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ABSTRACT

We discuss and validate a recently proposed second-
order slip model for dilute gas flows.  Our discussion
focuses on the importance of quantitatively accounting for
the effect of Knudsen layers close to the walls.  This is
important, not only for obtaining an accurate slip model but
also for interpreting the results of the latter since in
transition-regime flows the Knudsen layers penetrate large
parts of the flow.  Our extensive validation illustrates the
above points by comparing direct Monte Carlo solutions to
the slip model predictions for an unsteady flow.  Excellent
agreement is found between simulation and the slip model
predictions up to   Kn = 0 4. , for both the velocity profile and
stress at the wall.  This demonstrates that the proposed
second-order slip model reliably describes arbitrary
flowfields (and related stress fields) in a predictive manner
at least up to   Kn = 0 4.  for both steady and transient
problems.

INTRODUCTION

Second-order slip models can extend the range of
applicability of the Navier-Stokes description beyond
  Kn ≅ 0 1.  where the accuracy of first-order slip models
begins to deteriorate.  Given the simplicity and negligible
cost of Navier-Stokes solutions compared to molecular
simulations, accurate second-order slip models are very
desirable.  In a recent paper, a second-order slip model for a
hard sphere gas was presented [1].  This model is different
from previous approaches in two important aspects.  First, it
is based on a solution of the Boltzmann equation [4] and has
no adjustable/fitted parameters.  Second, it accounts in a

rigorous manner for the deviation from Navier-Stokes
behavior in the near-wall regions known as Knudsen layers
[4].  This, in fact, holds the key to developing a successful
second-order slip model:  Our discussion along these lines
will illustrate why approaches which do not take this into
account are destined to fail.  The slip model discussed here
has already been shown to be in excellent agreement with
DSMC simulations of pressure driven flow for Kn ≤ 0 4.
[1].

In this paper we apply this model to the description of
oscillatory Couette flows.  The results obtained are
compared to direct Monte Carlo simulations.  The objectives
of this investigation are numerous:  First, it serves as an
independent validation of the proposed slip model.  It will
be seen that the second-order slip model provides solutions
that are in good agreement with molecular simulations for
both the velocity field and stress at the wall for   Kn ≤ 0 4. .
Second, the transient nature of the flow provides a more
demanding test of the slip-flow model since the latter was
originally derived under the assumption of steady flow.  Our
results suggest that the slip model remains robust even at
oscillation frequencies that approach (but remain much
smaller than) the molecular collision frequency.  Third, this
paper serves to illustrate the effect of the Knudsen layers on
the flow and how this is taken into account by the slip
model.  Finally, our investigation is motivated by the
practical interest in these flows [2,3].

SECOND-ORDER SLIP MODEL

The recently proposed model [1] predicts that the slip
velocity     u u|wall w−  in a one-dimensional flow of a hard
sphere gas is given by
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where   α β= =1 11 0 61. ,  . ,   |wall  denotes quantities evaluated
at the wall, uw is the wall velocity, and η  is the normal to
the wall pointing into the gas.  However, care needs to be
taken when using second-order models; as pointed out by
Cercignani [4], second-order slip models predict the
flowfield outside the Knudsen layers (thin layers close to
walls where strong non-equilibrium effects are important)
whose thickness is of the order of one mean free path.
Inside the Knudsen layers the flowfield deviates from the
slip-corrected Navier-Stokes prediction to the extent that the
average velocity differs from the Navier-Stokes result to

    O( )Kn2 .  As a result, when a second-order slip model is
used, estimates of the mean flow velocity need to be
corrected for the effects of the Knudsen layers.  According
to the slip model, in a one-dimensional channel flow, the
mean flow velocity is given by [1]
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where ξ ≅ 0 3. , y  is the spatial coordinate and L is the
distance between the walls.

A consequence of equation (2) is that experiments
performed to measure the second-order slip coefficient
through some measure of the mean flow, in fact measure an
“effective” second-order slip coefficient that is different
from β .  For example, typical experiments measure the
flow rate per unit depth   ( )uL  in pressure-driven (Poiseuille)
flow; on the other hand, it follows from equation (2) that
these experiments measure an effective second-order slip
coefficient which is equal to β ξ−  (recall that the Poiseulle
flow profile has a constant curvature - see also [1]).  This
explains recent experimental measurements [8] which find a
second-order slip coefficient of approximately 0 25 0 1. .± ;
this is, in fact, in good agreement with the theoretical
prediction of 0 61 0 3 0 31. . .− = .

VALIDATION PROBLEM DESCRIPTION

We consider a dilute gas between two infinitely long,
smooth, fully accommodating walls located at   y = 0  and

  y L=  respectively.  One of the walls (  y L= ) moves
sinusoidally in time with amplitude U and with frequency
ω  which is expressed here as     u U i tw = Im(exp( ))ω .  The
equation governing the gas motion is
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where ν  is the gas kinematic viscosity.  The solution of this
equation subject to the second-order slip condition (1) is
given by
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  ζ ϑ= i , and   ϑ ω= L v2 /  is the Stokes number [2].
Implicit in this solution and the use of a slip model is the
assumption that the stress is given by the linear constitutive
law   τ µ ∂ ∂ ∂ ∂ij i j j iu x u x= +( / / )  throughout the domain.

Therefore one critical test of any slip model is whether it
captures not only the velocity but also the stress field with
no extra adjustable parameters.

COMPARISON WITH DSMC SIMULATIONS

We performed direct Monte Carlo simulations [5] to
test the validity of the above result and hence the ability of
the second-order slip model to describe arbitrary flows with
no adjustable parameters.  Our simulations used 105

particles and 25 collision cells.  The simulation timestep was
taken to be   2 09 10 11. × − s  which is slightly longer than one
tenth of the molecular collision time 1/ ε .  Typically
2 106×  timesteps were performed; the velocity field was
sampled after 0 5 106. ×  timesteps allowing the simulation to
reach steady state and leading to a sample size of
approximately 2000 oscillation periods.  Otherwise,
standard DSMC procedures [5,6] were used.

The Knudsen number was varied between
0 1 0 4. .≤ ≤Kn  and the frequency was chosen to be small
compared to the collision frequency but also sufficiently
high ( ˜ )ϑ >1 such that the flow was not in the quasistatic
regime ( )ϑ <<1  where linear velocity profiles are observed.

The wall velocity amplitude, U, was set to     0 1. γRT ; this

choice represents a reasonable balance between the
requirement of high speeds for good signal to noise ratio [7]
and low speeds for negligible compressibility and viscous
heating effects.

The majority of the comparisons shown here were
performed at a fixed time (    t = T / 2  where   T = 2π ω/  is the



oscillation period).  This time was chosen because at this
time the effects of the Knudsen layers are more clearly
visible.  In general, the level of agreement found was
independent of the time, as one would normally expect.  At
the end of the section we provide a sample comparison at

  t T= / 4  for completeness.
Figure 1 shows a comparison between the two solutions

for   Kn = =0 1 5 2. , /ϑ  at time     t = T / 2 .  The agreement
between the two solutions is excellent.
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Figure 1: Comparison between Equation (4) (solid line)
and DSMC results (dashed line) for   Kn = 0 1. ,

ϑ = 5 2/ .

This figure also clearly shows the effect of the Knudsen
layers close to the walls.  The slip-corrected Navier-Stokes
solution deviates from the DSMC result within the Knudsen
layers, which in this case are about L /10 thick. The
discrepancy due to the Knudsen layer depends on the local
curvature in the velocity-field; this is clearly demonstrated
in Figure 1. Its effect on the average velocity, to second
order in Kn, can be captured by the proposed model (see
Equation (2)).

Figure 2 shows a comparison of the slip model and
DSMC results for Kn = 0.2, ϑ = 2 5 2. / .  The effect of the
Knudsen layers becomes more pronounced but the
agreement in the remainder of the domain remains very
good.  At   Kn = 0 4. , ϑ =1 25 2. /  the effect of the Knudsen
layers is very significant.  At this Knudsen number the
domain size is only 2.5 mean free paths wide.  Therefore it
is possible that the discrepancy in Figure 3 is because the
Knudsen layers have penetrated to the middle of the
domain:  Figures 1 and 2 suggest that the Knudsen layer
thickness exceeds one mean free path and thus the latter
explanation is possible.  In fact, the average velocity given
by Equation (2) is in excellent agreement with the DSMC
result (see Table 1) all the way to Kn = 0.4, which also
suggests that the discrepancy observed in Figure 3 is due to
the Knudsen layers rather than systematic error.

In Table 2 we compare the magnitude of the stress at
the two walls predicted by the slip-corrected Navier-Stokes
description and DSMC.  This is an important test, not only
because the shear stress is a quantity of interest for this
problem, but because it tests the very basis of a slip model,
namely that the linear constitutive relation is valid
throughout the physical domain.  In fact, since the non-
equilibrium effects responsible for the failure of the Navier-
Stokes description originate from the system walls,
capturing the shear stress at the wall can be considered as
one of the most stringent tests of this model.
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Figure 2: Comparison between Equation (4) (solid line) and
DSMC results (dashed line) for   Kn = =0 2 2 5 2. , . /ϑ .
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Figure 3: Comparison between Equation (4) (solid line) and
DSMC results (dashed line) for   Kn = =0 4 1 25 2. , . /ϑ .

The non-dimensional shear stress     
)τ w at the wall is given by

  τ µw U L/ /( ) where   τ w is the shear stress at the wall.  All



values are given at     t = T / 2 .  This table shows that the error
in the stress is very small even for Kn = 0.4.

Table 1:  Average velocity at     t = T / 2

Kn   u
NS

  u
DSMC

0.1 0.221 0.226

0.2 0.196 0.200

0.4 0.127 0.128

Table 2:  Normalized shear stress at the walls at     t = T / 2

Kn
    | |
)τ w y

NS
=0     | |

)τ w y
DSMC
=0     

| |
)τ w y L

NS
=     

| |
)τ w y L

DSMC
=

0.1 0.27 0.26 ± 0.04 1.33 1.38 ± 0.04

0.2 0.45 0.44 ± 0.02 0.62 0.65 ± 0.02

0.4 0.18 0.175 ± 0.01 0.175 0.19 ± 0.01

In Figure 4 we show the results of a comparison at a
time other than     t = T / 2 .  In particular, this figure shows a

comparison for ϑ = 2 5 2. /  and   Kn = 0 2.  at     t = T / 4 .  The
agreement is excellent similarly to the comparisons at

    t = T / 2 .  It is for this reason that the majority of
comparisons was limited to one time, namely     t = T / 2 .  The
Navier Stokes (DSMC) value of   |

ˆ |τ w  is 0 34 0 38 0 03.  ( . . )±
at   y = 0  and 1 08 1 04 0 03.  ( . . )±  at   y L= .
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Figure 4: Comparison between Equation (4) (solid line) and
DSMC results (dashed line) for   Kn = 0 2.  at     t = T / 4 ,

ϑ = 2 5 2. / .

CONCLUSIONS

We have presented a comparison between a recently
proposed second-order slip model and DSMC simulations
for oscillatory Couette flows.  The particular problem was
chosen due to its practical importance but also because it
provides flowfields that are quantitatively different from the
steady, pressure-driven flow for which the second-order
model has been tested previously.  The transient nature of
the flow also provides a more stringent test of the model.

Our results show that the slip model provides very good
Navier-Stokes approximations to the actual flow.  By this
we mean that the Navier-Stokes solution is accurate outside
the Knudsen layers, while inside the latter the Navier-Stokes
solution provides a baseline from which the Knudsen layer
contribution can be subtracted.  The slip-model also predicts
the stress on the wall accurately with no adjustable
parameters.  It also appears that the steady assumption under
which the slip model was derived can be lifted, presumably
as long as the flow timescale is long compared to the
molecular collision time.
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NOMENCLATURE

  i = −1
  k = Boltzmann's constant
Kn = Knudsen number   = λ / L
L = Distance between walls
  m = Molecular mass
R = Gas constant   = k m/
T = Temperature
Τ = Oscillation period
u = Gas velocity
  u = Bulk velocity

  u
NS = Average velocity calculated using slip-corrected

Navier Stokes equation

  u
DSMC = Average velocity calculated from DSMC

solution

  y = Transverse coordinate

Greek Symbols

  α = First-order slip coefficient
  β = Second-order slip coefficient
  γ = Ratio of specific heats
  ε = Molecular collision frequency
  ζ =   i ϑ
  η = Coordinate normal to the wall pointing

into the gas



  ϑ =     ωL v2 / =  Stokes number
  λ = Molecular mean free path
  µ = Coefficient of viscosity
    v = µ ρ/  = Kinematic viscosity

  ξ = 0.296 [1]
  ρ = Mass density
    τ w = Shear stress at the wall

    τ̂ w =   τ µw U L/ /( )
  ω = Oscillation frequency
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