velocity in the x direction, us, can be identified with the velocity of the FLL [2] in contact
with the solid as a result of an applied shear stress. A model for this motion can be constructed by
extending the theory by Eyring and coworkers for viscous flow [25,26] by envisioning liquid atomic
motion at the FLL to be a result of infrequent hops between unoccupied sites, or "holes," on the
solid surface. These hops are infrequent due to the large potential barrier associated with escaping
the "cage" formed by the surrounding atoms, which in this case are both on the liquid and the solid
side. Here, we note that transition-state-theory-based approaches to transport in liquids were also
developed by Frenkel [27], and that these ideas were applied to slip by Tolstoi [28] (see [29] for a
critique of Tolstoi’s paper).

Using these ideas, we write [24]

us = �(κ+ − κ−), (2)

where � denotes the jump length between available sites and κ± the hopping rate in the positive and
negative x direction. These rates differ because the applied shear stress results in a net force on fluid
particles in the x direction, thus tilting the potential landscape and introducing an asymmetry in the
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potential barrier. Using reaction-rate theory [26] to describe the rates κ±, we obtain

κ± = kBT

h
exp

(
−	G ∓ 1

2 fx�

kBT

)
, (3)

where kB denotes Boltzmann’s constant, h is Planck’s constant, 	G is the per-atom difference in
Gibbs Free Energy between the activated and equilibrium states, and fx = τxy/
 denotes the force
on each fluid particle acting in the x direction as a result of the shear. In the above, 
 denotes the
areal density—number of atoms per unit area—at the solid-liquid interface [8].

As discussed in [24], molecular-kinetic expressions such as Eq. (3) predict a nonlinear relation-
ship of the form

us ∝ sinh

(
μγ̇ �


kBT

)
(4)

between the slip velocity and the shear rate, which is in good agreement with MD simulations.
Although this relation has received some interest [11,30,31], in what follows, we exclusively focus
on the low-forcing (linear) limit γ̇ � 
kBT/�μ, which is the most relevant one for applications of
interest. This can be seen by noting that for a simple dense liquid of density ρ ∼ 1, the condition
for linearity simplifies to γ̇ � 1 in atomistic units [2], which is approximately equivalent to γ̇ �
1011s−1 in SI units. Clearly this requirement is met by the vast majority of real applications of
interest.

In the linear limit as defined above, expression (3) simplifies to

us = �2μ


h
exp

(
− 	G

kBT

)
γ̇ . (5)

We follow Blake [15] in assuming that 	G can be decomposed into a liquid-liquid interaction part,
	GLL, and a liquid-solid interaction part, 	GLS , with the former linked to the liquid viscosity via

μ = h

vL
exp

(
	GLL

kBT

)
, (6)

where vL denotes the liquid free volume [15]. Using this decomposition, we can write

us = �2


vL
exp

(
−	GLS

kBT

)
γ̇ . (7)

Assuming a linear velocity gradient in the wall vicinity, as usual in slip-flow theory [2], we obtain

β = �2


vL
exp

(
−	GLS

kBT

)
. (8)

Relation (8) is a relatively simple expression for the slip length in the limit of small shear rate
(linear conditions), which, as discussed above, should hold over a very wide range of shear rates,
including those of practical interest. Working with the slip length, as opposed to the friction coeffi-
cient ζ = μ/β, has the advantage of eliminating the viscosity, with its quite complex dependence on
the fluid state (e.g., temperature and pressure), from the final expression. We note that since us was
calculated at the FLL location, the corresponding slip length is to be interpreted as measured from
this location. This will be taken into account when comparing this relation with our MD simulation
results.

We next proceed to develop Eq. (8) into a form that can be most readily compared with simulation
results.
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B. Thermodynamics of the activation barrier

Thermally activated phenomena with a simple constant activation barrier can be recognized from
their signature exponential dependence on temperature, typically by plotting the natural logarithm
of the reaction rate versus inverse temperature on an Arrhenius plot. In the case of Eq. (8), the
numerator of the exponent

	GLS

kBT
= 	U − T 	S + P	V

kBT
(9)

is not a constant with respect to temperature as in classical TST problems. Moreover, vL and 


appear in Eq. (8) as pre-exponential factors that need to be taken into account. In other words, a
classic Arrhenius plot will not suffice here.

In the above equation, 	U , 	S, and 	V denote the per-atom energy, entropy, and volume
difference between the activated (subscript a) and equilibrium states (subscript e), following the
notation 	I = Ia − Ie, where I ∈ {U, S,V }. We also note that these quantities refer to the liquid-
solid interaction and corresponding part of the Gibbs free energy with the subscript LS suppressed
in the interest of simplicity. The expression 	GLS = 	U − T 	S + P	V can be arrived at by
starting from the corresponding expression for 	G and separating each term into a liquid-solid
and a liquid-liquid contribution. The latter are then eliminated via Eq. (6) after being grouped into
	GLL.

Of particular note is the role of pressure which contributes to 	GLS via the liquid volume
change associated with formation of holes, which mediate the slip process, in analogy to the case of
viscosity in a homogeneous dense liquid [26]. As a result, the pressure will feature as an independent
variable in our plots.

To account for the pre-exponential factors, we use observations from previous studies which
suggest power law behaviors for 
 [8] and vL [26]. Coupled with the observation that � is a mostly
geometric quantity (primarily dependent on the solid density and structure), we rewrite Eq. (8) in
the form

ln

(
β

T αργ

)
= B + T 	S − 	U

kBT
− P	V

kBT
, (10)

where B = B({φ}) is a system constant. In this context, we will use the term system constant to refer
to quantities that are fixed for a given system definition and do not depend on the thermodynamic
state; in other words, quantities that do not depend on the temperature and pressure (and thus
density) but can depend on the set of parameters that define the system of interest, {φ}, which
includes, for example, the solid density and structure, the various intermolecular interactions,
molecular masses, etc.

As will be seen below, the MD data can be described very well by the empirically determined
values α = 0.5 and γ = −0.5, which will be used (held fixed) throughout this work.

III. COMPARISON WITH MOLECULAR DYNAMICS SIMULATIONS

We performed equilibrium and nonequilibrium MD simulations of a model system over a variety
of conditions in order to validate the ability of Eq. (10) to describe slip data accurately over a wide
range of conditions, while providing insight into slip behavior including potentially useful scaling
arguments.

A. Molecular dynamics simulations

The proposed model is validated using MD simulation results from Couette flow simulations in
a system comprising a dense liquid bounded by two fcc-structured walls in a slab geometry. Atomic
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interactions were based on the generalized Lennard-Jones potential

ui j (r) = 4εi j

[(σi j

r

)12
− Ci j

(σi j

r

)6
]
, (11)

where r denotes the distance between atoms i and j. More details on the simulation setup can be
found in Appendix A.

In what follows, we will use subscript s to denote solid atoms and their properties and l to denote
liquid atoms and their properties. All quantities will be reported in nondimensional units using the
characteristic time τLJ =

√
mlσll

2/εll , the characteristic distance σll , and the potential well depth εll

associated with the liquid-liquid interaction. In all cases the slip reported is as calculated at the FLL
location. It was obtained using a combined Green-Kubo and nonequilibrium analysis which takes
into account the hydrodynamic wall location [10], as well as the distance between the wall and the
FLL [8]; more details can be found in Appendix B. The liquid pressure P = P(ρ, T ) was obtained
from the equation of state (EOS) of Gubbins et al. [32] using measured values of the bulk liquid
density and temperature; using the pressure as measured directly from the MD simulation (normal
force on the bounding walls) yields equivalent results (within a few percent).

B. Results

Before discussing our results in detail, we note that our simulations span a range of Wall numbers,
0.1 � Wa � 1; the latter, defined as Wa = ρsεsl/kBT , is the characteristic number governing liquid
layering at the liquid-solid interface [8]; under this definition, negligible layering is observed for
Wa � 1 [8]. In other words, the Wall numbers studied here explore the range of small to moderate
layering. It is noteworthy that, as will be seen below, no discontinuous behavior across variations in
this parameter (and thus layering) is observed.

1. Variation of slip with density at fixed temperature

Figure 1 presents MD simulation results obtained by varying the liquid density in the range
0.53 < ρ < 0.92 at fixed temperature. A variety of comparisons are shown to highlight the effect
of wall density, temperature, and solid-liquid interaction strength.

Under the drastic, perhaps, assumption that 	S, 	V , and 	U are sufficiently weak functions of
density (pressure) for its effect to be negligible in these quantities, Eq. (10) simplifies to

ln

(
β

T αργ

)
= c1 − c2

P

kBT
, (12)

where c1 and c2 = 	V are constants for each isothermal density sweep shown in the figure. To
assess the validity of this model, Fig. 1 plots the LHS of (12) as a function of the ratio P/T , with
P = P(ρ, T ) calculated from the liquid EOS as discussed in Sec. III A.

The top panel of Fig. 1 compares MD simulation results at fixed temperature T = 1.5 for three
different solid-liquid interactions. Here and in what follows, εsl is varied independently of εss and
εll ; in other words, unless otherwise stated, εll and εss remain fixed at their nominal values of
1 and 4, respectively. The agreement between the model and the simulation results is excellent.
Least squares fits to model (12) return the values 	V = 0.35 for εsl = 0.3, and 	V = 0.32 for
εsl = 0.6 and 1. These results are remarkably consistent and also in good agreement with physical
expectations, given the atomic volume size is of order 4π0.53/3 = 0.52. We also observe that these
estimates suggest that ∂	V/∂εsl is a small negative quantity. We will re-examine the validity of this
interpretation in the following sections, in the light of additional simulation data that are independent
of the data presented so far.

The middle panel of Fig. 1 compares MD simulation results for four temperatures. The agreement
between the model and the simulation results is very good. The least squares fits return the values
	V = 0.45 for T = 1.25, 	V = 0.32 for T = 2 (as well as T = 1.5), and 	V = 0.28 for T = 2.5.
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FIG. 1. MD simulation results for the slip length as a function of the ratio P/T , resulting from varying
the liquid density in the range 0.53 < ρ < 0.92 at fixed temperature. Solid lines indicate least-squares fits to
model (12). Top: the effect of varying the solid-liquid interaction strength at fixed T = 1.5, εss = 4, ρs = 1.09;
middle: the effect of varying the temperature at fixed ρs = 1.09, εsl = 0.6; bottom: the effect of varying the
solid density at fixed T = 1.5, εss = 4, εsl = 0.3. For values of all other parameters see Appendix A.
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FIG. 2. MD simulation results as a function of P/T for εsl = 0.6 and εss = 10 at three liquid densities:
ρ = 0.6, ρ = 0.68, and ρ = 0.82. Results for ρ = 0.68 with εss = 4 are also shown. Different values of P/T
are obtained by varying the temperature. Solid lines indicate least-squares fits to model (13). For values of all
other parameters see Appendix A.

With the exception of the case T = 1.25, these values are again remarkably consistent and seem to
justify the assumption of weak temperature dependence.

The bottom panel of Fig. 1 investigates the effect of wall density, by considering two values of the
latter; namely, the nominal density ρs = 1.09 and a higher density ρs = 1.5. The comparison is for
T = 1.5, εsl = 0.3. The agreement with a least-squares fit to Eq. (12) is again excellent. The fit for
ρs = 1.5 yields an estimate 	V = 0.28, which is close to the value 	V = 0.35 reported before for
ρs = 1.09. We close by noting that since the mass ratio ms/ml has a very modest effect on slip, we
expect it to have no effect on the qualitative aspects of our conclusions. To verify this, we repeated
the simulations denoted by the black line in the middle panel of Fig. 1 with ms/ml = 10 instead
of the nominal value ms/ml = 5; the results were indiscernible from the nominal case within the
statistical uncertainty of our calculations.

2. Variation of slip with temperature at fixed density

In this section we present results obtained by varying the system temperature at fixed liquid
density. Figure 2 shows results for the normalized slip length for εsl = 0.6, εss = 10 and three values
of the liquid density, namely ρ = 0.6, ρ = 0.68, and ρ = 0.82. Simulations for ρ = 0.68 were also
performed with εss = 4, primarily at lower temperatures. The comparison between the two values
of εss in Fig. 2 suggests that it has a small effect on the slip length.

Other than variable system temperature, these simulations were performed at the same values
of all other parameters and are thus complementary to the simulations shown in the middle panel
of Fig. 1. Substituting density with temperature as the independent variable provides a different
perspective which is helpful for assessing the validity of our approximations about the dependence
of 	S, 	V , and 	U on ρ and T .

Figure 2 shows that, quite unexpectedly perhaps, the normalized slip is still well described by a
model of the form

ln

(
β

T αργ

)
= ĉ1 − ĉ2

P

kBT
, (13)
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FIG. 3. MD simulation results as a function of P/T , showing the effect of solid-liquid interaction via
different values of εsl and ρs. Different values of P/T are obtained by varying the temperature at constant
liquid density. In all cases εss = 4. The data for ρs = 1.5 was obtained by averaging data for ρ = 0.65 and
ρ = 0.71 (at ρs = 1.5). Solid lines indicate least-squares fits to model (13).

where ĉ1 and ĉ2 are constants for the isochoric temperature sweeps considered in the figure. These
constants can be related to c1 and c2 as we describe below.

We first note that ĉ1 appears to be independent of density, while ĉ2 = ĉ2(ρ); least squares fits
return values ĉ1 = 2.06, 2.06, 2.09 for ρ = 0.6, ρ = 0.68, and ρ = 0.82, respectively, for εss = 10;
for ρ = 0.68, εss = 4 the fit value is ĉ1 = 2.16. We also note that the liquid EOS in the range of
conditions studied here can be approximated by the expression P(ρ, T ) ≈ Ah(ρ)(T − T0(ρ)), where
A is a system constant that does not depend on εsl , while h(ρ), T0(ρ), and dh/dρ are positive
functions of ρ. Let us finally write 	S = 	S0 + 	Sεsl , where 	Sεsl denotes the part of 	S that
explicitly depends on εsl , while 	S0 denotes the remainder that does not. Using the above EOS and
identifying AT0/T with (T 	S0 − 	U )/T in (10), leads to an expression of the form

ln

(
β

T αργ

)
= B′ − P

kBT

(
	V + 1

h(ρ)

)
, (14)

where B′ = B + (A + 	Sεsl )/kB is a system constant (neglecting any dependence of 	Sεsl on ρ or
T ). This relation, although approximate, is consistent with (13) and correctly predicts the increase
in slope ĉ2 > c2, as well as the dependence of this increase on the liquid density.

Figure 3 shows additional slip data obtained by varying the temperature at fixed density, explor-
ing the effect of wall density and solid-liquid interaction strength. The result for ρ = 0.68, εss =
4, εsl = 0.6, already discussed in Fig. 2 is included for reference purposes. The figure shows that
the data is fitted well by the general form of relation (13). We also note that the two results for
ρs = 1.09 are consistent with our previous finding that ∂	V/∂εsl is a small negative quantity.

Connection with previous work. In this section we try to place the above results in the context of
previous work [22] which found, albeit for a slightly different system, that slip data as a function
of temperature at fixed density can be collapsed by an expression of the form β ∝ exp(H/T ) with
H > 0 dependent on density. We first observe that the above form, namely β ∝ exp(H/T ) with
H > 0, is likely a derived relation since it lacks the signature negative sign in the exponent. We also
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FIG. 4. MD simulation results shown in Fig. 2 plotted as a function of 1/T . Results for three liquid densities
are shown: ρ = 0.6, ρ = 0.68, and ρ = 0.82 for εsl = 0.6 and εss = 10. Results for ρ = 0.68 with εss = 4 are
also shown. Solid lines indicate least-squares fits to model (15).

observe that using the EOS P(ρ, T ) ≈ Ah(ρ)(T − T0(ρ)), relation (14) can be written in the form

ln

(
β

T αργ

)
= D(ρ) + E (ρ)

kBT
, (15)

where D(ρ) and E (ρ) are functions of density (in addition to {φ}). In taking this step we have
neglected the dependence of 	V on temperature, as we have done throughout Sec. III B.

Since on physical grounds we expect 	V > 0, we can expect E (ρ) > 0 as found in [22]. In other
words, at least for the system studied here and within the accuracy of the approximate form of the
EOS used above, relations (14) and (15) should be equivalent.

Figure 4 validates this assertion by replotting the data shown in Fig. 2 in a form consistent with
relation (15), namely normalized slip as a function of 1/T for a liquid of fixed density. Fits to
the data using (15) for each density are also shown. The agreement between MD data and the fits
is comparable to that shown in Fig. 2; this observation is supported by comparable least-squares
residuals. In other words, both relations (14) and (15) appear to fit the data satisfactorily.

Figure 5 provides additional validation by plotting the data of Fig. 3 as a function of 1/T . Fits to
relation (15) again verify that both relations (14) and (15) fit the data satisfactorily.

3. Slip as a function of εsl

Figure 6 shows MD simulation results for the slip length as a function of εsl . The simulations
are performed at constant temperature T = 1.5, for two liquid densities, namely ρ = 0.68 and ρ =
0.825.

Neglecting the dependence of 	V on εsl based on our previous observations that ∂	V/∂εsl is a
small quantity, to a first order approximation, we can write (10) in the form

ln(β ) = B̂ + 1

kB

∂
(
BkB + 	Sεsl

)
∂εsl

∣∣∣∣∣
εref

sl

εsl , (16)
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FIG. 5. MD simulation results shown in Fig. 3 plotted as a function of 1/T . Solid lines indicate least-
squares fits to model (15).

where, from (14), B̂ = [A + (BkB + 	Sεsl )|εref
sl

]/kB − P[	V + 1/h(ρ)]/kBT and thus constant for
the isothermal-isochoric simulations considered here, and εref

sl denotes the reference point about
which the dependence of BkB + 	Sεsl on εsl is linearized. This relation implicitly assumes that
	U does not depend on εsl , or at least its dependence on εsl is negligible compared to that of
BkB + 	Sεsl ; this is the simplest model we can propose which explains the behavior observed in the

FIG. 6. MD simulation results for the slip length dependence on the solid-liquid interaction parameter εsl

for T = 1.5 and two liquid densities: ρ = 0.68 and ρ = 0.825. Solid lines indicate least-squares fits of a linear
model to the data. For values of all other parameters see Appendix A.
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figure—namely, linear dependence of ln(β ) on εsl —without introducing any inconsistencies in our
previous models. For example, a dependence of 	U on εsl prevents (14) following from (10).

Given Eq. (16), from Fig. 6 we conclude that [∂ (BkB + 	Sεsl )/∂εsl ]|εref
sl

< 0. This is consistent
with the behavior observed in Fig. 3 and the top panel of Fig. 1, where the variation in the ordinate
intersept can be identified with B + 	Sεsl /kB.

IV. DISCUSSION AND CONCLUSIONS

Using the Eyring theory of reaction rates we have developed an expression for the slip length
of a simple liquid in contact with a simple solid boundary. Our work focuses on the limit of
linear conditions (small shear rate) which, as discussed in Sec. II, covers essentially all practical
applications of interest.

The resulting model is validated by an extensive comparison with MD simulation data of slip
in the linear regime. The comparison with MD data reveals remarkably good agreement with the
expected Arrhenius behavior, provided pre-exponential factors, as well as the dependence of the
activation free energy on the system state, are taken into account.

Using the simplest, perhaps, model that is consistent with our data to interpret the latter, we find
that, at constant temperature, the activation free energy depends linearly on pressure, the latter being
a direct result of the P	V term, where 	V may be interpreted as the volume change associated with
a hole creation. Under variable temperature conditions and fixed density we find that either of 1/T
and P/T can be used as an independent variable for Arrhenius-type plots; the former leads to plots of
positive slope. This is shown to be a result of the interplay between various terms in the expression
for the activation free energy and the liquid equation of state. In other words, the 1/T behavior is
not a result of a fundamentally simple behavior, such as a constant activation energy.

Although some of the findings summarized above may be specific to the solid-liquid system
considered here, the excellent agreement with the MD data, as well as the very reasonable values
for the model parameters used to fit the data suggest that the thermally activated model for slip is not
only reasonable but also reliable in the linear regime. In particular, the improved agreement with the
MD data achieved after accounting for a number of subtle physical effects, such as distinguishing
between slip at the FLL and GK slip, increases our confidence in the physical underpinnings of
the model.

Completing this approach to describing slip requires a more rigorous characterization of the
effect of system parameters, such as wall density and structure, etc., on the activation free energy
and ultimately slip. This will be undertaken in future work efforts.

APPENDIX A: MOLECULAR SIMULATION SETUP

We performed Couette flow simulations in a system comprising a dense liquid bounded by
two fcc-structured walls in a slab geometry. Our simulations were performed using the LAMMPS
software [33].

A schematic of the simulated system is shown in Fig. 7. The domain has dimensions Lx = Ly =
30.8 LJ units in each of the two directions parallel to the walls; the transverse dimension available
to the liquid (distance between the walls) was L ≈ 30 LJ units (varied slightly with pressure and
temperature). Depending on the liquid density, the number of liquid particles varied between 16 000
and 25 000.

Each wall consisted of a 7.71 unit thick FCC slab of atoms divided into three regions, each under
different dynamics. The outermost region contained three atomic layers frozen relative to each other
and translating with velocity ±U in the x direction (shown in blue color in the figure). The middle
region contained seven atomic layers thermostated to the desired system temperature (T ) via a
Nosé–Hoover thermostat (shown in red in the figure). The innermost region (shown as brown in the
figure), in contact with the liquid, comprised of a single atomic layer under NVE dynamics. The
surface of the wall exposed to the liquid is the (0,0,1) plane of the FCC crystal.
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FIG. 7. Schematic of the simulation domain. The dashed line outlines the simulation box over which
periodic boundary conditions are applied in all directions; Lz = 77.1 denotes the size of the simulation domain
in the z direction.

All nonfrozen interactions were modeled using the Lennard-Jones potential given in Eq. (11).
Unless otherwise stated, the nominal wall density was fixed at ρs = 1.09, with ms = 5 (ml = 1),
σss = 1 (σll = 1), and εss = 4 (εll = 1). In all our simulations Css = Cll = 1 and Csl = 0.6. A
potential cutoff of 5 LJ units was used. Periodic boundary conditions were used throughout (the
wall thickness was much larger than the potential cutoff).

APPENDIX B: SLIP DEFINITION AND MEASUREMENT

Our Couette flow simulations were performed at wall speeds of U = ±0.1 in LJ units (σ/τLJ ).
This magnitude is sufficiently small for nonlinear effects and viscous heating to be negligible
(maximum temperature variation across the fluid was less than 0.01).

The slip length was measured using both the nonequilibrium definition, namely as the distance
into the wall at which the extrapolated fluid velocity profile reaches the wall speed value, and the
equilibrium definition [9], namely using the GK relation

βGK = μAkBT∫ ∞
0 〈Fi(t )Fi(0)〉dt

, (B1)

where A = LxLy denotes the solid-liquid interface area and Fi(t ) is the force the liquid exerts on the
solid in a direction parallel to the interface (i ∈ {x, y}). In our calculations, data was averaged over
both the x and y directions.

In the nonequilibrium case, the velocity gradient was calculated using a linear approximation
of the velocity profile fitted over the middle 95% of the liquid domain, away from the layering
present close to the walls. To achieve the desired statistical uncertainty [34], the velocity profile was
averaged over 5 × 106 timesteps following an equilibration period of 5 × 106 timesteps.

Due to the known plateau problem [9] in evaluating GK integrals of the type found in (B1),
βGK is calculated using the method by Oga et al. [35]. The calculation was performed using MD
trajectories of length 106 timesteps after an equilibration period of 107 timesteps.

As discussed in Ref. [10], the equilibrium and nonequilibrium measurements of slip are equiv-
alent, provided the hydrodynamic wall location associated with the Green-Kubo result is properly
taken into account. In this work, the hydrodynamic wall location, zw

GK was calculated using the
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force-balance approach outlined in [10]. The two methods of measurement were found to yield
consistent results. In the results in Sec. III B the value of β reported is βGK − zw

GK + z0, where
z0 = 0.8 represents the nominal distance between the wall and the FLL layer [2,8,36]. In other
words, by correcting the Green-Kubo slip length for the distance between the hydrodynamic wall
location and the FLL, we have an estimate for the slip length at the FLL that can be directly
compared with the prediction of Eq. (10).
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