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We investigate the time evolution of an impulsive start problem for arbitrary Knudsen
numbers (Kn) using a linearized kinetic formulation. The early-time behaviour is
described by a solution of the collisionless Boltzmann equation. The same solution
can be used to describe the late-time behaviour for Kn � 1. The late-time behaviour
for Kn < 0.5 is captured by a newly proposed second-order slip model with no
adjustable parameters. All theoretical results are verified by direct Monte Carlo
solutions of the nonlinear Boltzmann equation. A measure of the timescale to steady
state, normalized by the momentum diffusion timescale, shows that the timescale
to steady state is significantly extended by ballistic transport, even at low Knudsen
numbers where the latter is only important close to the system walls. This effect is
captured for Kn < 0.5 by the slip model which predicts the equivalent effective domain
size increase (slip length).

1. Introduction
In this paper we investigate the transient behaviour of a monoatomic hard-sphere

gas between two infinite flat walls a distance L apart which at t =0 start moving in
their plane and in the same direction with velocity U . This investigation is part of an
ongoing effort to extend our current understanding of transport beyond the classical
Navier–Stokes description which only holds when characteristic lengthscales (L) are
significantly longer then the molecular mean free path (λ), or, in other words, when
the Knudsen number Kn = λ/L is very small.

This impulsive start problem has been extensively studied in the no-slip Navier–
Stokes limit in connection with a large number of practical applications; its solution is
also of educational value and can be found in a variety of textbooks, e.g. Mills (1992).
The extension of this problem to all Kn is relevant to current practical applications
(Ho & Tai 1998) in connection with micro- and nanoscale science and engineering; it
is also of considerable value as a vehicle for understanding transport in the transition
regime (0.1 � Kn � 10) and evaluating models of it. In this work, the applicability of
two such models is evaluated by comparing their predictions to direct Monte Carlo
solutions of the nonlinear Boltzmann equation. The first is an analytical solution
developed in this paper which is based on the collisionless Boltzmann equation (Sone
1964), and shown to be valid for early times for all Knudsen numbers and late
times for large Knudsen numbers. The second model evaluated is a recently proposed
(Hadjiconstantinou 2003) second-order slip model for hard-sphere gases which extends
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the applicability of the Navier–Stokes† description in one-dimensional problems up to
Kn ≈ 0.4 under linearized conditions (Re � 1, where Re is the Reynolds number). This
paper demonstrates that the key to the development of a successful second-order slip
model is the careful interpretation of the flow field in a manner which accounts for
deviations from Navier–Stokes behaviour in the near-wall regions known as Knudsen
layers (Cercignani 1988). In particular, as the Knudsen number increases beyond
0.1, these regions extend over a non-negligible part of the flow; this has caused
previous approaches (to second-order slip) that attempt to fit the velocity profile
thoroughout the physical domain to fail. On the other hand, properly accounting
for the Knudsen layers leads to a predictive model (Hadjiconstantinou 2003) with
no adjustable parameters which is in agreement with solutions of the Boltzmann
equation (Hadjiconstantinou 2005) and, as discussed below, experimental data.

In our computations we used the hard-sphere model for computational convenience
but also to facilitate comparison with the hard-sphere slip model that was recently
developed. The hard-sphere model has been shown to provide reasonable descriptions
of isothermal gas flows. In the next section we show that under the linearized
conditions assumed in our investigation the flow studied here is isothermal. Second-
order slip models for even more realistic gas models can be subsequently developed
using the approach outlined in Hadjiconstantinou (2003).

2. Problem description
We consider a dilute gas of kinematic viscosity ν between two infinitely long,

smooth and fully accommodating (diffusely reflecting) walls in the (x, z)-plane, placed
at y = −L/2 and y =L/2 respectively. At time t = 0 both walls start to move in
the x-direction with velocity U . The gas temperature and density, which as shown
below remain constant in time and uniform in space, will be denoted by T and ρ,
respectively. The fluid velocity in the axial direction is denoted u = u(y).

Our solution assumes that U is small enough so that the governing kinetic equation
(and boundary conditions) can be linearized. This requirement can be expressed in
kinetic terms as

U/cm =
√

γ̄ /2M � 1 (2.1)

that is, the Mach number (M) is small. Here, cm =
√

2kT /m is the most probable
molecular speed, γ̄ is the ratio of specific heats, k is Boltzmann’s constant, and m is
the molecular mass. In this limit, as shown below, the velocity and temperature fields
are decoupled, and the isothermal approximation is reasonable.

An implication of the linearization condition (2.1) stems from the relation

M ≈ Re Kn (2.2)

where Re =UL/ν is the Reynolds number. Relation (2.2) implies that any formulation
based on the assumption M � 1 is limited to Re � 1 for Kn > 0.1. Although convection
is not important in the problem studied here, this discussion aims to clarify that, when
referring to second-order slip models and the associated extension of the Navier–
Stokes description to Kn > 0.1 the condition Re � 1 is implied, because, as discussed
in § 4.2, the second-order slip model used here is based on such an assumption
(M � 1).

† The term Navier–Stokes is used here to denote the continuum hydrodynamic description with
diffusive transport (viscous, Fourier, Fickian) closures appropriate to the Kn � 1 limit.
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2.1. Boltzmann equation formulation

Although the nonlinear Boltzmann equation can describe all Knudsen regimes,
analytical solutions are very difficult to obtain. In this section we obtain an analytical
solution for the collisionless limit.

Let c =(cx, cy, cz) be the molecular velocity vector. By writing the distribution
function of molecular velocities as f = ρF (1 + φ) and neglecting higher-order terms
in φ, we obtain the linearized collisionless Boltzmann equation (Cercignani 1988)

∂φ

∂t
+ cy

∂φ

∂y
= 0. (2.3)

Here

F =

(
1

πc2
m

)3/2

exp

(
−

c2
x + c2

y + c2
z

c2
m

)
(2.4)

is the equilibrium Maxwellian distribution function, and

u =

∫
cxφF dc (2.5)

is the macroscopic velocity in the x direction.
In the above we have taken the density and temperature perturbation fields to be

zero. This can be seen to be the case later, where the solution for φ will be found to be
an odd function of cx (see equations (2.9), (2.10)). Although our solution is limited to
the collisionless limit, similar arguments can be made for the whole Kn range, at least
in the BGK approximation (Sone 1964). In the Navier–Stokes limit, this is consistent
with the Navier–Stokes theory which predicts that the isothermal approximation
is reasonable when the Brinkman number Br= µU 2/(κT ) is small, where µ is the
coefficient of viscosity and κ is the thermal conductivity. Using the fact that for a
hard-sphere gas κ/µ ≈ 15 k/(4 m) we see that Br ≈ mU 2/(15 kT) = (4γ̄ /15)M2 � 1 is
automatically satisfied when the linearization condition (2.1) holds.

The fact that φ is an odd function of cx also means that the mass flux to the wall
remains equal to its equilibrium value and thus the linearized boundary conditions of
the two walls can be written as (Sone 1964)

φ =
2cxU

c2
m

cy > 0 at y = −L

2
, (2.6)

φ =
2cxU

c2
m

cy < 0 at y =
L

2
. (2.7)

The initial condition is φ = 0. Taking the Laplace transform of equation (2.3) we
obtain

∂φ̂

∂y
+

s

cy

φ̂ = 0 (2.8)

where s is the Laplace variable and ˆ denotes the Laplace transform of a function.
The solution of this equation is given by

φ̂ =
2cxU

sc2
m

exp

[
− s

cy

(
y +

L

2

)]
, cy > 0, (2.9)

φ̂ =
2cxU

sc2
m

exp

[
− s

cy

(
y − L

2

)]
, cy < 0. (2.10)
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The first moment of the solution gives the following equation for the velocity field:

û =
U

s
√

π

{
J0

[(
s

cm

)(
L

2
+ y

)]
+ J0

[(
s

cm

)(
L

2
− y

)]}
(2.11)

where

Jn(ζ ) =

∫ ∞

0

ξn exp

[
−

(
ξ 2 +

ζ

ξ

)]
dξ. (2.12)

The properties of the functions Jn(ζ ) can be found in Abramowitz & Stegun (1964).
The shear stress τxy is given by

τxy = ρ

∫
(cx − u)cy(1 + φ)F dc = ρ

∫
cxcyφF dc (2.13)

leading to

τ̂xy = ρ
Ucm

s
√

π

[
J1

(
s(L/2 + y)

cm

)
− J1

(
s(L/2 − y)

cm

)]
. (2.14)

2.2. The direct simulation Monte Carlo method

All of the theoretical results developed in this paper are verified by numerical solutions
of the nonlinear Boltzmann equation, obtained using a stochastic molecular simulation
technique known as the direct simulation Monte Carlo (DSMC). Consistency between
DSMC solutions and solutions of the Boltzmann equation in the limit of infinitesimal
discretization and a large number of particles was shown by Wagner (1992).
Alexander, Garcia & Alder (1998) have shown that the transport coeffcients exhibit
quadratic convergence with the cell size. Hadjiconstantinou (2000) and Garcia &
Wagner (2000) have shown the same behaviour for the timestep.

3. Solution for early times
At early times εt � 1, the effect of molecular collisions is small. Here ε is the

collision frequency which is related to the mean free path by ε = 2cm/(
√

πλ). We
can thus describe the hydrodynamic fields for short times for arbitrary Kn using
equation (2.11). This limit also approximates for all times the physical situation
εL/(2cm) = 1/(

√
πKn) → 0, that is, systems so small that their characteristic timescale

L/(2cm) is much shorter than the collision time. In the next section, where the late-
time behaviour of systems is studied, we derive a more quantitative criterion for the
characteristic size of such systems.

In the εt � 1 limit

u =
U√

π

[ ∫ ∞

L/2+y

cmt

exp(−ξ 2)dξ +

∫ ∞

L/2−y

cmt

exp(−ξ 2) dξ

]

=
U

2

[
erfc

(
L/2 + y

cmt

)
+ erfc

(
L/2 − y

cmt

)]
(3.1)

where erfc(ζ ) = 1 − (2/
√

π)
∫ ζ

0
exp(−ξ 2) dξ is the complementary error function. It is

remarkable that this (‘non-interacting’ limit) solution is similar in form to the semi-
infinite body solution of the diffusive (Navier–Stokes) problem; in the latter solution
the diffusive lengthscale

√
νt takes the role of the ballistic lengthscale cmt , provided

that
√

νt � L/2 such that the disturbances from the two walls are not ‘interacting’.
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Figure 1. Normalized velocity and stress fields at εt = 0.089 and 0.178 for Kn = 6.26.
(a) Comparison between equation (3.1) and DSMC solutions. (b) Comparison between
equation (3.2) and DSMC solutions. The DSMC solutions are denoted by stars.

Inverting equation (2.14) back to the time domain we obtain

τxy =
ρUcm

2
√

π

{
exp

[
−

(
L/2 + y

cmt

)2]
− exp

[
−

(
L/2 − y

cmt

)2]}
. (3.2)

Comparison of the above results with DSMC simulations is shown in figure 1. The
agreement between the two solutions is excellent at εt = 0.089 and acceptable at
εt = 0.178, as one would expect. Although these comparisons are for a rather high
Knudsen number (= 6.26), as noted above, results (3.1), (3.2) are expected to be valid
for all Kn as long as εt � 1.

4. Solution for late times
Although the late-time behaviour for Kn � 1 coincides with εt � 1, as discussed

in the previous section, when the Knudsen number increases beyond Kn � 1,
characteristic late-time behaviour timescales are not necessarily much longer than
the collision time 1/ε. For this reason, we will consider the two limits, Kn � 1 and
Kn � 1, separately.

4.1. The ballistic limit (Kn � 1)

As noted in the previous section, equation (3.1) also describes systems in the Kn → ∞
limit for all (relevant) times. At late times (L/(2cmt) � 1) we obtain from (3.1)

u = U

(
1 − 2√

π

L

2cmt

)
+ O

((
L

2cmt

)3)
, (4.1)

that is, the velocity profile is flat. Let us consider t90, the time for the average velocity to
reach 90% of U , a characteristic timescale that we will also consider later: according
to (4.1), εt90 = 20/(πKn). For this prediction to be accurate, εt90 � 1 also has to hold
which implies that equations (3.1), (3.2) and (4.1) will describe the behaviour (up to
times of the order of t90) for systems which are characterized by Kn � 20/π. Although
an analytical solution taking into account the effect of collisions for, say, Kn � 5
could be developed using the BGK model of the Boltzmann equation, preliminary
results indicate that in the neighbourhood of Kn ≈ 10 the error introduced by the
BGK approximation is comparable to the error obtained by completely neglecting
collisions.
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4.2. The diffusive limit: the Navier–Stokes solution

For Kn � 1 the gas behaviour is captured by the Navier–Stokes equations. It is well
known that the validity of the Navier–Stokes description can be extended to Kn � 0.1
by use of ‘first-order’ slip flow boundary conditions (Cercignani 1988). Due to the
significant computational advantage the Navier–Stokes formulation enjoys, second-
order slip models which extend the applicability of Navier–Stokes formulations even
further are very desirable. However, a number of second-order slip models proposed
in the past have not been successful in a predictive sense for reasons that will be
discussed below.

Our discussion below demonstrates that it is indeed possible to obtain correct
hydrodynamic fields to second order in the Knudsen number using a slip-corrected
Navier–Stokes description, provided that deviations from Navier–Stokes in the near-
wall regions are correctly accounted for. More specifically, within the asymptotic
analysis which leads to the slip-flow description, slip-flow boundary conditions provide
effective boundary conditions for the Navier–Stokes component of the flow field ũ, while
in the near-wall regions a kinetic boundary layer needs to be added in order to capture
the complete solution of the Boltzmann equation for the flow field (Cercignani 1964).
In other words, u = ũ+uKN where uKN is the Knudsen layer correction which satisfies
uKN → 0 as (y − yw)/λ→ ∞, where yw is the wall location. For engineering purposes,
however, the effective thickness of the Knudsen layer can be taken to be approximately
1.5λ (Hadjiconstantinou 2005). Thus, as the Knudsen number increases beyond, say,
Kn ≈ 0.1, the Knudsen layers cover a significant amount of the domain and need to
be taken into account. This was put onto a firmer theoretical footing by Cercignani
who showed that the contribution of the Knudsen layers is such that the true bulk

flow speed
∫ L/2

−L/2
u dy differs from the slip flow approximation

∫ L/2

−L/2
ũ dy to O(Kn2)

(Cercignani 1964).
The existence of the Knudsen layers has a number of interesting consequences.

First it makes direct comparison between slip-flow results and Boltzmann equation
solutions difficult and requires special care when interpreting slip-flow results. It also
implies that a successful second-order slip model is one that does not agree with
Boltzmann equation solutions within 1.5λ from system walls. This last observation
explains why previous attempts to determine the second-order slip coefficient from
fitting DSMC flow fields in the complete simulation domain have not been successful.

Here we use a second-order slip model for a hard-sphere gas recently proposed by
the author (Hadjiconstantinou 2003). According to this model, for one-dimensional
flows, the slip velocity ũ|wall − uw is given by

ũ|wall − uw = αλ
∂ũ

∂η

∣∣∣∣
wall

− βλ2 ∂2ũ

∂η2

∣∣∣∣
wall

(4.2)

where α =1.11, β = 0.61 have been determined by solution of the Boltzmann equation
(see Hadjiconstantinou 2005 for discussion). Here, |wall denotes quantities evaluated
at the wall, uw is the wall velocity, and η is the normal to the wall pointing into the
gas. Higher-dimensional flows are briefly discussed below. The Boltzmann equation
solutions on which this model is based assume a steady flow, flat walls, no gradients
in the direction of the flow and linearized (M � 1, Re � 1) conditions.

The contribution of the Knudsen layer can be most conveniently accounted for in
an average sense, i.e. when calculating averages over the domain. In a one-dimensional
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flow field, the mean (bulk) flow velocity is given by

ub =
1

L

∫ L/2

−L/2

u dy =
1

L

∫ L/2

−L/2

[
ũ + δλ2 ∂2ũ

∂y2

]
dy (4.3)

where the contribution of the Knudsen layer is captured by the second term in the
integral with δ = 0.296 (Hadjiconstantinou 2003).

A direct consequence of the above relation is that in Poiseuille-type flows where
the curvature (of the Navier–Stokes component) of velocity is constant, experimental
measurement of the flow rate (bulk flow velocity) yields an ‘effective’ second-order
slip coefficient β − δ (Hadjiconstantinou 2005). Recent experiments in helium and
nitrogen (Maurer et al. 2003) report a second-order slip coefficient of approximately
0.25 ± 0.1 which is in good agreement with the model prediction β − δ = 0.31.

Navier–Stokes solutions using the above second-order slip model have been
compared to DSMC simulations of pressure-driven flow in two-dimensional channels
(Hadjiconstantinou 2003). Very good agreement was found up to Kn ≈ 0.4; it was
also found that the second-order slip flow model remains qualitatively accurate
well beyond Kn = 0.4. These results demonstrate that this model, even in its one-
dimensional form, may be used in higher-dimensional flows which vary slowly in
one or more dimensions; examples of such flows include those for which the locally
fully developed or long-wavelength approximations are appropriate. Although an
augmented form of this slip model suitable for higher-dimensional flows exists, it has
not been validated yet (Hadjiconstantinou 2005).

The present work serves as an independent validation of the slip model which
provides a comparison for both the flow and stress fields for an unsteady flow – recall
that the slip model is based on a steady flow assumption. Our comparison provides
evidence that the slip model remains accurate at timescales as short as 5ε−1; in
other words, flows developing at time scales that are long compared to the molecular
collision time are effectively quasi-static in the context of second-order slip.

For the impulsive start problem we solve the governing equation

∂ũ

∂t
= ν

∂2ũ

∂y2
(4.4)

subject to the slip boundary condition (4.2) using a finite difference method.
Figures 2 and 3 show a representative comparison between the velocity and stress

fields obtained by the Navier–Stokes and DSMC descriptions at Kn =0.21; due
to the problem symmetry, only half of the physical domain (−0.5 � y/L � 0) is
shown. Provided that these results are interpreted correctly (by taking into account
the existence of the Knudsen layer) the agreement is excellent. At Kn = 0.21, each
Knudsen layer extends from each wall to cover more than 60% of the physical
half-domain; in the half-domain shown here, direct comparison between DSMC
results (u) and second-order slip results (ũ) is thus meanignful only in the region
−0.185 � y/L � 0 delimited by the vertical dotted line. As figure 2(a) confirms, the
agreement in this region is very good, whereas for y/L � −0.185 the presence of the
Knudsen layer is clear. It is also possible to see that in the Knudsen layer, u − ũ

scales with the curvature of ũ, as equation (4.3) suggests. On the other hand, the
stress field in figure 2(b) is captured throughout the domain with agreement that can
only be described as remarkable, verifying that within the present set of assumptions
the Knudsen layer correction to the stress is small (Hadjiconstantinou 2005). The
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Figure 2. Comparison between DSMC results denoted by stars and the slip-corrected
Navier–Stokes solution for Kn = 0.21 at three times. The wall is at y/L = −0.5. (a) A
comparison of flow velocities (DSMC: u, Navier–Stokes: û) and (b) a comparison of shear
stress. The vertical dotted line in (a) delimits the extent of the Knudsen layer (y/L � −0.185).
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Figure 3. Comparison between DSMC results (stars) and the slip-corrected Navier–Stokes
solution for Kn = 0.21 for the normalized average velocity (ub/U ) as a function of time.

average velocity obtained from equation (4.3), which corrects for the contribution of
the Knudsen layer, is less than 1% different from the DSMC result (see figure 3).

4.3. The timescale to steady state

In this section we present results for the time taken for the bulk speed, ub, to reach
0.9U , denoted t90. This timescale is useful because it gives information about the time
taken to reach steady state and is related to the average force required to accelerate
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Figure 4. Normalized times t90 as a function of the Knudsen number. The solid line denotes
the Navier–Stokes result subject to the second-order slip boundary condition (4.2) and the
dash-dotted line denotes the collisionless result t90/[(L/2)2/ν] = 12.5Kn. DSMC results are
denoted by stars.

the gas. We normalize this time by (L/2)2/ν = 8/(5πεKn2), the momentum diffusion
time for the Navier–Stokes problem. Figure 4 shows a comparison of the predicted t90
evolution timescales by the various models presented here as well as DSMC results. We
observe the following: First, the models presented here have extended the description
of this flow well into the transition regime. Second, the ballistic evolution timescale in
the Kn � 1 limit is significantly longer than the diffusive-transport-based timescale.
Finally, ballistic effects within the Knudsen layers result in a longer normalized
evolution timescale. This effect is significant even at low Knudsen numbers, e.g. a
factor of approximately 1.8 at Kn = 0.2. It is also perhaps remarkable that this effect,
caused primarily by ballistic transport within the Knudsen layers, can be modelled
by a purely diffusive mechanism, namely an effective increase in the physical domain
length (equal to the sum of the two slip lengths).

5. Discussion
We have studied a transverse momentum transfer problem for arbitrary Knudsen

numbers, and developed an analytical solution in the Kn � 1 limit to complement
the Navier–Stokes result. We have also presented and evaluated a model that bridges
the gap between the Kn � 1 and Kn � 1 limits. This work has led to a better
understanding of the accuracy and limitations of second-order slip models and
demonstrated that the slip model described in § 4.2 provides accurate descriptions of
quantities of engineering interest, such as the stress and average flow velocity, at least
up to Kn ≈ 0.4.

The time evolution of the system is influenced by ballistic effects at surprizingly
small Knudsen numbers. Even in the slip-flow regime where the overall flow field
can be captured by the Navier–Stokes equations, the evolution timescale is found
to be significanlty longer than the characteristic momentum diffusion timescale. Slip
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models capture this increased timescale through the increased effective domain length
implied by the slipping flow at the wall.

The primarily ballistic transport for Kn � 1 was studied by solving the linearized
Boltzmann equation in the collisionless approximation. This solution was verified
using DSMC simulations. Good agreement is found for εt � 1 for all Kn both under
early-time and late-time conditions.

The author is indebted to Professors Triantafyllos Akylas and Ioannis Kevrekidis
for helpful comments and suggestions.
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