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Abstract

We consider the problem of rendezvous between
two robots exploring an unknown environment.
That is, how can two autonomous exploring agents
that cannot communicate with one another over
long distances meet if they start exploring at dif-
ferent locations in an unknown environment. The
intended application is collaborative map explo-
ration.
Ours is the first work to formalize the characteris-
tics of the rendezvous problem, and we approach
it by proposing several alternative algorithms that
the robots could use in attempting to rendezvous
quickly while continuing to explore. The algo-
rithms are based on the assumption that poten-
tial rendezvous locations, called landmarks, can
be selected by the robots as they explore; these
locations are based on a distinctiveness measure
computed with an arbitrary sensor.
We consider the performance of our proposed algo-
rithms analytically with respect to both expected-
and worst-case behaviour. We then examine their
behaviour under a wider set of conditions in sim-
ulation.

Introduction

A rendezvous is a meeting between two or more agents
at an appointed place and time, for example, when two
people meet at a familiar restaurant. The problem of
rendezvous is ubiquitous in nature. Migratory animals
must be able to meet to share information about food.
Non-social animals must be able to find each other dur-
ing mating season. Humans are equally familiar with
the problem of rendezvous, as any family whose mem-
bers become separated at a large zoo or mall well knows.
Multi-agent robot systems also have an inherent need
for the ability of inter-agent rendezvous.

The ability to meet facilitates localisation, allows col-
laborative map exploration and has a plethora of other
advantages, but most importantly allows communica-
tion. Most existing hardware agents are only capable
of communication over short distances. Environmental

geometry, wireless transmission technology, power con-
siderations and atmospheric conditions (or water con-
ditions for underwater agents) all contribute to fairly
short communication limits. In the absence of sophis-
ticated satellite receivers or high power devices, a com-
mon constraint for successful communication is main-
taining “line-of-sight” between agents, a constraint that
is rarely satisfied in the real world. However, multi-
agent robot systems for the majority of real-life appli-
cations enjoy substantial speed gains only with some
level of communication, when compared with single-
agent systems or multi-agent systems that do not com-
municate. (Balch & Arkin 1994). Many distributed-
agent algorithms, for instance dynamic path-planning,
assume and rely upon instantaneous, infinite bandwidth
communication between agents at all times in order to
achieve promised performance levels (Brumitt & Stentz
1996).

Looking to biology, some simple algorithms are easily
observed. Most animals rely upon well-known common
meeting points, such as a beehive, or a watering hole.
In an unknown environment, however, such an absolute
reference point is almost impossible. A common strat-
egy has one agent (eg. a child lost at the zoo) wait to
be found by other agents (eg. desperate parents). As
we shall see, such simple strategies can perform poorly
under many conditions.

The problem that is discussed in this paper is how to
determine the best strategy for a successful rendezvous
between two agents in optimal time, and ours is the
first work to formalize the characteristics of this prob-
lem. We will consider how this rendezvous task can
be efficiently accomplished under various assumptions
about the environment and the perceptual abilities of
the agents involved. In particular we are interested in
the problem of rendezvous in the context of multi-robot
exploration using video or sonar sensing. In practice,
the particular sensing modality has numerous pragmatic
implications, a major factor being the range at which
the agents can either recognize one another or land-



marks in the environment. In the context of a general
rendezvous strategy we will, however, consider a generic
“abstract” sensor that allows the agents to recognize
one another when they are sufficiently close together
and which allows them to evaluate any point in space
as to its suitability as a rendezvous point.

Background

Several authors have considered interaction and coor-
dination between multiple mobile robots. Arkin and
his colleagues, in particular, have considered issues of
co-ordinated motion as well as collaborative behaviour
with minimal pre-planning (Arkin & Hobbs 1992; Balch
& Arkin 1994). His work, however, has not focussed on
exploration or the use of deliberative strategies to allow
robots to meet.

There has been considerable work in addressing the
problems of communication between agents in a mul-
tiple agent system, however the majority of work has
been to maximise efficiency and minimise complex-
ity (Mataric 1992) (et al. 1992). Mataric has looked
at models of collaborative behaviour between mobile
robots (Mataric 1992), and observed that the form of
communication plays an important role in how collabo-
rative actions proceed. In this work, we deal with how
to facilitate that communication by allowing the robots
to meet.

Yoshida et al. addressed the problem of how to reduce
a global communication network to local communica-
tion, in order to minimizing information complexity (et
al. 1995). However, there has not been much research in
overcoming communication limitations, except by lim-
iting the scope of the system to some area (such as a
factory or a port) where communication between agents
can be guaranteed by some global co-ordinator.

The selection of distinctive locations in a simple 2-
D environment has been considered previously in the
context of map-making (Kuipers & Byun 1991), in
which distinctive locations were determined by hill-
climbing, that is, by local gradient ascent over some
function of the sensor output. More generally, lo-
cal maxima in some continuous property of the en-
vironment would seem to present an opportunity for
converting a metric environment representation into a
graph-like or topological one (Chatila & Laumond 1985;
Dudek et al. 1991).

The problem of map generation from co-operative
multi-agent exploration was discussed and implemented
by Ishioka et al. (Ishioka, Hiraki, & Anzai 1993). Their
work is a canonical example of the potential applications
of the technique presented in this paper, in which co-
operative heterogeneous robots generated maps of un-
known environments. They did not discuss the problem

of rendezvous, but focussed only on how to merge maps
once the rendezvous has occurred. It is worth noting
that map fusion is also closely related to the generic
image-registration problem.

The Rendezvous Problem

We have separated the rendezvous problem into two sep-
arate sub-problems. The first is how to select points in
the environment for potential rendezvous. These points
will be referred to as landmarks. The second sub-
problem that is the major focus of this work, is how to
select which point, out of the set of potential rendezvous
points, to visit at the assigned time. The context of the
rendezvous is an unknown environment, with no shared
spatial information between agents, and no communica-
tion until rendezvous. We are examining the rendezvous
problem in terms of minimizing time to rendezvous un-
der various conditions such as sensor noise, environment
size, etc.. Determining when a rendezvous is necessary
in the framework of another task is a task-dependent
problem, and is outside the scope of this paper.

We start by briefly considering some properties of
good distinctiveness measures. We will then present
several rendezvous strategies, consider their statistical
properties analytically and simulate their behaviour nu-
merically. We conclude with a discussion of the results.

Landmark Selection

As an agent travels throughout the environment, every
visited location is evaluated by the agent in terms of
its uniqueness. The assumption is that distinctive loca-
tions (with respect to some sensor-based computation)
serve as locations that both robots can independently
select as good landmarks. This notion of a landmark
also serves as the basis of the topological mapping strat-
egy proposed by Kuipers (Kuipers & Byun 1991). We
refer to the scalar measure of suitability as a rendezvous
point as distinctiveness: D(x, y), or more generally,
for a pose vector q we can define D(q). This is implic-
itly a function of sensor data f(q), so we have D(f(q)).
Although the agent’s sensor may not return scalar val-
ues, some scalar suitability measure can be usually be
computed from the sensor. Some intuitive examples of
environmental attributes that might serve as distinc-
tiveness measures are: symmetry, distance to the near-
est obstacle, or altitude (for 3D surfaces – for example
humans might select hill tops).

In order for two robots to agree on a good landmark,
they must have similar perceptions of the environment
or be able to convert their percepts into a common in-
termediate form. In the extreme case of two agents
with dramatically different sensing modalities, there is
essentially no way for them to rendezvous based on



the recognition of environmental characteristics. Sensor
noise can play a similar problematic role. We model this
aspect of the problem by parameterizing the extent to
which the two agents can reliably obtain the same mea-
surement of distinctiveness at the same location. With
full generality, we can consider one of the two agents as
the reference perceiver (the arbiter of good taste) with
a percept D1(x, y) = D(x, y) while the second robot
obtains a sensor measurement which can be viewed as
noisy with respect to that of the first robot:

D2(x, y) = (1− δ)D(x, y) + δη(x, y), (1)

where η(x, y) is a noise process and δ specifies the extent
to which both robots sense (or perceive) the same thing.
If both robots have exactly the same perceptions of the
environment we have δ = 0. In the context of this
formalism, η(x, y) combines both intrinsic sensor noise
and any differences in the type of sensor used.

The possible distinctiveness measures are heavily de-
pendent on the types of sensor the robots have at their
disposal. Because the robot assigns a value to every
point, a good modality is one that allows the distinctive-
ness to be defined at any location in the environment,
and for which there exists some metric that can order
the resultant landmarks in the environment in terms
of distinctiveness. This ordering allows the landmarks
to be ranked in terms of their likelihood to lead to a
successful rendezvous.

Certain generic properties apply to suitable land-
marks and the distinctiveness function D(x, y) indepen-
dent of the sensing modality. If the distinctiveness func-
tion is smooth and has few local extrema or inflection
points, then it may be possible to define highly stable
and mutually agreed-upon landmarks with great ease
using gradient ascent. However, although this strategy
is attractive in principle, we believe that in many real
environments, sensor noise, occlusion and other factors
may make the “distinctiveness surfaces” highly non-
convex and thus complicate the process.

The distinctiveness function and the associated land-
marks should be stable over time and should not depend
on the trajectory or history of the robot. For example,
the “Northern-most” point in the already-explored en-
vironment is a poor choice since if, for example, the
explored area of each robot is circular, then two robots
will only have the same “northern-most” point if the
environment is highly constrained or if the explored re-
gions are very similar.

In this paper, we will neglect issues of navigation and
assume an agent can always accurately reach a desired
goal in the environment. While our framework can ac-
comodate navigational error, it is outside the scope of
this paper. For concreteness, the reader can imagine

a point robot capable of arbitrary motion within free
space.

The distinctiveness measure typically used for re-
search in this area, in the context of mobile robotics
and sonar-based perception, is the mean distance re-
turned by the sonar ring, which essentially uses the en-
closed space as the value of the landmark - the bigger
the room, the better a landmark. Note that errors due
to specularity with respect to sonar make the physical
interpretation of the measurement ambiguous.

Rendezvous Strategies

In order to estimate the effectiveness of alternative
strategies for rendezvous, we have identified key at-
tributes that must be formalised. Important attributes
of the rendezvous problem are:

• Similarities — the reproducibility of the perceptions
between agents (do they sense the same attributes,
and do they even use the same sensors),

• Landmark Commonality — the extent of overlap be-
tween the spatial ranges of the agents (this may
change with time),

• Synchronisation — the level of synchronisation be-
tween the agents (for example, can they agree to meet
at high noon).

• Landmark Cardinality — the number n of landmarks
selected by each agent.

Implicit in the description of these attributes are cer-
tain assumptions. It is assumed that all agents share
some degree of synchronization - that is, all agents can
agree on when rendezvous attempts should be made.
However, this synchronisation may contain noise, which
will be dealt with shortly. The second assumption is
that all agents have the same landmark set cardinality
- they all attempt rendezvous over the same number of
landmarks (even if they are not using identically the
same landmarks in their sets). Finally, it is assumed
that all agents are performing the same task, and using
the same rendezvous strategies.

We have developed several fundamental strategies for
assuring a rendezvous. As we will see, the best strategy
depends on several properties of the robots and of the
environment. In the simplest, idealized, noise-free case,
each robot should select the location in the environment
that is the most distinctive. Given 100% landmark com-
monality and the absence of noise, they will select the
same location. Each robot should navigate to this loca-
tion and wait for the other robot(s) to arrive. At such a
time, they could fuse their maps and suitably partition
any remaining exploration to be done. The problem



with this idealized scenario in practice is that due to
sensor variations, or disjoint landmark sets, they may
not agree on where the ideal landmark is situated.

Our formalization of the rendezvous problem takes
the key attributes mentioned above into account as fol-
lows:

1. Sensor noise — the distinctiveness measure observed
by the two robots is unlikely to match perfectly. This
is expressed by the constant δ and leads to strategies
that must effectively consider a larger number of can-
didate rendezvous landmarks since a single guaran-
teed candidate may not be determined reliably. The
issue of non-repeatability of sensor readings due to
noise is not relevant in the context of this abstract
model and is not considered here.

2. Sensor dissimilarities — the two robots may not mea-
sure the landmarks the same as each other. As illus-
trated in Eq. 1, so long as we do not consider issues
of repeatability, sensor differences can be modelled as
a form of noise.

3. Asynchrony — when two robots are attempting to
meet at the same landmark, the rendezvous may fail
because one could not reach the landmark in a dy-
namic environment, or even more likely, one robot
could not reach the landmark in time, and the other
moved on. This asynchrony is referred to in this pa-
per as the probability that a given meet at a common
landmark will fail. This effect leads to a need for
strategies that may re-visit the same landmarks re-
peatedly to compensate for missed meetings.

4. Non-identical Landmark sets — the robots may have
explored different areas, and will have selected dif-
ferent landmarks that are not in the common region
(assuming such a common region exists at all). This
is modelled formally as the number d of landmarks
out of a total set of n that are not common to the
robots. The effect of the non-commonality is that
both robots must consider a larger number of candi-
date landmarks, since any given subset of landmarks
selected by one robot may not be known to the other
robot.

We will show that the choice of an appropriate ren-
dezvous strategy depends on the extent to which the
robots have found the same set of landmarks, the
amount of sensor noise (or, equivalently, the similarity
of the sensors) and the reliability of the robots being at
a mutually selected rendezvous point and detecting one
another.

In the presence of large amounts of sensor noise, the
landmark selection will be essentially random, in which

case the best strategy is simply to have one robot visit
every landmark, and have the other robot sit and wait
for it. However, this is also an unrealistically pessimistic
scenario. If the robots have been constructed to facil-
itate rendezvous, they are likely to have a somewhat
common perception of the environment and to have
some commonality in their explored areas. In reality,
the robots will probably experience some limited sen-
sor noise, minimal dissimilarities, some asynchrony, and
partial but not complete landmark commonality. So,
the best strategy takes these factors into account, and
chooses a series of landmarks to visit in some intelligent
way.

We are interested in strategies that would permit
a robot to interleave exploration and attempted ren-
dezvous so that if the rendezvous fails, the robots can
continue their work and the strategies remain robust
even in the face of a complete inability to find their as-
sociates. Below, we describe four alternative rendezvous
strategies: these form exemplars of what we believe are
two key representative algorithm classes.

1. Deterministic Algorithms – Given the same set of
landmarks, these algorithms will always create the
same ordering of landmarks.

• Sequential – One robot picks a landmark and
waits there for the other robot, which visits ev-
ery landmark in turn. If the second robot has vis-
ited every landmark without encountering the first
robot, the first robot moves to another landmark it
has not yet visited.

• Smart-sequential – Each pairwise combination of
landmarks known to a robot is assigned a “good-
ness” value. This value is the product of the dis-
tinctiveness of the pair. The list of landmark pairs
is sorted by this product, and one side of each pair
is discarded, leaving an ordered list of n2 landmarks
from a set of n. The robot then visits the land-
marks in this order.

2. Probabilistic – The landmarks are sorted with re-
spect to their distinctiveness and then assigning a
likelihood of visitation pi for landmark i as a func-
tion of its rank in the sorted list i.e pi = f(i). The
algorithm probabilistically selects a landmark to visit,
using pi for each landmark.

• Exponential – The likelihood of visiting the i−th
best landmark is αei.

• Random – On each attempted visit, each robot
selects a landmark at random and goes there.

Each of these methods has particular advantages and
disadvantages. The sequential method is simple, but



makes no effort to account for relative likelihoods, or
asynchrony. In view of the potential shortcomings of
the sequential method, we have proposed an alternative
method, the probabilistic method, that has an increased
chance of compensating for a missed rendezvous and
also attempts to compensate for small variations in the
respective rankings of the landmarks selected by the two
robots. For instance, the distinctiveness of each land-
mark could be the same, which would lead to a uni-
form random visitation strategy. The probability dis-
tribution f() could be a linear function of value, or, if
we assume that the amount of sensor noise is low, an
exponential strategy. However, if sensor noise is high
and the two agents do not share the same ordering of
landmarks, then the agents may be forced into revisit-
ing the incorrect landmarks much too often. A good
compromise between these two methods is the smart-
sequential method. The advantage of this method is
that, if δ is low, landmark combinations with high val-
ues are explored before landmark combinations where
one landmark has a very high value, and the other has
a relatively low value. This leads to an increased prob-
ability of meeting even with substantial asynchrony.
The smart-sequential method is tantamount to guessing
where the other robot might be, given relatively similar
but not identical landmark rankings.

Behaviour - Analytical results

Algorithm Simple Async. < 100% Comm.
Random 1

log2( n
n−1 )

1
log2( n

n−1+j )
1

log2( n2

n2−n+d
)

Sequential n/2 n
2 + j

−1
log j n

2 + d
n

−1

log d
n

Smart-seq. ≈ n n+ j
−1

log j n+ d
n

−1

log d
n

Figure 1: Expected case behaviour. The columns de-
note the ideal case, the case where the asynchrony j 6= 0
and the case where the landmark sets are not identical,
but each agent has d non-common landmarks.

We can make an analytical assessment of the perfor-
mance of the deterministic rendezvous algorithms, com-
pared to the random algorithm baseline. If there is no
noise, no asynchrony, and 100% landmark commonality,
then all of the algorithms which use the distinctiveness
measure to sort landmarks will lead to a rendezvous af-
ter only one attempt (i.e., both robots will go straight to
the mutually agreed upon best landmark.). The random
algorithm can never assure a rendezvous but will have
a small, equal probability of leading to a rendezvous on
every attempt.

More interesting is the performance of the algorithms
in the limit of high noise, δ = 1, such that no com-

mon ordering between agents of the same landmarks
can be reliably determined. The first assessment is
the algorithmic time complexity, i.e., the expected time
to rendezvous, for the three algorithms in the limit
of δ = 1. The expected time to rendezvous is the
maximum number of unsuccessful rendezvous attempts,
where the probability of no success on the next attempt
is greater than or equal to 50%. For a landmark set of
size n, the probability of any single, random rendezvous
attempt being unsuccessful is:

Punsuccessful =
n− 1

n
(2)

If the asynchrony rate is accounted for, then the prob-
ability of an attempt being unsuccessful rises to

Punsuccessful =
n− 1 + j

n
(3)

These equations give rise to table 1. The first column
refers to both robots having the same set of landmarks.
The second column considers the scenario where the
robots may fail to get to the appointed landmark at the
same time (or fail to notice one another). This proba-
bility is the asynchrony, j. The third column deals with
the case where d of each robot’s n landmarks are not in
the other robot’s landmark set.

In the deterministic sequential algorithm, the ex-
pected time of the simplest case (identical landmark
sets, no asynchrony), is very straightforward. One agent
sits at a landmark, and the other agent visits every land-
mark in turn until they meet - on average n/2 land-
marks. However, in the presence of asynchrony, ad-
ditional sweeps of all n landmarks will have to be per-
formed. To find the expected number, k such additional
sweeps, we use

0.5 = jk (4)

noting that each extra sweep i of k will reduce the
probability of failure, and k such sweeps must reduce
the probability of failure to 50%. Thus, on average

j
−1

log j sweeps during the rendezvous will fail due to asyn-
chrony. Similarly, for non-identical landmark sets, addi-
tional sweeps of n landmarks will have to be performed

on average d
n

−1

log d
n times.

In the worst case, the performance time complexity is
much more straightforward. For the probabilistic algo-
rithms, such as the random strategy, or whenever asyn-
chrony is an issue, the worst-case is always O(∞), be-
cause a meet can never be guaranteed. Similarly, a ren-
dezvous can never be guaranteed if any asynchrony is
present, and so for j 6= 0, the worst case for all algo-
rithms is O(∞).

However, the deterministic algorithms are guaranteed
to terminate when j = 0. In the worst case, the two



algorithms terminate in n2 iterations when they share
no common landmarks. At this point, both agents can
determine that they cannot meet, and continue explo-
ration. If, however, the agents share identical landmark
sets, the sequential algorithm has a much lower worst-
case complexity than the smart-sequential strategy, be-
cause one agent is guaranteed to visit every landmark
in the other agent’s set in n iterations.

Algorithm Simple Async. < 100% Comm.
Random ∞ ∞ ∞
Sequential n ∞ nd
Smart Seq. n2 − n ∞ n2 − (n− d)

Figure 2: Worst case behaviour. Columns as in Fig. 1.

Numerical Simulation

In order to determine the behaviour of the various algo-
rithms with increasing noise, the algorithms were tested
in numerical simulation. Rather than simulating an ac-
tual exploration1, two agents were modelled as having
already explored an unknown area, and collected a set
of landmarks. The distinctiveness values of the ordered
landmarks were generated with a linear function, and
then the random noise δ as developed in equation 1 was
applied to the two sets.

The visitation strategy was then executed on the two
ordered sets of landmarks, creating a (potentially in-
finite) sequence of landmarks for each agent to visit.
The sequence was terminated at the first instance where
both agents had a landmark at the same position in the
sequence, corresponding to a successful rendezvous. At
δ = 0, the two ordered sets were identical, and the deter-
ministic algorithms (sequential and smart-sequential)
were guaranteed to generate sequences of length 1. The
length of the sub-sequences until rendezvous was used
as a measure of time until successful rendezvous. The
cardinality of the landmark set was 50 landmarks, un-
less otherwise specified.

The baseline simulation shows the performance of
four algorithms in the face of increasing noise. The four
algorithms are the deterministic sequential and smart-
sequential algorithms, and weighted probabilistic dis-
tributions with exponential and linear probability func-
tions. Recall that the exponential probabilistic func-
tion, for example, would have an exponentially higher
probability of visiting the best landmark over any other.
There is no asynchrony present, and the landmark sets
were completely common. Figure 3 shows that the se-
quential algorithm is the best performer, especially in

1This was carried out as well, but is not reported here
due to lack of space.
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the face of high noise (i.e., δ > 0.2) , which concurs with
the analytical result. Clearly, exponential is a very frag-
ile function, failing catastrophically with noise, δ > 0.2.
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Figure 4 shows the performance of the algorithms
with a larger landmark set cardinality. Unsurprisingly,
the performance of the algorithms scales appropriately
with landmark set size.

In the face of asynchrony, however, the algorithms
exhibit less intuitive behaviour. Asynchrony, again, is
the probability that a particular rendezvous succeeded.
The simulation (which creates landmark sequences) im-
plemented asynchrony as the probability that a partic-
ular sequence element could be used. Even if the pair
of landmark sequences contained the same landmark at
identical positions, the sequence may not have termi-
nated there, because the asynchrony probability pre-
vented the first pair of matching landmarks in sequence
from being compared, as if the robots had failed to ren-



dezvous successfully despite attempting to do so at the
same location at the same time.
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Figure shows the performance of the algorithms given
a 50% asynchrony rate, or a 50% probability of suc-
cessfully making a rendezvous. In this case, the smart-
sequential and exponential algorithms out-perform the
sequential strategy, because the sequential form suffers
from having to visit every other landmark before being
able to return to the landmark that failed on a par-
ticular iteration, whereas the other two algorithms can
return to landmarks relatively quickly. However, once
noise dominates the values, (δ > 0.5) the sequential al-
gorithm becomes faster because it does not rely heavily
on particular landmark values - it is not returning to
the same landmark over and over again.
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Even more interesting in the case of very high asyn-
chrony, Figure 6 shows that the exponential probabilis-
tic function outperforms the deterministic algorithms in
the face of low noise (0.5 < δ < 0.25), but again fails

rapidly in the case of high noise (δ > 0.25). The expo-
nential algorithm essentially forces the robot to return
to the same landmark over and over again, which is
the correct strategy when asynchrony is high. However,
when noise is high, the odds that the recurrent land-
mark is the wrong one increase, and the deterministic
algorithms, which do not return to the same landmark
as often, perform better.
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Finally, Figures 7 and 8 show performance for maps
with only 75% of the landmarks in common. The per-
formance with non-identical landmark sets (akin to non-
isomorphic maps) is very similar to performance under
low- to medium-asynchrony. The smart-sequential al-
gorithm performs better with low noise because it can
return to landmarks faster than sequential, but in the
case of high noise (δ > 0.35), returning to landmarks too
frequently can be costly, and the sequential algorithm
again dominates.



Conclusion

In this paper we have described the new problem of per-
forming rendezvous between two exploring robots in an
unknown environment. We are specifically interested in
multi-robot environment exploration, where communi-
cation is limited to short range. This is the first paper
to describe a formalism for this problem, and we have
presented an analytical and numerical analysis of some
solutions to the rendezvous problem. Although we have
primarily dealt with two agents, the algorithms we have
presented could readily be adapted to larger collections
of agents, or swarms.

We have shown that certain algorithms for performing
a rendezvous in an unknown environment are especially
good or bad under certain system and environment con-
ditions. These factors include sensor noise, lack of com-
monality in the regions explored by the robots, and the
possibility of the robots missing a scheduled rendezvous.
An interesting result is that, depending on a combina-
tion of these confounding factors, no strategy is canoni-
cally a poor choice - under the correct circumstances, a
heretofore poor choice of algorithm can outperform the
erstwhile winner. These results are confirmed by both
analytic closed-form solutions, and idealized numerical
simulations.

Two major subtleties complicate the rendezvous
problem. One is the possibility of missed rendezvous.
This “asynchrony” factor may be a result of lack of
synchronisation, a failure of the robots detecting each
other, or navigation errors resulting in arriving at the
wrong location. The other subtlety is whether both
robots select landmarks from within commonly explored
sub-regions of the environment. We refer to possible
non-identical landmark sets as a lack of commonality.
In the absence of these problems, several simple strate-
gies are possible and rendezvous is a fairly simple prob-
lem. Expected time to rendezvous is between 1 and
n/2 landmark visits depending on the strategy and the
ability of the robots to agree on a consistent preference
ordering of landmarks using noisy sensors.

In the presence of asynchrony and in the absence
of 100% commonality of the explored areas, the algo-
rithms referred to as sequential and smart-sequential
each have their domains of superiority while surpris-
ingly, a stochastic strategy based on an exponential
probability of visit also has a small region of the pa-
rameter space in which it proves superior. That these
small regions of parameter space exist indicates that the
problem of rendezvous deserves further development.
The smart-sequential strategy exploits the distinctive-
ness measure or preference ordering on landmarks to at-
tempt to compensate for missed rendezvous and is supe-
rior under substantial levels of asynchrony and limited

noise. The pure sequential strategy is preferable when
asynchrony is low, since without asynchrony a meet
is assured after n visits by avoiding visiting combina-
tions that might otherwise compensate for asynchrony.
With substantial levels of both asynchrony and moder-
ate noise the stochastic search strategy is preferable to
deterministic ones: a phenomenon we are investigating
further.

Issues for future consideration are the role of land-
mark positions and the robot in selecting where to visit.
In practice, it may be preferable to visit a nearby land-
mark for rendezvous, although the consequences of such
heuristics are not obvious in all cases. A further issue is
how to select appropriate distinctiveness measures with
different sensor systems.
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