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Sound wave propagation in transition-regime micro- and nanochannels
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We present an extension of the existing continuum theory for sound wave propagation in dilute
gases in “narrow” two-dimensional channels to arbitrary Knudsen numbers; the theory provides
predictions for the wavelength and attenuation coefficient as a function of the oscillation frequency.
A channel is considered narrow in the context of wave propagation when its height is much smaller
than the characteristic diffusion length based on the wave frequency. This criterion is easily satisfied
by small scalgtransition-regimgchannels for most frequencies of interest. Numerical simulations
for a dilute monoatomic gas using the direct simulation Monte Carlo are used to verify the
theoretical results. Good agreement is found between theory and simulatioB00® American
Institute of Physics.[DOI: 10.1063/1.1431243

I. INTRODUCTION without explicitly solving for the velocity field inside the

channel; only information about the steady-state bulk flow-

In recent years much attention has been focused on flu'Fjate in response to a constant pressure gradient is required.

mechanics at the micrometer and submicrometer scale. Samb’s method is based on the realization that for narrow

systems approach Mmicroscopic scales, increasing dev'at'ogflstems as defined above, times long compared to the sys-
from the well established continuum laws are repottéal.

I . S . tem’s diffusive time scale are still very short compared to the
gas flows, the deviation from continuum behavior is quanti-

fied by the Knudsen numbefn=X/H, where\ is the mo- characteristic time of oscillation. This allows the coarse
lecular mean free path, ardis a char1acteristic lengthscale. graining of the time description to the diffusive time scale of

ForKn=0.1, the continuum description is known to fail; the the syStka;Im thcej rej_l#tm_g descnp;_ﬂon_, th(le)tef_;e;";; of inertia
regime 0.:XKn<10 is known as the transition regime be- are ntehg '?' 3ant ta ! _”s;on ek?ur? 'on s fothal ; gO\_llfh
cause it represents a transition between diffusigen- ems thestea y.-s a.@su a ory € .av!or 0 e. SYS em . e,,
tinuum) molecular behavior fokKn=0.1, and ballistic mo- paradox of a diffusion equation, with its associated “infinite

lecular behavioffree molecular flowfor Kn=10. Here, we disturbance propagation speed, describing the wave propaga-

focus on flows in two-dimensional channels which are thet!on characteristics of the system is resolved by recalling that

predominant building blocks in today’s microfabrication time has been coarse grained over the time required to estab-
techniques. The characteristic lengthscallén this case is lish the diffusive effects and the time derivative associated

the channel height. with inertial effects has been dropped, leading to an approxi-

In this paper, we investigate the characteristics of axiaation that does not capture the transient propagation of
plane waves in dilute gases in two-dimensional Channeglsturbances for times shorter fthan the viscous diffusion
with heights that place them in the transition regime. Due tdiMme. The terms “wave propagation” and “complex propa-
the small channel dimensions, we expect the system to fa§ation constant” are used here for historical reasons, and it is
within the “narrow channel” definition for most frequencies implied throughout the paper that their use refers to the
of interest. A channel is considered narrow with regard toSteady-state response of the systevavelength and attenu-
wave propagation if the diffusion length based on the oscilation coefficient under oscillatory forcing.
lation frequency is much larger than the channel height, that Lamb’s method yields identical results for narrow
is, if the ratio 5= \21/w/H is much larger than unity, where channel$to the full theory of wave propagation in the con-

v is the kinematic viscosity and is the wave angular fre- tinuum regime as developed by Kirchhbéince the approxi-
quency. This requirement is easily met in transition regimemations involved are consistent and physically correct. Here
flows if we assume that the neglect of inertial effects in thewe utilize the fact that the propagation constant can be evalu-
transition regime is governed by a criterion similar to the oneated without explicitly solving for the velocity field inside
above. Consider gaseous argon at atmospheric pressure ast@@ channel, to provide predictions for the wave propagation
example: Atkn=0.1, any frequencyw<10’ rad/s leads to constant in the transition regime that would otherwise re-
narrow channel behavior; &&n=10, the narrow channel quire solution of the Boltzmann equation.

approximation is valid for any frequenay< 10 rad/s. The theoretical predictions are verified using direct

Solution to this problem is obtained by using a methodMonte Carlo simulation§DSMC).° In all of the following
devised by Lamb to investigate wave phenomena in the nawork we have used the hard-sphere gas model since for the
row channel limit in the continuum ca$é.This method al-  verification and method demonstration purposes of this pa-
lows the determination of the wave propagation constanper, it is preferable to use a model for which ample numeri-
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L where ¢?=—ipw/u. The solution of this equation subject
to a symmetry condition at the channel centerline and no slip

y at the walls is
l— ffffffffffffffffff U H 1 dP  cosgy dP

[ .
2 dx H dx
/*Ld) ,U,d)zcosd)?

4

FIG. 1. Channel geometry. The wallsyat —H/2,H/2 are diffuse, and the . A solution in terms of the bulk Ve,lOCIty n nOW.SOUth;
wall atx=L is specular. this approach reduces the problem into a one-dimensional

one, with the help of the concept of the channel resistance
R, defined in the equation below. The amplitude of the bulk

velocity associated with the above response is
cal and theoretical results exist and the DSMC method is

guaranteed to be exact. As will be clear in the next section, -~ 1 IH/Z ~ 1 dP 2 dP ¢H

the development of the theory is in no way dependent on the UYb=p 7H/2u dy= w? dx wd3H &tanT

exact intermolecular force law. Additionally, the hard-sphere

model has been shown to capture average flow rates of real 1dP

gases in tubes and channels reasonably Weltansport co- TRax )
efficient dependence on temperature is not an issue, since the

thermal diffusion length will also be large compared to theAs |¢H/2|—0 the effect of inertia becomes negligible and
channel heightin gasesPr~1) and thus the flow will be the bulk flow rate reduces to the Poiseuille expression
isothermal. Simulations in the range €.3<24 verify the 5 =
theoretical result, but also show that the latter, strictly valid ~ _ _ H_ d_P
for §>1, can be considered valid at less extreme value$ of °T 12u dx
than one would originally expect.

(6)

The condition|¢H/2|—0 is of course equivalent to the nar-
row channel requirement= \2v/w/H>1 that was devel-
oped in Sec. | through physical reasoning. This result shows

Il. THEORY FOR WAVE PROPAGATION IN NARROW that in the absence of inertia, the wave propagation problem
CHANNELS is governed by the steady-state flow characteristics of the
channel.

A. Continuum theor
Y The final step to determining the wave propagation char-

We now give a fairly detailed outline of the theory for acteristics is the substitution of the pressure gradient in terms
plane wave propagation in narrow channels and ducts in thgf the fluid particle displacemert where

continuum limit, first developed by Lanfl’ We extend this
theory to the transition regime in the next section.

We consider two-dimensional smooth channels of length
L with perfectly accommodating walls that are a distakice and
apart (see Fig. 1 The gas velocity field is denoted
=u(x,y,t)=[u(x,y,t),v(x,y,t),w(x,y,t)]. For long chan- - ' 1 [H2 9&(X,Y,1)
nels L>H), the velocity in the direction normal to the walls Up(X,t) = up(x)exp(i ot) = ﬁJlleTdy
is negligible and the pressure is uniform across any section
of the channe] P=P(x,t)]. In this case the linearized equa- ag(x,t)

tion for momentum conservation is given by == (8

_ 35D

ot ™

u(x,y,t)

2
u gou_opP (1) If T is the gas temperature, for isothermal changesrow

pE:M&_yZ_&’ channef>*
wherep is the average gas density, aads the gas viscosity. 9P 9P 92¢
Under an excitation of the form expft), a response of the o —(a—) —- 9
form u(x,y,t)=u(x,y)expiwt), P(x,t)=P(x)exp(wt) is Pl ox
expected. The amplitudesand P are governed by Equation
.~ u dP X -~ 1dP 10
PO T A @ R 10
or can thus be written as
22U o 1 dP . JE P PE "
Py U= X ) TR (11)
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The complex propagation constg®f upcexp(—Bx)] is thus  exact flow profile inside the channel as shown in the previ-
given by ous section: Combining Eqg9) and (16), we obtain the
2_ N counterpart of Eq(11) governing wave propagation in nar-
pr=(atik)*=ioRIP, (12) row channels in all Knudsen regimes
wherek=2x//=wlc is the wave number; is the wave-

length,c is the sound speed, anrdis the attenuation coeffi- 9é P 9% L
. . _ 2 . - = —
cient. If we substitut&k = 12u/H* we obtain the well-known gt R(KN) gx2 (17)
result
; Thus for a narrow channel the complex propagation constant
) 12 0p . . . Lo
:W' (13 in the absence of inertia effects is given by
2__ )2 —
for wave propagation in narrow channels that was originally B=(a+ik)"=TloR(Kn)/P, (18)

i king the limit of h [ in Kirch- . . .
obtained by taking the limit of a narrow channel in Kirc for all Knudsen numbers, provided the flow resistance is an

hoff's general theors. appropriate function of the Knudsen number. The specific

The assumption of isothermal flow, motivated heref tional f FRIKN is of
through physical reasoning, has been verified by Kirchhoff's Unctionai form o (Kn) s of no consequence as no as-

general theoy which includes the effects of heat conduc- sumpt;otﬂsthtaée be_(ta)n nf1|ade_ C?QC(T.mmg Its .form or origin,
tion. Kirchhoff’s theory showsthat the normalized tempera- except that it describes Tlow in he inear regime.

ture variation relative to the normalized velocity amplitude is Kn I;er(ra] Vr\]’en?se?éh% Iollgwmrg;bsc?rllln% rs\ll";‘t'f ni:]/all:j for ra”
proportional tos~ ! and thus negligible in narrow channels. udsen numbe 0 describe he Tlowrate In pressure-

driven flow
B. Transition regime

o~ 1dP [RT_
We now turn to wave propagation in the transition re- ~ Q=uyH=—5 &Hz - Q (19
gime. We make use of the fact that equation

IP IP Pé and thus identify an expression for the flow resistance
i a—) P R(Kn) which is valid for all Knudsen numbers. HeiR
X Pl ox =k, /my, is the gas constank, is Boltzmann’s constantn,,

is a kinematic condition and thus applicable in all Knudsenis the molecular mass, ar@=Q(Kn) is a proportionality
regimes. The more general form of momentum conservatiogoefficient that can be determined by molecular simulation
valid for all Knudsen regimes requires or experimenf. For the purposes of comparison with our
hard-sphere DSMC calculations, we will ug€Kn) as de-
- (14) termined by solution of the linearized Boltzmann equaﬁon
ady dx for flow of a hard sphere gas in a two-dimensional channel.

where,, is thexy component of the amplitude of the stress In the transition regimeQ(Kn) varies slowly about its mini-
tensor. When inertia is negligible, the equation reduces to Mum value (1.5Q(0.1<Kn<10)=3) occurring atKn
- - ~1. For real gas applications, appropriate valueQ©OKn)
ITxy _ d_P (15) that describe real-gas behavior need to be used.

gy  dx’ From Eq.(19) we can identify

-~ dry dP
ipou— =

which shows that, similarly to the continuum case, the wave

propagation characteristics are governed by the steady-state R(Kn)= _L

flow characteristics of the channel. Despite the breakdown of HQVRT/2

continuum theory in the transition regime, we will continue

to used>1 as the criterion for negligible inertia and narrow- leading to

channel behavior. As will be seen in the results section, this

remains an accurate, if slightly conservative, measure. c=V2wHQ\RT/2 (21
It has been shovff° that in the linear steady-flow re-

gime there exists a flow resistan®=R(Kn) defined by and

~ 1 dP
Up=— = —, (16) N 22
R(Kn) dx a HQVRTE (22)

that describes the flow rate in channels for all Knudsen num-

bers; this resistance can be determined by experiniefits, These expressions are expected to hold in all Knudsen re-

linearized solutions of the Boltzmann equatfof® or mo-  gimes since both ingredients, Ed8) and (19), are valid in

lecular simulationg. all Knudsen regimes. These predictions are shown below to
Knowledge of the flow resistand@(Kn) allows the cal- be in agreement with direct Monte Carlo simulations of wave

culation of the propagation constant with no reference to thgropagation in narrow channels.

(20
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IIl. SIMULATION OF WAVE PROPAGATION values as the square of the cell sixg with the proportion-
ality constant such that for cell sizes of the order of one mean
free path, the error is of the order of 10%. To minimize this

We simulated gaseous argofmolecular massmy,  error, we used three cells per mean free pattHor3\, but
=6.63< 10" *° kg, hard-sphere diameter=3.66<10"'°m)  the number of cells per mean free path was increased for
in a two-dimensional channel using standard DSMCsmaller systems to ensure that there were at least eight cells
techniques:™ We considered fully accommodating walls; across the channel width. It has been shBWfithat the error
our simulations will thus be compared with the theoreticalin the transport coefficients is proportional to the square of
results using values d® derived for fully accommodating the time step, with the proportionality constant such that for
walls. The average gas pressure and temperature ®ere time steps of the order of one mean free time, the error is of
=1.013x 10° Pa, andT=273 K, respectively, leading to a the order of 5%. The error due to a finite time st&p is
mean free path\=m,,/(\2mo?p)~6.25x10"% m. The negligible in our simulations; the time step was taken to be
choice of species should have no effect on our nondimensignificantly smaller than the mean free tirvéc, [in fact,
sionalized results that should apply to any dilute hard-spherdt<<\/(5c,)] where c,= y2k,T/my, is the most probable
gas. velocity.

In the sake of brevity we will not present a description of Temperature variations due to dissipation were closely
the DSMC algorithm. Excellent introductdfyand detailed ~ monitored, and the mean temperature was found to deviate at
descriptions can be found in the literature; comparisons ofnost by 2%. A variation of this magnitude leads to a change
DSMC simulation results with solutions of the linearized of at most 1% in the adiabatic—isothermal sound speed and
Boltzmann equation and experimental results for diverseontinuum transport coefficients, given that these vary as
nonequilibrium phenomena spanning the whole Knudsen/T. We expect temperature effects in the transition regime
range can be found in Refs. 5 and 12. studied here to be similarly small.

Sound waves are excited by imposing a sinusoidally = The reservoir forcing was chosen such that the resulting
varying particle influx ax=0. Our simulations have shown wave amplitudep,,, was small to avoid nonlinear effects.
that the particle influx generategeessuredisturbance in the  Our simulations have been performed with a wave amplitude
simulation domain that is subsequently propagated. The,,~0.0Z, that has been found, as discussed below, to be
varying particle influx can be generated by a varying velocitysufficiently small. Herecs=vk,T/m,, is the adiabatic
in the x direction (the method used herer a varying den- sound speed ang is the ratio of the specific heats. In the
sity; both methods yield identical results. The pressure diseontinuum regime, the ratio between the viscous and nonlin-
turbance ak=0 is imposed using the well-known Maxwell- ear inertial terms scales ag,,/H?)/(pu3.//). This scal-
ian reservoir method: Particles exiting the domairxatO ing indicates viscous effects dominate nonlinear inertial ef-
are discarded, whereas particle influx is accounted for by &cts if u,,<cd?. Although the continuum assumption
reservoir attached to the simulation domairkatO and ex-  breaks down in the transition regime, we will use this crite-
tending tox= —Lg. Each time step, particles at the requiredrion as an indication of the importance of nonlinear inertial
density (sinusoidally varying in time in the variable-density forces. Based on this criterion, we expect nonlinear effects to
cas@ are generated inside the reservoir and are given velocbe negligible in all of our simulations. To verify this, we
ties drawn from a Maxwellian distribution at the simulation performed simulations at selected frequencies wit},
temperature. The Maxwellian distribution has a time-~0.05 andu,,~0.01c,, which produced results that were
dependent mean velocity in thedirection that is equal to indistinguishable(within statistical fluctuations from our
the desired velocity(sinusoidally varying in time in the original simulations withu,,~0.02;.
variable-velocity cage The particle positions are advanced After the initial transients have passed, the valygéx,t)
in time (one time step\t); the particles that cross the plane was measured in the simulations at each time step in slices
x=0 and enter the simulation domain represent the halfalong thex axis. Our sampling methdl accounts for the
space Maxwellian influx and are retained. The particles retransient nature of the simulatiofthat leads to zero time
maining in the reservoir are discarded and the simulatioraverages by using the fact that the bulk velocity time-
proceeds as usual. The length of the reservoir is séizto dependence is of the following known form:

=Vcuodt, Where v o= 6v2k, T/my, is a velocity for
which the probabilitybased on a Maxwellian distributipis Up(X,t) =Ug[ €™ “*sin wt coskx—e™ **cos wt sin kx]

very small. _ .
In order to minimize the cost of our simulations, the =A(x)coswt+B(x)sin wt. (23

li?]mg]'n_ll_f]ggft:rl‘ér\]’\éa;’ft;]ksgotz]Zi(OfLthe (;rsdgrﬁ:'r?;tee (\j/vz;ve— The spatial dependence of the bulk velocity which contains
a sg ec.: lar wall. In the absencle (;f é\évs at'onl the s Zte the information about the attenuation coefficient and the
pecular wall. ISsipation, y r{R/avelength, can be recovered from the simulation through

would exhibit pure standing waves. In the present case, th Sz . .
reflected wave amplitude was negligible due to the high disfﬁhe application of a chi-square fitto the functional form of

sipation associated with narrow channels. Bq.(23). The desired amplitudes(x) andB(x) are given by
More than 30(on averagemolecules per cell were used 5

to ensure accurate solutions. The transport coefficients in = a(y.)= 2s Euc—Eschs7 (24)

DSMC are knowft to deviate from the dilute gas Enskog 7 Se?ss?—(3s0)?

A. Numerical technique
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FIG. 2. Cosine and sine componemgx) andB(x), of the velocity amplitudgin m/s) for w=18.5x 1 rad/s,H=0.4 um. The smooth line indicates the
expected solution based on Eq81) and(22), and the jagged line is the molecular simulation result.

Sc?Sus—3scSuc

B(Xj)= , 25
04) 3c%3s?—(3s0)? (25)
where
M M
38?=2 sif ot;, 3c?=2, cof wt;,
M

3sc= E sin wt;cos wt;
|

M
Sus= 2, up(x;,t)sin ot;,

M
EUCZE Ub(Xj ,ti)COSwti s

|
with x; being the position of slic¢ along thex axis, andM
being the number of time samples recorded. The Nelder
Mead simplex methdd is used to perform a nonlinear chi-
square fit ofA(x) andB(x) to extract the wave numbé&rand
the attenuation coefficient. A phase shift is also included in
the parameter fits to allow for the phase difference betwee
the enforced pressure disturbance and the observed veloc
variation[see Eq(16)], and entrance effects.

B. Simulation results

portional to the oscillation period (2 ), »=0.25<10°
rad/s was the lowest frequency we could simulate with our
present computational resources.

An estimate for the magnitude of homogeneous absorp-
tion is given by the continuum formula that includes the
effects of viscosity and thermal conductivity

w2

o274
ah—m Futd +C—p(7—1)- (26)

Here, ¢, is the specific heat at constant pressutes the
thermal conductivity, and is the coefficient of bulk viscos-
ity which is equal to zero for an ideal gas. Based on this
estimate, we find that homogeneous absorption in our simu-
lations is expected to be negligible compared to the dissipa-
tion due to the wall presend&q. (22)]. High-frequency ef-
fects are also negligible at these frequenéfes.
Figure 2 shows a typical simulation result fafx) and
B(x). Figures 3 and 4 show the comparison between the
theoretical and simulation results for the sound speed and
attenuation coefficient, respectively, in the frequency range
8.25¢ 10° rad/s< w<18.5<10° rad/s for a channel height
=01 pum. The agreement is very good.

We also performed simulations at=18.5<1(f rad/s
for a variety of channel heights. The results of these simula-
tions plotted as functions of are shown in Figs. 5 and 6.

Our simulations were performed in the frequency rangeThese figures show that the narrow channel theory is valid

0.25% 10° rad/s< w<18.5x 10° rad/s. Since the simulation

for 6>1 and is qualitatively correct even fa@~1 despite

cost increases linearly with the simulated time which is pro-the fact that it is expected to be valid only fé& 1.
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FIG. 3. Comparison between the the-
10| ] ] oretical prediction of Eq(21) shown
as a solid line and simulation results
denoted by stars at a fixed channel
height ofH=0.1 um.

10° 10° 107 10°
w (rad/s)
IV. CONCLUDING REMARKS counterpart to the continuum-based measérenay address

The agreement between the theoretical expression fotnhe slightly conservative predictions of the current measure.

the complex propagation constant and DSMC simulations is  Although simulations were limited to the transition re-
very good. Our simulation results indicate that in the transi-gime, the expressions presented are valid for arbitrary Knud-
tion regime the narrow channel assumption can be consici€n numbers and are thus expected to be valid in the slip-
ered valid for5>1, rather than the expecte®$>1. Our con- flow and free molecular flow regimes. In the slip-flow
clusions are also not affected by the use of a “sharperregime,R(Kn) can be determined by the slip-flow corrected
criterion that compares the diffusion length to the channeversion of the Poiseuille formul® = 12u/H?.

half-height (25). The development of a transition-regime Extension of these results to tubes and ducts of arbitrary

10 LA B B B | T T

a (m™1)

FIG. 4. Comparison between the the-
10°F b oretical prediction of Eq(22) shown

1 ] as a solid line and simulation results
denoted by stars at a fixed channel
height ofH=0.1 um.

10 —
10°

w (rad/s)

w
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FIG. 5. Comparison between the the-
oretical prediction of Eq(21) shown

as a solid line and the simulation re-
150 7 sults at a fixed frequencyw(=18.5

X 10 rad/9 denoted by stars. The
open circle denotes the sound speed in

the absence of walls§=0).
100+ i so=0)

50 ]

cross-section directly follows. Although in this work we usedis also indebted to Anthony Patera for helpful comments.
the dilute hard-sphere gas model, we expect the results this work was initiated while the author was visiting the
approximate real monoatomic gas behavior well. CompariCenter for Applied Scientific Computing(CASCO at
son with experiments shows that the pressure-driven flowratgye |awrence Livermore National Laboratory. The author
in real gases can be captured fairly accurately by the dilutg,ouig like to thank Xabier Garaizar for making this work
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FIG. 6. Comparison between the the-
oretical prediction of Eq(22) shown
as a solid line and the simulation re-
sults at a fixed frequencyw(=18.5

X 10P rad/9 denoted by stars. At this
frequency,a;,~160 n 2.
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