
Active Exploration Planning for SLAM using Extended Information Filters

Robert Sim
Department of Computer Science
University of British Columbia

2366 Main Mall Vancouver, BC V6T 1Z4
simra@cs.ubc.ca

Nicholas Roy
Computer Science and Artificial Intelligence Lab

The Stata Center, MIT
32 Vassar Street, 32-335 Cambridge, MA 02139

nickroy@mit.edu

Abstract

It is well-known that the Kalman filter for simul-
taneous localization and mapping (SLAM) con-
verges to a fully-correlated map in the limit of infi-
nite time and data [3]. However, if the exploration
trajectory accumulates new information about the
world slowly, then convergence of the map can be
slow. By making use of the recent development
of constant-time SLAM algorithms, we show how
information gain for a single step can be com-
puted in constant time. We describe the concept
of an “information surface”, which represents at
each point in the environment the total potential
information gain that results from a complete tra-
jectory to that point. We demonstrate an algorithm
for finding this surface that leads to an efficient,
global planning algorithm for exploration that is
linear in the number of states to be explored in the
world and the length of the trajectory.

1 Introduction

Simultaneous Localization and Mapping (SLAM) is the
problem of how to build environmental models or maps
from sensor data collected from a moving robot. SLAM is
considered to be one of the cornerstones of autonomous mo-
bile robot navigation [11], and can be a technical challenge
because the robot position and the world features must be
estimated simultaneously from noisy sensor data. Recent
research however, has resulted in substantial progress in au-
tonomous map-building; there are now a number of systems
that can reliably build many kinds of environmental models.

Although robots can now build good maps of many real en-
vironments directly from their own data, there has been little
research on how to collect the data autonomously. Typically,
a robot is driven around the environment by hand while
it records sensor data; this sensor data is either assembled
incrementally and online into a partial map, or the sensor
data ensemble is assembled offline into a globally consis-
tent map. There are relatively few results concerning how to

automate this exploration policy and how best to gather data
for building a good map, even though the motion strategy
can have a real impact on the quality of the resulting map.
When the sensor data is collected from a robot being con-
trolled manually by a novice, the result is often poor maps
with internal inconsistencies. A more seasoned controller
has an internal model of good motion strategies that gather
information quickly, that do so in a way that makes it easier
to assemble a consistent map. For example, a good motion
strategy can detect when the robot is becoming too uncertain
about its pose, and return to known landmarks to re-localize
before continuing to explore. A good motion strategy can
also detect actions that have resulted in higher error (e.g.,
point turns that typically result in higher degrees of wheel
slippage, etc.) and avoid them, reducing odometry error that
must be corrected after the fact.

In this paper, we describe a motion planning algorithm for
SLAM that computes the multi-step trajectory that reduces
the uncertainty of the map the most. The algorithm uses a
variant of the extended Kalman filter called the sparse ex-
tended information filter (SEIF). The advantage to the infor-
mation filter is that a single update step from moving and
sensing can be done in constant time, which allows us to
compute the change to the map certainty in constant time.
By restricting ourselves to the class of trajectories that do
not contain cycles, we can compute a 2-D “information sur-
face” that encodes at each point the improvement to the map
resulting from travelling to that point. The information sur-
face is not just the information available at each point, but
the information gained by integrating along the trajectory
to the point. We describe an efficient algorithm for com-
puting this surface over a discrete representation of space,
using a dynamic-programming approach and the constant-
time information gain update. This results in one of the first
algorithms that allows exploration for exploiting global in-
formation along trajectories, rather than exploiting local in-
formation gain via gradient-descent.

2 SLAM

We will assume that we have a quasi-holonomic robot op-
erating in a planar environment. The robot is equipped



with a landmark sensor that can sense the range and bear-
ing of any number of landmarks in the plane that are closer
than some finite range. The robot issues controls at each
time t, which consist of the relative translational and ro-
tational displacement: Ut = (∆d,∆θ). The sensor mea-
surements are a sequence of range and bearing measure-
ments: zt = (r1, b1, r2, b2, . . . rm, bm) for m landmarks
within range of the sensor. The SLAM problem is then how
to simultaneously estimate the robot pose (x, y, θ) as well as
the positions of all n landmarks (x1, y1, x2, y2, . . . , xn, yn),
that is, estimate the full state

ξ = (x, y, θ, x1, y1, x2, y2, . . . , xn, yn), (1)

based only on knowledge of the controls issued by the robot
and the sensor measurements received. The state at time t is
related to the previous state and control by a function g,

ξt = g(ξt−1, Ut, qt), (2)

where qt is an unobservable noise term. The observation at
time t is related to the state by a function h,

zt = h(ξt−1, vt), (3)

where vt is an unobservable noise term. Given appropriate
probabilistic models of these noise terms, a posterior distri-
bution over the full state ξ can be computed from the full
history of controls and observations. Different representa-
tions of this posterior trade off computational complexity
for representational power and approximation quality.

Although there are now a spectrum of competing SLAM al-
gorithms, we will focus on Kalman filter-based approaches
for development of our active exploration algorithm. The
extended Kalman filter (EKF) computes the posterior distri-
bution by linearizing the functions g and h about the previ-
ous state estimate, and making assumptions that the noise
terms can be characterized as Gaussian. The exact deriva-
tion of the extended Kalman filter has been described else-
where [7, 18, 8]; it suffices to say that the EKF algorithm
consists of iterating two steps: a prediction step that esti-
mates the posterior after each control, and a measurement
step that integrates each observation, refining the position
estimate. By linearizing and making Gaussian assumptions,
the EKF model ensures that the posterior probability dis-
tribution over ξ is always Gaussian. While there are some
known limitations to this approach, maintaining the explicit
covariance matrix Σ in the Kalman filter allows us to reason
about how certain any distribution is, and how the distribu-
tion is improved by different actions.

The Extended Information Filter

The dual to the extended Kalman filter is the extended in-
formation filter (EIF). Instead of maintaining the covariance
matrix Σt and mean state estimate µt, the EIF maintains the
inverse of the covariance, called the information or preci-
sion matrix Ψt, and an information vector bt. These terms

are related to the original Kalman filter terms in the follow-
ing manner:

µt = Ψ−1
t bt

t (4)

Σt = Ψ−1
t (5)

Just as the EKF has a two-stage update process, so does the
information filter. The full EIF update steps can be found
elsewhere [10, 17], and are outside the scope of this paper.

The measurement update of the EIF can easily be shown to
be constant time because it simply involves adding a sparse
matrix to the information matrix. The prediction update in
the standard formulation of the EIF is not, however, since
it contains matrix inversions. As the number of landmarks
grows, so does the difficulty of these inversions. Thrun et
al. [17] prove that by maintaining sparseness in the infor-
mation matrix Ψt and tracking the mean µt, the motion up-
date can still be performed in constant time. Tracking µt

exactly is still not a constant time operation, but there ex-
ists an iterative approximate algorithm to recover µt if Ψt

is sparse. Given an upper bound on the number of permit-
ted iterations, the recovery of µt is then also constant-time
algorithm. The sparseness-preserving algorithm, together
with estimation of the information vector bt is referred to as
the Sparse Extended Information Filter (SEIF).

The major issue in the SEIF is maintaining the sparseness of
Ψt, in that as new landmarks are seen, new non-zero entries
are added in the growth of the information matrix. Addi-
tionally, as the robot moves around, the mutual information
between two visible landmarks is increased. The sparsifi-
cation procedure of the SEIF makes use of the fact that, al-
though the information matrix tends towards a non-sparse
matrix, many of the entries are close to 0. By only keeping
the n largest entries of the information matrix, the sparse-
ness of the matrix can be bounded from below, resulting in
an upper bound on the update time of the algorithm (the
greater the sparseness, the faster the update). Additionally,
a constant-time sparsification algorithm exists for maintain-
ing this bound; so long as this bound is appropriate for the
environment and robot, the approximation error in the pos-
terior introduced by the sparsification is negligible.

3 Active Exploration

The SEIF algorithm allows us to use collected data to build
an accurate map efficiently. However, we still do not have an
algorithm for gathering that data efficiently to build the most
precise map. The problem of gathering data efficiently is re-
ally one of selecting new measurements that are maximally
informative about our model. The EKF, and by extension the
SEIF, are both generative Bayesian estimators, which means
we should select new data that are maximally informative
about our probabilistic model of ξ. Decision theory tells us
that we can compute the gain in information between any
two distributions as the relative change in entropy [9]. We
will therefore choose exploration strategies that maximally
reduce the entropy of the posterior distribution pt(ξ).



The entropy of a distribution is defined as

H(p(ξ)) =

∫

Ξ

p(ξ) log p(ξ) (6)

which for a Gaussian distribution can be computed directly
from the covariance matrix as

p(ξ)= (2π)−
d

2 det(Σ)−
1

2

exp

{

−
1

2
(ξ − µ)T Σ−1(ξ − µ)

}

(7)

⇒ H(p(ξ))=
d

2
(1+log 2π)+

1

2
log det(Σ) (8)

∝ log det(Σ). (9)

The maximally informative trajectory must therefore have
the smallest covariance matrix Σ. We do not explicitly
maintain the covariance matrix in the SEIF but instead the
information matrix Ψ = Σ−1, which means that the gain in
information from time t to t + 1 is

∆H = log(
1

det Ψt+1
) − log(

1

det Ψt

) (10)

If we find the shortest trajectory that minimizes this quantity,
we should converge to the most accurate map the fastest.

Constant-time Information Gain

Although we can compute the posterior information matrix
after an action and an observation in constant time using the
SEIF, the information gain is not yet a constant-time pro-
cess, depending on our ability to compute the determinant
of an arbitrary size matrix. We can again make use of the
fact that the information matrix is sparse to eliminate the in-
formation gain’s dependence on the size of the information
matrix. If we bound the number of non-zero entries in Ψt,
we can find a constant-time algorithm for computing the in-
formation gain in the map submatrix. Using the sparseness
of Ψt, we swap rows and columns of the Ψt to get an block
diagonal matrix Ψ̂t of the form

Ψ̂t ≈

[

X 0
0 Y

]

where X contains terms for landmarks that the robot can
see and Y contains terms for the remaining landmarks. The
effect on the determinant of re-writing the information ma-
trix in this way is minimal: the determinant is affected by at
most a sign change. (The magnitude of the determinant of a
matrix is unaffected by any number of row and column ex-
changes.) Once we have the information matrix in this form,
the determinant of the block diagonal matrix is the product
of the determinants of its blocks:

det Ψ̂t =(det X)(det Y ) (11)

⇒ ∆H =log (det Xt+1 det Y )
−1
−log (det Xt det Y )

−1(12)

=log(det Xt) − log(det Xt+1) (13)

Let us suppose that the environment, and therefore the in-
formation matrix, is sufficiently sparse that the robot can
only see one landmark at a time. This means that the upper-
left block of H will always be a 5× 5 matrix assuming each
landmark has exactly 2 degrees of freedom and the robot has
3. If we want to choose some location in the environment
that will maximally reduce the determinant of the covari-
ance matrix, then we can do this by considering only a 5×5
matrix at each point (x, y).

We know, from the sparse extended information filter liter-
ature that we can update the posterior, represented by the
information vector and matrix, in constant time. We have
demonstrated that the information gain between the prior
and posterior information matrix can also be computed in
constant time, given a lower bound on the sparseness of the
information matrix. We now describe an algorithm for com-
puting the global trajectory that maximizes the information
gain.

4 The Information Surface

Our approach to exploration planning is to attach to each
(x, y) pose in the environment the information gain that re-
sults with maximum likelihood from moving from the cur-
rent (xr, yr) pose of the robot to the destination pose (x, y).
Computing this information gain over the space of all pos-
sible poses gives an “information surface” over the environ-
ment; this surface allows us to identify the maximally in-
formative point in the environment, given the current state.
By iterating between computing the information surface and
then travelling to the global maximum, the map should con-
verge to minimal error as quickly as possible. We approxi-
mate the information surface using a discretization; the dis-
cretization is simply a restriction to a class of policies over
a discretized pose space1. Because we can compute updates
to the SEIF in constant time, we can compute the informa-
tion surface efficiently, in time O(n) in the number of states
in the discretized pose space.

4.1 The Single-Shot Information Surface

One possible model of the information surface is the infor-
mation gained after integrating a single (typically long) step
from the start pose to the end pose and then integrating the
single maximum-likelihood measurement for that pose. We
will call this approach the “Single-Shot Information Gain”.
Figure 1(a) depicts an example robot pose (lower cross) and
uncertain landmark (elongated ellipse). Figure 1(b) depicts
the information surface that results from this problem. The
robot has large error in the rotational control, which results
in a ridge of high information gain along the poses that re-
quire little or no rotation. Notice that the information gain is

1This restriction can be relaxed to include continuous-state
policies using a policy search algorithm to improve the optimal
discrete-state policy [14], but in practice we have not found this to
be necessary.



also higher off to the sides of the landmark, in the direction
of the principal axis of the covariance of this landmark. In
general, the shape of the information surface will depend on
both the robot’s sensor and motion models, and can vary sig-
nificantly between noise models with different properties.

(a) Current Robot
Pose and Map

(b) Information Sur-
face

Figure 1: (a) An example problem, with the current robot
position shown in the middle of the image, and a single land-
mark with its covariance ellipse shown in the top right. (b)
The information surface due to taking a single step to each
destination robot pose. Darker areas contain more informa-
tion. The white circle is the minimum range of the sensor
around the landmark.

Unfortunately, the Single-Shot Information Gain may not
be the most useful model of information for two reasons.
First, unless the trajectory is very short, the robot will re-
ceive additional measurements along that trajectory which
should be integrated into the estimate of ξ and will add to the
certainty of the map2. We can extend this algorithm by ac-
tually integrating along each straight-line trajectory, but this
is inefficient and does not solve the second issue: by com-
puting the information gain along a line to each pose, we
have restricted exploration to straight-line trajectories when
the most useful trajectories might be curved.

4.2 The Integrated Information Surface

Instead of computing straight-line trajectories, a better ap-
proach is to consider trajectories of arbitrary sequences of
unique (non-repeated) robot poses. We can do this using the
following three ideas:

• The information gain at the start location of the current
robot pose (xr, yr) is 0. This approximation drives the
forward progress of the robot.

• The information gain at any point (x, y) relative to start
pose (xr, yr) can be computed from the information
gain from (xr, yr) to some neighbouring pose (x′, y′)
and the information gain from (x′, y′) to (x, y). If we

2Note that if the robot elects to take a large step without col-
lecting new measurements along the path, the risk of divergence in
the filter increases considerably.

know the information matrix at each neighbouring pose
(x′, y′) under the optimal trajectory to each neighbour,
we can therefore compute the maximally informative
trajectory to the pose (x, y).

• Whichever neighbour (x′, y′) leads to the maximum in-
formation gain of (x, y), that neighbour is the parent
pose in the optimal trajectory to (x, y).

Since we can compute the optimal information gain of a
robot pose from the covariance of the best neighbouring
pose (assuming we store the covariance of neighbouring
poses as those covariances are assembled from their neigh-
bours), we can iterate through all poses repeatedly until we
converge to a consistent, unchanging information surface.
This leads to the following naı̈ve algorithm, very reminis-
cent of value iteration for Markov decision processes:

• Until the information surface stops changing:

1. For each robot pose (x, y), compute the best posterior
information matrix from the neighbours and the infor-
mation gain

2. If the new information gain estimate (relative to the
start pose (xr, yr)) is better than the previous estimate
for the information gain at (x, y), then set the informa-
tion gain of (x, y) to the new gain estimate, and store
the posterior information matrix associated with this
pose.

The information surface computed in this way is related to
the value function from Markov Decision Processes. The
immediate reward of a state transition is the immediate in-
formation gain from the current information matrix. The
main difficulty with this algorithm, however, is that it in-
cludes all sequences of poses, not just all sequences of non-
repeated poses. When we compare some existing estimate
of the information gain at a pose (x, y), we need to ensure
that the information at this pose has not already been in-
cluded in the information gain estimate. If we do not pre-
vent information from being integrated twice, the algorithm
can continue to drive the information gain up by iterating
back and forth between neighbouring poses. We want to
explicitly exclude such trajectories.

We therefore augment each pose in the information surface
with a “parent pointer”, φ(x, y), that indicates which neigh-
bouring pose contributed to the posterior at the current pose.
During the iteration over poses, we only update the informa-
tion gain at the current pose (x, y) if the information gain
improves and when we can follow the sequence of parent
pointers back to the start pose (xr, yr) without encountering
pose (x, y) again. Finally, we use a priority queue keyed on
the current entropy of the distribution to minimize repeated
iteration over all robot poses. The full algorithm is given in
Table 1.

Convergence of the algorithm is guaranteed by the fact that
no state can be repeated on any given trajectory, and the fact



1. Initialize all I(x, y) = ∞
2. Push current {x, y, b,Ψ} onto Q,

with priority p = − log det Ψ
3. While Q not empty

(a) Pop {x, y, b,Ψ}

(b) For each neighbour (x′, y′) of (x, y):
i. Compute posterior {b′,Ψ′} as a result of mov-

ing from (x, y) to (x′, y′)

ii. Compute ∆H from equation (13)
iii. If I(x, y)+∆H < I(x′, y′) and (x′, y′) is not

on the path φ(x, y) to (xr, yr) then
A. I(x′, y′) = I(x, y) + ∆H

B. Push {x′, y′, b′,Ψ′} onto Q

with priority p = I(x′, y′)

C. Set φ(x′, y′) = (x, y)

4. (x, y) = argmin(x,y) I(x, y)

5. while (x, y) 6= (xr, yr)

(a) (x′y′) = (x, y)

(b) (x, y) = φ(x, y)

6. Move to (x′, y′)

Table 1: The complete algorithm for finding the trajectory
to the global maximum in information gain.

that the state entropy at point (x, y) decreases monotonically
as more informative trajectories are expanded. The com-
plexity of this algorithm is a result of O(n) state updates,
and each state update involves a constant-time information
gain operation, and m iterations to follow the parent point-
ers, checking the trajectory for loops. The complexity is
therefore (O)(mn) for n discrete states in the environment
and the maximum trajectory of length m, hence linear in the
number of state and the length of the longest trajectory.

5 Experimental results

We tested five exploration algorithms in a simulated envi-
ronment, looking at example trajectories and a quantitative
comparison of each algorithm’s performance. The five algo-
rithms are as follows:

• Random: At each time step, the algorithm takes a ran-
dom control action ∆t,∆θ

• Most Uncertain Landmark: The robot drives succes-
sively to each landmark that it is most uncertain about
(that is, the landmark with the largest covariance). This
is a heuristic technique that assumes the most informa-
tion can be gained by sensing near the most uncertain
landmark. In order to prevent oscillation, the next land-
mark to visit is not considered until the robot reaches
its current goal landmark.

• Gradient Descent: The robot moves in the direction
of maximum-likelihood information gain. This is the

most common form of active exploration found in the
literature [19, 4, 1].

• Single Shot: This is the algorithm described in sec-
tion 4.1, where the information surface is computed
from a single (large) step of motion to each grid cell
and the single maximum-likelihood measurement at
that pose.

• Integrated Trajectory: This is the algorithm summa-
rized in Table 1. The information surface is computed
recursively by integrating successive one-step predic-
tion and measurement steps along the trajectory to each
grid cell. The robot then follows the trajectory to the
pose with the highest information gain.

In all cases, the algorithm replans (e.g., computes a new in-
formation surface) whenever it reaches the intended target
destination.

Figure 2: The initial map for the exploration tests.

Figure 2 shows the initial configuration for this problem.
There are 20 landmarks distributed randomly about a square
environment of size 200m × 200m and the robot generally
moves in steps of 1m. For these simulated experiments we
allow the sensor to have infinite range; we take this approach
because none of the algorithms under consideration empha-
size coverage explicitly, a topic for future investigation. We
employ a sensor model in which the variance of a range
measurement is proportional to the distance to the landmark
being measured, and the variance of a bearing measurement
is a constant five degrees. As such, measurements to distant
landmarks are noisier than measurements to nearby land-
marks. We assume that at the outset the robot knows how
many landmarks there are, but of course not where they are.
Figure 2 is after initializing the exploration with a random
policy of 3 steps, in order to have a reasonable initialization
of the information matrix before computing the information
surface.

Figure 3 shows an example trajectory for each of the five
algorithms. Notice that the gradient descent algorithm did
very poorly, becoming trapped in a local maximum of in-
formation gain and fixating on a single landmark. The un-
certain landmark and single-shot heuristics both cover space
rapidly, but the straight-line nature of these two algorithms



(a) Random (b) Most Uncertain
Landmark

(c) Gradient De-
scent

(d) Single Shot (e) Integrated Tra-
jectory

Figure 3: Example trajectories using the four control strategies for exploration. Notice that even with infinite range, the
Integrated Trajectory controller is the only one that aims to cover the entire space and close the loop.

means that neither is able to model the effect of small de-
tours to reduce uncertainty on their way to some large in-
formation gain. Figure 3(e) shows our algorithm, and no-
tice that it still explores the map rapidly, but periodically
loops (sometimes making large loops, sometimes making
very small loops). The intuition for this looping behaviour
is that the robot periodically needs to re-localize by moving
closer to well-localized landmarks, and register new mea-
surements with the existing map. “Closing the loop”, reg-
istering new map data with data acquired sometime ago, is
one of the canonical difficult problems in SLAM. An active
exploration algorithm that can model the effects of loops,
and can close loops when appropriate will almost certainly
build better maps than an heuristic approach.

Figure 4 shows quantitative comparisons of the performance
of the five algorithms, over trajectories of length 1000 steps.
On the left is the posterior entropy of the map covariance
matrix, recovered from the information matrix. Oddly, the
Most Uncertain Landmark heuristic does not perform signif-
icantly worse than the Integrated Information algorithm in
terms of the entropy of the distribution. However, when we
compare the accuracy of the map with ground truth in terms
of the average L2 norm between the estimated landmark po-
sitions and their true positions, we see that the Integrated In-
formation algorithm had significantly higher accuracy than
any other approach3. Notice that the Most Uncertain Land-
mark heuristic initially has a higher accuracy. However, the
deliberate loop-closing of the Integrated Information algo-
rithm means that it quickly recovers to a higher accuracy.
It is worth noting that if these experiments were continued
out to an infinite number of time steps, the entropy of each
algorithm would converge to the same global minimum, as
would the map accuracies. The idea is that the Integrated
Information algorithm should be more accurate sooner.

3It is possible to introduce arbitrary error in the L2 norm be-
tween a perfect map and ground truth by rotating the map about
the start pose before comparison. The error reported here for all
algorithms follows a correction procedure to rotate the map back
to the best orientation possible for minimizing error.

Figure 5 shows a final map built by the Integrated Informa-
tion algorithm; we can see that the landmark covariances
are all small and approximately equal. There are also few
elongated ellipses, as the algorithm is able to appropriately
model the information gain from different viewpoints of the
landmarks, keeping the ellipses small in general.

Figure 5: The final map produced by the Integrated Infor-
mation algorithm.

6 Related Work

This is not the first work to consider the problem of ac-
tive exploration for building the most accurate, lowest-
uncertainty map. One popular approach in the literature,
described in several places [19, 4, 1], is the gradient descent
method discussed above. This has substantial computational
efficiency, in that the information gain need only be com-
puted for the 8-connected neighbouring states. The major
disadvantage to the gradient-descent approach, as we saw
in the experimental results, is that it is subject to local min-
ima. While it has been argued that repeated observations
taken from a local minimum will eventually flatten out the
information surface at that pose, it may take a considerable
amount of time for this process to occur, as is evidenced by
the slow convergence of this approach in the experimental
results. The gradient-descent approach also has no notion of
“closing the loop” and cannot model long paths with large
payoffs in map certainty at the end of the path.
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Figure 4: Performance results for the 5 algorithms: on the left is the total posterior entropy of a function of time, and
on the right is the average L2 error between the true and estimated landmark poses. Although the Integrated Information
Gain algorithm does not converge to minimum entropy significantly faster than the Most Uncertain Landmark heuristic,
the Information Information Gain consistently builds the most accurate map the fastest.

Stachniss et al. [16] describe one of the few global explo-
ration algorithms, in that they explicitly compute the infor-
mation available at all locations in the environment. Their
algorithm is closest in spirit to our “Single-Shot” algorithm,
although they integrate an additional notion of travel costs
to gather data at different locations in the environment. The
disadvantage to their approach is the same as the “Single-
Shot” algorithm in that they are search for the maximally
informative location, rather than the maximally informative
trajectory.

The problem of active exploration is related to a number
of other sequential decision making problems. The active
localization problem is one where the robot’s position is un-
known but the map is known. Fox et al. [5] use the same
criterion of entropy minimization to find a trajectory that
localizes the robot as quickly as possible. Once again, the
authors choose a purely local gradient-descent approach, al-
though they augment the information surface with a notion
of relative costs of different actions.

Active exploration and localization are both specific in-
stances of a more general framework, known as the Par-
tially Observable Markov Decision Process [15]. Whereas
the Markov Decision Process computes the optimal action
to take for any state, the POMDP policy provides the op-
timal action for any distribution over states. Conventional
POMDP approaches are wildly computationally intractable,
but good approximation algorithms have been emerged re-
cently. The Augmented MDP (AMDP, also known as
“Coastal Navigation”) algorithm [13] is one that is partic-
ularly relevant, in that it provides an efficient approxima-
tion to the POMDP if the distributions are Gaussian, such
as provided by a Kalman filter. The AMDP approach could
be applied to the active exploration problem, if the infor-
mation surface were replaced by an “information volume”;

each voxel in the information volume would represent the
current robot pose and map entropy. Given a transition func-
tion relating a voxel and action to some posterior voxel, the
planning problem would be just be a shortest-path problem
to the “lowest” reachable voxel in the information volume.
The disadvantage to this approach is that computing the ex-
pected transitions in the information volume is infeasible for
reasonable-sized maps.

Finally, active learning and statistical experiment design
solve very related problems. The framework asks the ques-
tion, given a space of possible data (or queries, or ex-
periments), what is the one additional measurement that
would maximally improve the existing model? [2, 6] The ac-
tive learning approaches typically maximize the information
gain criterion as we do in this work, but the disadvantage to
these approaches is that they are not physically motivated;
that is, there is no notion of “travelling” to acquire more
data, there is no notion of a sequential decision making pro-
cess that gathers a stream of data, and there is no notion of
the relative costs of different queries. The active learning
approaches are therefore closest to our “single shot” infor-
mation surface that models the effect of a single motion and
a single measurement.

However, some active learning and experiment design prob-
lems, such as geological surveys, have a physical compo-
nent to them. In future work, we hope to be able to ex-
tend the active exploration algorithm described in this paper
to problems where sequential decision making has implica-
tions in the active learning domain.

7 Conclusion

We have described an approach for active exploration on
mobile robots that allows us to find the most accurate map



in the least amount of time. The algorithm is not based on
local features or distributions over local landmarks, but by
computing a global information surface over the entire space
and searching for the trajectory that results in the lowest en-
tropy distribution. We emphasize that almost all existing
approaches are not based on sequential decision making, but
at best single-step look-aheads; we are only able to compute
the information surface for arbitrary sized maps because of
recent developments in constant-time SLAM that allow us to
compute the information gains efficiently. In particular, we
made use of the sparse extended information filter, however,
other constant-time algorithms such as CTS [12] would be
equally appropriate.

There are three specific disadvantages to our algorithm
which we plan to address in future work. Firstly, we are
computing the information surface based on the maximum-
likelihood information gain, compared with the expected in-
formation gain. One possible way to do this is to use Monte
Carlo methods to compute the expected information gain at
each location, sampling from the sensor model distribution,
but there may be more appropriate approaches as well.

Secondly, in all cases, the algorithm replans (e.g., computes
a new information surface) whenever it reaches the intended
target destination. However, it is clearly the case that as new
information is acquired, the optimal trajectory may change.
This raises the question then of when and how to recom-
pute the plan. It is usually infeasible to recreate the infor-
mation surface at the same rate that data arrives, but it is
also unlikely that the entire information surface will change
with the addition of new information; if we can devise a
way to integrate motion and new measurements into the in-
formation surface directly, we should be able to make only
local modifications to the surface and generate a new trajec-
tory quickly, rather than integrating the measurements into
the map and then creating a new information surface from
scratch.

Finally, the Kalman filter-based SLAM algorithms have
given us a principled way to reason about the quality of the
current map, and predict the quality of future maps based on
actions and predicted measurements. However, many tech-
niques that build good metric maps are not based on land-
marks but rather on scans of range data, images, etc.. These
algorithms are still probabilistic in nature; if it is possible
to compute some quantity over these maps that is similar to
entropy of the map distribution, we should be able to extend
our technique to more general map applications.
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